期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Modeling and simulation of a high-frequency micro-pump based on giant magnetostrictive material (GMM)
1
作者 WANG Chuan-li CHENG Xia AN Ping 《Journal of Coal Science & Engineering(China)》 2010年第2期206-209,共4页
A new type of high-frequency micro-pump was designed, in which GMA (Giant Magnetostrictive Actuator) was employed to replace the traditional motor drive, owing to its significant characteristics of fast response, high... A new type of high-frequency micro-pump was designed, in which GMA (Giant Magnetostrictive Actuator) was employed to replace the traditional motor drive, owing to its significant characteristics of fast response, high accuracy, easily miniaturized and so on. Both the mathematic and simulation models of the micro-pump were built.A set of raw data was used for simulation studies.The results show that the micro-pump based on GMA has achieved the features of high-frequency response and high accuracy, theoretically displaying the performance merits of a giant magnetostrictive material (GMM) high-frequency micro-pump. 展开更多
关键词 giant magnetostrictive material (GMM) high-frequency micro-pump MODEL SIMULATION
下载PDF
Developments and Prospects of Long-Span High-Speed Railway Bridge Technologies in China 被引量:61
2
作者 Shunquan Qin Zongyu Gao 《Engineering》 SCIE EI 2017年第6期787-794,共8页
With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-sp... With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-speed railway bridge is only 630 m. The main span of Hutong Yangtze River Bridge and of Wufengshan Yangtze River Bridge, which are under construction, will be much longer, at 1092 m each. In order to overcome the technical issues that originate from the extremely large dead loading and the relatively small structural stiffness of long-span high-speed railway bridges, many new technologies in bridge construction, design, materials, and so forth have been developed. This paper carefully reviews progress in the construction technologies of multi-function combined bridges in China, including com- bined highway and railway bridges and multi-track railway bridges. Innovations and practices regarding new types of bridge and composite bridge structures, such as bridges with three cable planes and three main trusses, inclined main trusses, slab-truss composite sections, and steel-concrete composite sections, are introduced. In addition, investigations into high-performance materials and integral fabrication and erection techniques for long-span railway bridges are summarized. At the end of the paper, prospects for the future development of long-span high-speed railwav bridges are provided. 展开更多
关键词 high-speed railway Long-span bridges Multi-function combined bridges High-performance materials Spatial structures with three cable planes Integral fabrication
下载PDF
Development of High-Speed On-Of Valves and Their Applications 被引量:3
3
作者 He Wang Zhen Chen +2 位作者 Jiahai Huang Long Quan Bin Zhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第4期21-41,共21页
With the widespread application of the computer and microelectronic technology in the industry,digitization becomes the inevitable developing trend of the hydraulic technology.Digitization of the hydraulic components ... With the widespread application of the computer and microelectronic technology in the industry,digitization becomes the inevitable developing trend of the hydraulic technology.Digitization of the hydraulic components is critical in the digital hydraulic technology.High-speed on-of valves(HSVs)which convert a train of input pulses into the fast and accurate switching between the on and of states belong to widely used basic digital hydraulic elements.In some ways,the characteristics of the HSVs determine the performance of the digital hydraulic systems.This paper discusses the development of HSVs and their applications.First,the HSVs with innovative structures which is classifed into direct drive valves and pilot operated valves are discussed,with the emphasis on their performance.Then,an overview of HSVs with intelligent materials is presented with considering of the switching frequency and fow capacity.Finally,the applications of the HSVs are reviewed,including digital hydraulic components with the integration of the HSVs and digital hydraulic systems controlled by the HSVs. 展开更多
关键词 high-speed on-of valve Digital hydraulic component Switching frequency Flow rate Innovative structure Intelligent material
下载PDF
Fracture Analysis of Composites in High-speed Tension
4
作者 蒋持平 曹利 +2 位作者 邹振祝 王铎 姚忠凯 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1989年第6期430-433,共4页
In this paper the results of a high-speed tension experiment of the SiC_w/Al composite have been reported and a simplified theoretical model has been developed to study the fracture mechanism of composites in high-spe... In this paper the results of a high-speed tension experiment of the SiC_w/Al composite have been reported and a simplified theoretical model has been developed to study the fracture mechanism of composites in high-speed tension. This theoretical model provides a new explanation for the increase of dynamic fracture strength of composites in high-speed tension. 展开更多
关键词 composite material high-speed tension fracture mechanics analytical function
下载PDF
Investigation of insulation layer dynamic characteristics for high-speed railway
5
作者 HongYe Yan GuoTang Zhao +3 位作者 DeGou Cai QianLi Zhang JianPing Yao AiJun Cheng 《Research in Cold and Arid Regions》 CSCD 2015年第4期430-437,共8页
Dynamic performance of insulation is one of the key parameters during the insulation application for high-speed railway subgrade. This paper conducted laboratory and field tests for the materials and dynamic load, esp... Dynamic performance of insulation is one of the key parameters during the insulation application for high-speed railway subgrade. This paper conducted laboratory and field tests for the materials and dynamic load, especially for thermal performance, elastic deformation, and accumulated deformation of insulation materials. Experiment results show that mechanical properties of insulation layer structure are stable, which satisfies the requirements of the high speed railway. 展开更多
关键词 high-speed railway insulation materials dynamic load elastic deformation accumulated deformation
下载PDF
Energy field-assisted high-speed dry milling green machining technology for difficult-to-machine metal materials 被引量:1
6
作者 Jin ZHANG Xuefeng HUANG +3 位作者 Xinzhen KANG Hao YI Qianyue WANG Huajun CAO 《Frontiers of Mechanical Engineering》 SCIE CSCD 2023年第2期33-97,共65页
Energy field-assisted machining technology has the potential to overcome the limitations of machining difficult-to-machine metal materials,such as poor machinability,low cutting efficiency,and high energy consumption.... Energy field-assisted machining technology has the potential to overcome the limitations of machining difficult-to-machine metal materials,such as poor machinability,low cutting efficiency,and high energy consumption.High-speed dry milling has emerged as a typical green processing technology due to its high processing efficiency and avoidance of cutting fluids.However,the lack of necessary cooling and lubrication in high-speed dry milling makes it difficult to meet the continuous milling requirements for difficult-to-machine metal materials.The introduction of advanced energy-field-assisted green processing technology can improve the machinability of such metallic materials and achieve efficient precision manufacturing,making it a focus of academic and industrial research.In this review,the characteristics and limitations of high-speed dry milling of difficult-to-machine metal materials,including titanium alloys,nickel-based alloys,and high-strength steel,are systematically explored.The laser energy field,ultrasonic energy field,and cryogenic minimum quantity lubrication energy fields are introduced.By analyzing the effects of changing the energy field and cutting parameters on tool wear,chip morphology,cutting force,temperature,and surface quality of the workpiece during milling,the superiority of energy-field-assisted milling of difficult-to-machine metal materials is demonstrated.Finally,the shortcomings and technical challenges of energy-field-assisted milling are summarized in detail,providing feasible ideas for realizing multi-energy field collaborative green machining of difficult-to-machine metal materials in the future. 展开更多
关键词 difficult-to-machine metal material green machining high-speed dry milling laser energy fieldassisted milling ultrasonic energy field-assisted milling cryogenic minimum quantity lubrication energy field-assisted milling
原文传递
High-speed imaging observation on molten bridges of AgNi10 electrical contact material
7
作者 Jing-Hong Chen Song Chen +2 位作者 Ming Xie Jie-Qiong Hu Sai-Bei Wang 《Rare Metals》 SCIE EI CAS CSCD 2023年第1期336-345,共10页
The electrical contact-high-speed imaging experimental system was developed to investigate the molten bridge phenomena of AgNi10 electrical contact material.The dimension of molten bridges was measured along with the ... The electrical contact-high-speed imaging experimental system was developed to investigate the molten bridge phenomena of AgNi10 electrical contact material.The dimension of molten bridges was measured along with the measurement of waveforms in the contact voltage under the load of direct current(DC) 6 V(8-20 A)and breaking speed of 50.0 mm·s^(-1).A part of the observed results was presented as well as surface morphology of the contacts after electrical contact behavior,which shows some interesting and new phenomena.Molten bridges and arc could exist simultaneously.The stable molten bridge looks like cylindrical shape and then becomes needle tip at its rupture,the diameter and length of molten bridges both increase with the increase in current and the growth gradient of the diameter is larger than that of the length.The morphology and elemental distribution of the contact surface are changed by the behavior of electrical contact. 展开更多
关键词 Molten bridge high-speed imaging ARC AgNi10 electrical contact material
原文传递
High-Speed Rubbing Behavior of Abrasive Coating Coated on Titanium Alloy Blade Tips
8
作者 Wenshuang Gu Shuai Yang +5 位作者 Shiyi Zhang Zhiliang Pei Weihai Xue Deli Duan Jun Gong Chao Sun 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第4期749-762,共14页
In aero-engines, abrasive coatings are typically utilized to protect the blade tip from excessive wear caused by the harder abradable sealing coating and thereby improve the sealing performance of engines. Therefore, ... In aero-engines, abrasive coatings are typically utilized to protect the blade tip from excessive wear caused by the harder abradable sealing coating and thereby improve the sealing performance of engines. Therefore, a Ni/cBN abrasive coating was prepared on titanium alloy using electrodeposition. The high-speed rubbing tests with a linear velocity of 350 m/s and different incursion rates were performed to investigate the effect of the Ni/cBN abrasive coating on the wear behavior against NiCrAl/diatomite seal coating. Results showed that melting wear and adhesive transfer occurred on the bare blades, causing the bare blade to suffer excessive wear. While the Ni/cBN abrasive coating exhibited superior wear resistance and cutting performance. The cBN grits pullout, the abrasion of Ni matrix and transfer of seal coating to the cBN grits were the main wear mechanism of the Ni/cBN abrasive coating. Additionally, it was found that the relationship between the incursion rate and high-speed rubbing behavior is quite different for the bare blade and Ni/cBN coating. The reason for the difference in wear behavior of bare blade and Ni/cBN coating at different incursion rates was discussed in detail. 展开更多
关键词 Gas turbine sealing Abrasive coating high-speed rubbing material transfer Abradable coating
原文传递
Unveiling the nanoscale architectures and dynamics of protein assembly with in situ atomic force microscopy
9
作者 Zhaoyi Zhai Sakshi Yadav Schmid +2 位作者 Zhixing Lin Shuai Zhang Fang Jiao 《Aggregate》 EI CAS 2024年第5期181-199,共19页
Proteins play a vital role in different biological processes by forming complexes through precise folding with exclusive inter-and intra-molecular interactions.Understanding the structural and regulatory mechanisms un... Proteins play a vital role in different biological processes by forming complexes through precise folding with exclusive inter-and intra-molecular interactions.Understanding the structural and regulatory mechanisms underlying protein complex formation provides insights into biophysical processes.Furthermore,the principle of protein assembly gives guidelines for new biomimetic materials with potential appli-cations in medicine,energy,and nanotechnology.Atomic force microscopy(AFM)is a powerful tool for investigating protein assembly and interactions across spatial scales(single molecules to cells)and temporal scales(milliseconds to days).It has significantly contributed to understanding nanoscale architectures,inter-and intra-molecular interactions,and regulatory elements that determine protein structures,assemblies,and functions.This review describes recent advancements in elucidating protein assemblies with in situ AFM.We discuss the structures,diffusions,interac-tions,and assembly dynamics of proteins captured by conventional and high-speed AFM in near-native environments and recent AFM developments in the multimodal high-resolution imaging,bimodal imaging,live cell imaging,and machine-learning-enhanced data analysis.These approaches show the significance of broadening the horizons of AFM and enable unprecedented explorations of protein assembly for biomaterial design and biomedical research. 展开更多
关键词 atomic force microscopy biomimetic material high-speed AFM in situ protein assembly dynamics protein structure characterization
原文传递
Investigation of frost heave prevention using permeable subgrade structure 被引量:3
10
作者 DeGou Cai JianPing Yao +3 位作者 HongYe Yan QianLi Zhang AiJun Cheng Jie Liu 《Research in Cold and Arid Regions》 CSCD 2015年第5期611-618,共8页
This paper set up a series of comprehensive targets based on the concept of'anti-freeze filler', which include reasonable water retention rate, frost heave characteristics, and compaction characteristics of filling ... This paper set up a series of comprehensive targets based on the concept of'anti-freeze filler', which include reasonable water retention rate, frost heave characteristics, and compaction characteristics of filling material. Then, a type of permeable graded gravel is proposed, suitable for high-speed railway subgrade. A series of in-door water retention, permeability, and frost heave tests were performed under different graded conditions. Water retention, permeability, and frost heave characteristic of dif- ferent graded filling materials can be determined, in order to define the gradation range of permeable graded gravel. Relying on the frost-heave monitoring record of high speed railway in Northeast China, a series of experimental studies were per- formed, which included on-site filler production, compaction test, and the anti-frost effect test, in order to improve the pro- duction and compaction techniques of permeable graded gravel. From the research of this paper, the use of permeable graded gravel subgrade as the anti-frost structure for the high-speed railway subgrade in cold areas is feasible. 展开更多
关键词 high-speed railway frost-heave prevention structure permeable filling material filling material production compaction control
下载PDF
Design of noise-reduction seats for high-speed trains
11
作者 Xiaojun DENG Yanju ZHAO +2 位作者 Haijin ZHANG Renzhong SHUAI Leiwei ZHU 《Frontiers of Mechanical Engineering》 SCIE CSCD 2018年第3期385-389,共5页
Noise-reduction seats have been successfully used in concert halls, theaters, and other places that reduce noise. In this study, a new noise-reduction seat design was proposed for high-speed trains, which have unique ... Noise-reduction seats have been successfully used in concert halls, theaters, and other places that reduce noise. In this study, a new noise-reduction seat design was proposed for high-speed trains, which have unique interior noise spectral characteristics. First, before the noisereduction seat models were fabricated, the parameters of high-performance sound-absorbing materials and perforated plates were selected by conducting a standing-wave tube test. The sound-absorption effects of the noisereduction seats and normal seats were investigated and compared in a reverberation chamber. Test results showed that, compared with normal seats, the noise-reduction seats obtained a significantly improved sound-absorption coefficient in the entire frequency band. Furthermore, the test results were used to establish a simulation model for calculation, and the simulation results proved that the noise-reduction seats substantially reduced the noise in an entire train car. Finally, the noise-reduction seats were fabricated and installed in a full train car of an actual highspeed train. The test results showed that, compared with the normal seats, the noise-reduction seats decreased the noise level at a standard point in the passenger car by 1.5 dB. Therefore, the noise-reduction seats are effective in noise reduction. 展开更多
关键词 high-speed train sound-absorbing materials perforated board noise-reduction seats
原文传递
Electromagnetic Characteristics and Corrosion Resistance of New Magnetosoft Materials Based on Capsulated Iron Powders
12
作者 Alexander VETCHER Gennady GOVOR +2 位作者 Olga DEMIDENKO Virgil CONSTANTIN Ana Maria POPESCU 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2020年第6期1326-1331,共6页
A new method of depositing an insulating multifunctional oxide coating on metal particles was developed.Such coatings increase corrosion resistance and insulate metal particles from each other.On base of capsulated by... A new method of depositing an insulating multifunctional oxide coating on metal particles was developed.Such coatings increase corrosion resistance and insulate metal particles from each other.On base of capsulated by oxide coating water-atomized iron powder ASC100.29,new composite soft magnetic materials were synthesized,which are able of replacing electrical steel in devices.Structural,electromagnetic properties and corrosion characte-ristics of the obtained composites were studied.It was found that the synthesized composite materials have low elec-tromagnetic losses,high values of magnetic induction(up to 2.1 T)and good corrosion resistance.The results demon-strate that the use of such materials in power supplies,c hokes,transformers,stators and rotors of electric machines and other products ensures their stable operation under various conditions. 展开更多
关键词 Soft magnetic composite material Iron powder Insulating cover high-frequency transformer Stators and rotors of electro machine
原文传递
Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies 被引量:14
13
作者 Abdul Rahim Artur Hermans +4 位作者 Benjamin Wohlfeil Despoina Petousi Bart Kuyken Dries Van Thourhout Roel Baets 《Advanced Photonics》 EI CSCD 2021年第2期38-60,共23页
Optical links are moving to higher and higher transmission speeds while shrinking to shorter and shorter ranges where optical links are envisaged even at the chip scale.The scaling in data speed and span of the optica... Optical links are moving to higher and higher transmission speeds while shrinking to shorter and shorter ranges where optical links are envisaged even at the chip scale.The scaling in data speed and span of the optical links demands modulators to be concurrently performant and cost-effective.Silicon photonics(SiPh),a photonic integrated circuit technology that leverages the fabrication sophistication of complementary metal-oxide-semiconductor technology,is well-positioned to deliver the performance,price,and manufacturing volume for the high-speed modulators of future optical communication links.SiPh has relied on the plasma dispersion effect,either in injection,depletion,or accumulation mode,to demonstrate efficient high-speed modulators.The high-speed plasma dispersion silicon modulators have been commercially deployed and have demonstrated excellent performance.Recent years have seen a paradigm shift where the integration of various electro-refractive and electro-absorptive materials has opened up additional routes toward performant SiPh modulators.These modulators are in the early years of their development.They promise to extend the performance beyond the limits set by the physical properties of silicon.The focus of our study is to provide a comprehensive review of contemporary(i.e.,plasma dispersion modulators)and new modulator implementations that involve the integration of novel materials with SiPh. 展开更多
关键词 high-speed modulators silicon photonics plasma dispersion effect FERROELECTRICS graphene III-V on Si organic(electro-optic)materials.
原文传递
Recent advances in micro-supercapacitors for AC line-filtering performance:From fundamental models to emerging applications 被引量:8
14
作者 Xin Feng Xiaoyu Shi +4 位作者 Jing Ning Dong Wang Jincheng Zhang Yue Hao Zhong-Shuai Wu 《eScience》 2021年第2期124-140,共17页
Recently,micro-supercapacitors(MSCs)have undergone major development as next-generation micro-electrochemical energy storage devices for self-powered,integrated,and wearable systems,thanks to their excellent performan... Recently,micro-supercapacitors(MSCs)have undergone major development as next-generation micro-electrochemical energy storage devices for self-powered,integrated,and wearable systems,thanks to their excellent performance capability.In particular,their rapid frequency response characteristics make them potential candidates to replace conventional capacitors and function as alternating current(AC)line filters to rectify pulse energy or as current ripple filters in the kHz range.However,few papers have been published about the associated fundamental device components,architectures,and correct characterization of MSCs applied in filter applications.In addition,it is a huge challenge to achieve a balance between capacitance and frequency response,not yet to be overcome.This review comprehensively summarizes recent advances in MSCs for AC line-filtering,from fundamental mechanisms to appropriate characterization and emerging applications.Special attention is given to progress in microfabrication strategies,electrode materials,and electrolytes for high-frequency MSCs.We also present perspectives and insights into the development of MSCs in different frequency ranges for AC line-filtering applications. 展开更多
关键词 Micro-supercapacitors Filter capacitors AC line-Filtering high-frequency Highly ordered materials
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部