Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control l...Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control loops critical for managing Industry 5.0 deployments,digital agriculture systems,and essential infrastructures.The provision of extensive machine-type communications through 6G will render many of these innovative systems autonomous and unsupervised.While full automation will enhance industrial efficiency significantly,it concurrently introduces new cyber risks and vulnerabilities.In particular,unattended systems are highly susceptible to trust issues:malicious nodes and false information can be easily introduced into control loops.Additionally,Denialof-Service attacks can be executed by inundating the network with valueless noise.Current anomaly detection schemes require the entire transformation of the control software to integrate new steps and can only mitigate anomalies that conform to predefined mathematical models.Solutions based on an exhaustive data collection to detect anomalies are precise but extremely slow.Standard models,with their limited understanding of mobile networks,can achieve precision rates no higher than 75%.Therefore,more general and transversal protection mechanisms are needed to detect malicious behaviors transparently.This paper introduces a probabilistic trust model and control algorithm designed to address this gap.The model determines the probability of any node to be trustworthy.Communication channels are pruned for those nodes whose probability is below a given threshold.The trust control algorithmcomprises three primary phases,which feed themodel with three different probabilities,which are weighted and combined.Initially,anomalous nodes are identified using Gaussian mixture models and clustering technologies.Next,traffic patterns are studied using digital Bessel functions and the functional scalar product.Finally,the information coherence and content are analyzed.The noise content and abnormal information sequences are detected using a Volterra filter and a bank of Finite Impulse Response filters.An experimental validation based on simulation tools and environments was carried out.Results show the proposed solution can successfully detect up to 92%of malicious data injection attacks.展开更多
In the process of ion-adsorption rare earth ore leaching,the migration characteristics of the wetting front in multi-hole injection holes and the influence of wetting front intersection effect on the migration distanc...In the process of ion-adsorption rare earth ore leaching,the migration characteristics of the wetting front in multi-hole injection holes and the influence of wetting front intersection effect on the migration distance of wetting fronts are still unclear.Besides,wetting front migration distance and leaching time are usually required to optimize the leaching process.In this study,wetting front migration tests of ionadsorption rare earth ores during the multi-hole fluid injection(the spacing between injection holes was 10 cm,12 cm and 14 cm)and single-hole fluid injection were completed under the constant water head height.At the pre-intersection stage,the wetting front migration laws of ion-adsorption rare earth ores during the multi-hole fluid injection and single-hole fluid injection were identical.At the postintersection stage,the intersection accelerated the wetting front migration.By using the Darcy’s law,the intersection effect of wetting fronts during the multi-hole liquid injection was transformed into the water head height directly above the intersection.Finally,based on the Green-Ampt model,a wetting front migration model of ion-adsorption rare earth ores during the multi-hole unsaturated liquid injection was established.Error analysis results showed that the proposed model can accurately simulate the infiltration process under experimental conditions.The research results enrich the infiltration law and theory of ion-adsorption rare earth ores during the multi-hole liquid injection,and this study provides a scientific basis for optimizing the liquid injection well pattern parameters of ion-adsorption rare earth in situ leaching in the future.展开更多
Spastic cerebral palsy is generally considered to result from cerebral cortical or pyramidal tract damage. Here, we precisely targeted the left pyramidal tract of 2-month-old Sprague-Dawley rats placed on a stereotaxi...Spastic cerebral palsy is generally considered to result from cerebral cortical or pyramidal tract damage. Here, we precisely targeted the left pyramidal tract of 2-month-old Sprague-Dawley rats placed on a stereotaxic instrument under intraperitoneal anesthesia. Based on the rat brain stereotaxic map, a 1-mm hole was made 10 mm posterior to bregma and 0.8 mm left of sagittal suture. A microsyringe was inserted perpendicularly to the surface of the brain to a depth of 9.7 mm, and 15 wL of ethanol was slowly injected to establish a rat model of spastic cerebral palsy. After modeling, the rats appeared to have necrotic voids in the pyramidal tract and exhibited typical signs and symptoms of flexion spasms that lasted for a long period of time. These findings indicate that this is an effective and easy method of establishing a rat model of spastic cerebral palsy with good reproducibility. Ethanol as a chemical ablation agent specifically and thoroughly damages the py- ramidal tract, and therefore, the animals display flexion spasms, which are a typical symptom of the disease.展开更多
In the dual risk model, we consider the optimal dividend and capital injection problem, which involves a random time horizon and a ruin penalty. Both fixed and proportional costs from the transactions of capital injec...In the dual risk model, we consider the optimal dividend and capital injection problem, which involves a random time horizon and a ruin penalty. Both fixed and proportional costs from the transactions of capital injection are considered. The objective is to maximize the total value of the expected discounted dividends, and the penalized discounted both capital injections and ruin penalty during the horizon, which is described by the minimum of the time of ruin and an exponential random variable. The explicit solutions for optimal strategy and value function are obtained, when the income jumps follow a hyper-exponential distribution.Besides, some numerical examples are presented to illustrate our results.展开更多
Improving the absorbed gas to active desorption and seepage and delaying gas drainage attenuation are considered as key methods for increasing drainage efficiency and gas output.According to the solid mechanics theory...Improving the absorbed gas to active desorption and seepage and delaying gas drainage attenuation are considered as key methods for increasing drainage efficiency and gas output.According to the solid mechanics theory,the nonlinear Darcy seepage theory and thermodynamics,the heat-fluid-solid coupling model for gassy coal has been improved.The numerical model was founded from the improved multi-field coupling model by COMSOL Multiphysics and gas drainage by borehole down the coal seam enhanced by heat injection was modelled.The results show that the heatfluid-solid model with adsorption effects for gassy coal was well simulated by the improved multi-field model.The mechanism of coal seam gas desorption seepage under the combined action of temperature,stress and adsorption can be well described.Gas desorption and seepage can be enhanced by heat injection into coal seams.The gas drainage rate was directly proportional to the temperature of injected heat in the scope of 30-150 ℃ and increasing in the whole modelleddrainage process (0-1000 d).The increased level was maximum in the initial drainage time and decreasing gradually along with drainage time.The increasing ratio of drainage rate was maximum when the temperature raised from 30 to 60 ℃.Although the drainage rate would increase along with increasing temperature,when exceeding 60 ℃,the increasing ratio of drainage rate with rising temperature would decrease.Gas drainage promotion was more effective in coal seams with lower permeability than with higher permeability.The coal seam temperature in a 5 m distance surrounding the heat injection borehole would rise to around 60 ℃ in 3 months.That was much less than the time of gas drainage in the coal mines in sites with low permeability coal seams.Therefore,it is valuable and feasible to inject heat into coal seams to promote gas drainage,and this has strong feasibility for coal seams with low permeability which are widespread in China.展开更多
To investigate the height growth of multi-cluster fractures during variable fluid-viscosity fracturing in a layered shale oil reservoir,a two-dimensional finite element method(FEM)-discrete fracture network(DFN)model ...To investigate the height growth of multi-cluster fractures during variable fluid-viscosity fracturing in a layered shale oil reservoir,a two-dimensional finite element method(FEM)-discrete fracture network(DFN)model coupled with flow,stress and damage is proposed.A traction-separation law is used to describe the mixed-mode response of the damaged adhesive fractures,and the cubic law is used to describe the fluid flow within the fractures.The rock deformation is controlled by the in-situ stress,fracture cohesion and fluid pressure on the hydraulic fracture surface.The coupled finite element equations are solved by the explicit time difference method.The effects of the fracturing treatment parameters including fluid viscosity,pumping rate and cluster spacing on the geometries of multifractures are investigated.The results show that variable fluid-viscosity injection can improve the complexity of the fracture network and height of the main fractures simultaneously.The pumping rate of15 m^(3)/min,variable fluid-viscosity of 3-9-21-36-45 mPa s with a cluster spacing of 7.5 m is the ideal treatment strategy.The field application shows that the peak daily production of the application well with the optimized injection procedu re of variable fluid-viscosity fracturing is 171 tons(about 2.85 times that of the adjacent well),which is the highest daily production record of a single shale oil well in China,marking a strategic breakthrough of commercial shale oil production in the Jiyang Depression,Shengli Oilfield.The variable fluid-viscosity fracturing technique is proved to be very effective for improving shale oil production.展开更多
The effect of hydrogen injection on blast furnace operation and carbon dioxide emissions was simulated using a 1D steady-state zonal model.The maximum hydrogen injection rate was evaluated on the basis of the simulati...The effect of hydrogen injection on blast furnace operation and carbon dioxide emissions was simulated using a 1D steady-state zonal model.The maximum hydrogen injection rate was evaluated on the basis of the simulation of the vertical temperature pattern in the blast furnace with a focus on the thermal reserve zone.The effects of blast temperature and oxygen enrichment were also examined to estimate coke replacement ratio,productivity,hydrogen utilization efficiency,and carbon dioxide emission reduction.For blast temperature of 1200℃,the maximum hydrogen injection rate was 19.0 and 28.3 kg of H_(2)/t of hot metal(HM)for oxygen enrichment of 2vol%and 12vol%,respectively.Results showed a coke replacement ratio of 3-4 kg of coke/kg of H_(2),direct CO_(2) emission reduction of 10.2%-17.8%,and increased productivity by up to 13.7%depending on oxygen enrichment level.Increasing blast temperature further reduced the direct CO_(2) emissions.Hydrogen utilization degree reached the maximum of 0.52-0.54 H_(2)O/(H_(2)O+H_(2)).The decarbonization potential of hydrogen injection was estimated in the range from 9.4 t of CO_(2)/t of H_(2) to 9.7 t of CO_(2)/t of H_(2).For economic feasibility,hydrogen injection requires revolutionary progress in terms of low-cost H_(2) generation unless the technological change is motivated by the carbon emission cost.Hydrogen injection may unfavorably affect the radial temperature pattern of the raceway,which could be addressed by adopting appropriate injection techniques.展开更多
The study on the fluid flow, meniscus oscillation, slag entrapment in continuous casting mould was conducted mathematically and experimentally. The results show that the injection of argon into submerged nozzle enhan...The study on the fluid flow, meniscus oscillation, slag entrapment in continuous casting mould was conducted mathematically and experimentally. The results show that the injection of argon into submerged nozzle enhances the meniscus oscillation, thus increases the probability of slag entrapment, and the critical argon blowing flow rate, which will give rise to slag entrapment, is around 10l/min. The trajectory of bubble is affected by the bubble diameter and the molten steel flow, and the bubble diameter is dominant. The bubble with diameter 1.4mm floats fastest with 0.47m/s terminal velocity.展开更多
Background:Bladder cancer poses a great burden on society and its high rate of recurrence and treatment failure necessitates use of appropriate animal models to study its pathogenesis and test novel treatments.Orthoto...Background:Bladder cancer poses a great burden on society and its high rate of recurrence and treatment failure necessitates use of appropriate animal models to study its pathogenesis and test novel treatments.Orthotopic models are superior to other types since they provide a normal microenvironment.Four methods are described for developing bladder cancer models inside the animal’s bladder.Direct intramural injection is one of these methods and is widely used.However,its efficacy in model development has not yet been studied.We aimed to evaluate the efficacy and success rate of the direct intramural injection method of developing an orthotopic model for the study of bladder cancer.Method:Tumor cell lines were prepared in four microtubes.Aliquots of 200×10^(3) cells were injected through a 27 gauge needle into the ventral wall of the bladders of 4male and 4 female BALB/c mice following a midline 1 cm laparotomy incision.In addition,1 million cells from each microtube were injected into the flanks of control mice.To prevent infection and alleviate pain,5 mg/kg enrofloxacin and 2.5 mg/kg flunixin meglumine,respectively,were injected subcutaneously.Results:Tumors formed in all mice,resulting in 100% take rate and zero post-operation mortality.Surgery time was≤15 min per mouse.In two mice,tumors were found in the peritoneal space as well.Conclusion:Direct intramural injection is a rapid,reliable,and reproducible method for developing orthotopic models of bladder cancer.It can be done on both male and female mice and only requires readily available surgical tools.However,needle track can result in cell spillage and peritoneal tumors.展开更多
A nonlinear mathematical model of the injection molding process for electrohydraulic servo injection molding machine (IMM) is developed.It was found necessary to consider the characteristics of asymmetric cylinder for...A nonlinear mathematical model of the injection molding process for electrohydraulic servo injection molding machine (IMM) is developed.It was found necessary to consider the characteristics of asymmetric cylinder for electrohydraulic servo IMM.The model is based on the dynamics of the machine including servo valve,asymmetric cylinder and screw,and the non-Newtonian flow behavior of polymer melt in injection molding is also considered.The performance of the model was evaluated based on novel approach of molding - injection and compress molding,and the results of simulation and experimental data demonstrate the effectiveness of the model.展开更多
Gas injection serves as a main enhanced oil recovery(EOR)method in fractured-vuggy carbonate reservoir,but its effect differs among single wells and multi-well groups because of the diverse fractured-vuggy configurati...Gas injection serves as a main enhanced oil recovery(EOR)method in fractured-vuggy carbonate reservoir,but its effect differs among single wells and multi-well groups because of the diverse fractured-vuggy configuration.Many researchers conducted experiments for the observation of fluid flow and the evaluation of production performance,while most of their physical models were fabricated based on the probability distribution of fractures and caves in the reservoir.In this study,a two-dimensional physical model of the karst fault system was designed and fabricated based on the geological model of TK748 well group in the seventh block of the Tahe Oilfield.The fluid flow and production performance of primary gas flooding were discussed.Gas-assisted gravity flooding was firstly introduced to take full use of gas-oil gravity difference,and its feasibility in the karst fault system was examined.Experimental results showed that primary gas flooding created more flow paths and achieved a remarkable increment of oil recovery compared to water flooding.Gas injection at a lower location was recommended to delay gas breakthrough.Gas-assisted gravity flooding achieved more stable gas-displacing-oil because oil production was at a lower location,and thus,the oil recovery was further enhanced.展开更多
In order to predict the powder flow law of the injection molding process of MgTiO3 ceramic parts with complex structures,a constitutive model and numerical simulation method for MgTiO3 ceramic injection molding were e...In order to predict the powder flow law of the injection molding process of MgTiO3 ceramic parts with complex structures,a constitutive model and numerical simulation method for MgTiO3 ceramic injection molding were established based on the Hunt method.The material parameters of MgTiO3 such as elastic modulus,Poisson ratio,glass transition temperature,thermal conductivity and specific heat capacity were measured.Based on the fitting curve and the material parameters measured,the cross-WLF viscosity model and P-V-T model required for MgTiO3 ceramic injection molding were optimized.Furthermore,the influence of process parameters on mold filling flow and distribution of parts defects was researched.It was found that the gate position,injection speed and melt temperature have greater influence on mold filling flow and the packing process has an obvious effect on parts’defects.On this basis,the MgTiO3 ceramic parts injection molding experiment verification was carried out.By comparing the experimental results with the simulated results,it is found that the deformation error is within 1.5%and the density error is within 1%.Therefore,this research provided theoretical guidance for the engineering application of MgTiO3 ceramic parts fabricated by injection molding.展开更多
The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality ...The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality of design can be improved greatly. At the same time, it is helpful to confirm the cooling system structure and optimize the process conditions. In this paper, the 3D surface model of mold cavity is used to replace the middle-plane model in the simulation by Boundary Element Method, which break the bottleneck of the application of the injection molding simulation softwares base on the middle-plane model. With the improvements of this paper, a practical and commercial simulation software of injection molding cooling process named as HsCAE3D6.0 is developed.展开更多
This paper introduces a novel multi-tiered defense architecture to protect language models from adversarial prompt attacks. We construct adversarial prompts using strategies like role emulation and manipulative assist...This paper introduces a novel multi-tiered defense architecture to protect language models from adversarial prompt attacks. We construct adversarial prompts using strategies like role emulation and manipulative assistance to simulate real threats. We introduce a comprehensive, multi-tiered defense framework named GUARDIAN (Guardrails for Upholding Ethics in Language Models) comprising a system prompt filter, pre-processing filter leveraging a toxic classifier and ethical prompt generator, and pre-display filter using the model itself for output screening. Extensive testing on Meta’s Llama-2 model demonstrates the capability to block 100% of attack prompts. The approach also auto-suggests safer prompt alternatives, thereby bolstering language model security. Quantitatively evaluated defense layers and an ethical substitution mechanism represent key innovations to counter sophisticated attacks. The integrated methodology not only fortifies smaller LLMs against emerging cyber threats but also guides the broader application of LLMs in a secure and ethical manner.展开更多
Mathematical model of filling disk-shaped mold cavity in steady state was studied.And the mathematical model under vibration field was developed from the model in steady state.According to the model of filling disk-sh...Mathematical model of filling disk-shaped mold cavity in steady state was studied.And the mathematical model under vibration field was developed from the model in steady state.According to the model of filling disk-shaped mold cavity in steady state,the filling time,the distribution of velocity field and the pressure field were obtained.The analysis results from rheological analytic model were compared with the numerical simulation results using Moldflow software in the powder injection molding filling process.Through the comparison,it is found that it is unreasonable to neglect the influence of temperature when calculated the pressure changing with the time at the cavity gate,while it can be neglected in other situations such as calculating the distribution of the velocity fields.This provides a theoretical reference for the establishment of correct model both in steady state and under vibration force field in the future.展开更多
Water injection has shown to be one of the most successful,efficient,and cost-effective reservoir management strategies.By re-injecting treated and filtered water into reservoirs,this approach can help maintain reserv...Water injection has shown to be one of the most successful,efficient,and cost-effective reservoir management strategies.By re-injecting treated and filtered water into reservoirs,this approach can help maintain reservoir pressure,increase hydrocarbon output,and reduce the environmental effect.The goal of this project is to create a water injection model utilizing Eclipse reservoir simulation software to better understand water injection methods for reservoir pressure maintenance.A basic reservoir model is utilized in this investigation.For simulation designs,the reservoir length,breadth,and thickness may be changed to different levels.The water-oil contact was discovered at 7000 feet,and the reservoir pressure was recorded at 3000 pounds per square inch at a depth of 6900 feet.The aquifer chosen was of the Fetkovich type and was linked to the reservoir in the j+direction.The porosity was estimated to be varied,ranging from 9%to 16%.The residual oil saturation was set to 25%and the irreducible water saturation was set at 20%.The vertical permeability was set at 50 md as a constant.Pressure Volume Temperature(PVT)data was used to estimate the gas and water characteristics.展开更多
A fault injection model-oriented testing strategy was proposed for detecting component vulnerabilities.A fault injection model was defined,and the faults were injected into the tested component based on the fault inje...A fault injection model-oriented testing strategy was proposed for detecting component vulnerabilities.A fault injection model was defined,and the faults were injected into the tested component based on the fault injection model to trigger security exceptions.The testing process could be recorded by the monitoring mechanism of the strategy,and the monitoring information was written into the security log.The component vulnerabilities could be detected by the detecting algorithm through analyzing the security log.Lastly,some experiments were done in an integration testing platform to verify the applicability of the strategy.The experimental results show that the strategy is effective and operable.The detecting rate is more than 90%for vulnerability components.展开更多
The model of acute lung injury(ALI)was established by intraperitoneal administration,but there was no time-point observation and comparison.ALI model was established by intraperitoneal injection of lipopolysaccharide(...The model of acute lung injury(ALI)was established by intraperitoneal administration,but there was no time-point observation and comparison.ALI model was established by intraperitoneal injection of lipopolysaccharide(LPS)at the concentration of 10 mg·kg^-1 (10 mg LPS dissolved in 1 mL normal saline to prepare 1 mL·kg^-1solution)in rats.The control group(CG)was intraperitoneally injected with saline of the same dose.In the LPS group,lung tissues were collected at 4,6,8,12 and 24 h after administration.Then,the morphology changes,the ratio of wet-to-dry weight(W/D),the expression of interleukin-1β(IL-1β)and tumor necrosis factor-α(TNF-α)proteins,the levels of malondialdehyde(MDA),the activities of superoxide dismutase(SOD),glutathione peroxidase(GSH)were measured.To verify the success of the model,the degrees of lung injury via Western blot,RT-PCR,ELISA and other techniques were detected at different time points,and the severe time of the ALI model established was deterimined by intraperitoneal administration,which provided a stable model basis for the study of the pathogenesis of ALI in the future.The results showed that the lung injury occurred in LPS group.W/D and lung pathological changes at 12 and 24 h of LPS group were significantly different from those in the CG.Compared with the CG,the expression of IL-1βand TNF-αproteins and the content of MDA in lung tissues of LPS group increased and most significant difference was found at 12 and 24 h(p<0.01).Compared with the CG,the activities of SOD and GSH in LPS 12 h group decreased significantly(p<0.01).In conclusion,inflammation and oxidative damage were the main causes of the ALI in rats.Lung injury was most obvious 12 h after intraperitoneal injection of 10 mg·kg^-1 LPS.展开更多
To illuminate the necessity of model evolvement and reuse, dynamics of injection molding machine's product models are analyzed. The performance knowledge is used to support the model evolvement and reuse. The driven ...To illuminate the necessity of model evolvement and reuse, dynamics of injection molding machine's product models are analyzed. The performance knowledge is used to support the model evolvement and reuse. The driven factors of mechanical product model are concluded. The dynamic characteristics of reuse. Finally, HT1800X1N series injection molding machines are taken as examples to illuminate that the arithmetic is correct and practical.展开更多
Pits are circular to elliptical,steep-sided,flat-bottomed depressions interpreted to form from collapse into a cavity.They occur on Earth,Venus and Mars and range in diameter from;00 m to several kilometres(e.g.
基金funding by Comunidad de Madrid within the framework of the Multiannual Agreement with Universidad Politécnica de Madrid to encourage research by young doctors(PRINCE project).
文摘Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control loops critical for managing Industry 5.0 deployments,digital agriculture systems,and essential infrastructures.The provision of extensive machine-type communications through 6G will render many of these innovative systems autonomous and unsupervised.While full automation will enhance industrial efficiency significantly,it concurrently introduces new cyber risks and vulnerabilities.In particular,unattended systems are highly susceptible to trust issues:malicious nodes and false information can be easily introduced into control loops.Additionally,Denialof-Service attacks can be executed by inundating the network with valueless noise.Current anomaly detection schemes require the entire transformation of the control software to integrate new steps and can only mitigate anomalies that conform to predefined mathematical models.Solutions based on an exhaustive data collection to detect anomalies are precise but extremely slow.Standard models,with their limited understanding of mobile networks,can achieve precision rates no higher than 75%.Therefore,more general and transversal protection mechanisms are needed to detect malicious behaviors transparently.This paper introduces a probabilistic trust model and control algorithm designed to address this gap.The model determines the probability of any node to be trustworthy.Communication channels are pruned for those nodes whose probability is below a given threshold.The trust control algorithmcomprises three primary phases,which feed themodel with three different probabilities,which are weighted and combined.Initially,anomalous nodes are identified using Gaussian mixture models and clustering technologies.Next,traffic patterns are studied using digital Bessel functions and the functional scalar product.Finally,the information coherence and content are analyzed.The noise content and abnormal information sequences are detected using a Volterra filter and a bank of Finite Impulse Response filters.An experimental validation based on simulation tools and environments was carried out.Results show the proposed solution can successfully detect up to 92%of malicious data injection attacks.
基金This research was funded by the National Natural Science Foundation of China(Grant No.52174113)the Young Jinggang Scholars Award Program in Jiangxi Province,China(Grant No.QNJG2018051)the“Thousand Talents”of Jiangxi Province,China(Grant No.jxsq2019201043).
文摘In the process of ion-adsorption rare earth ore leaching,the migration characteristics of the wetting front in multi-hole injection holes and the influence of wetting front intersection effect on the migration distance of wetting fronts are still unclear.Besides,wetting front migration distance and leaching time are usually required to optimize the leaching process.In this study,wetting front migration tests of ionadsorption rare earth ores during the multi-hole fluid injection(the spacing between injection holes was 10 cm,12 cm and 14 cm)and single-hole fluid injection were completed under the constant water head height.At the pre-intersection stage,the wetting front migration laws of ion-adsorption rare earth ores during the multi-hole fluid injection and single-hole fluid injection were identical.At the postintersection stage,the intersection accelerated the wetting front migration.By using the Darcy’s law,the intersection effect of wetting fronts during the multi-hole liquid injection was transformed into the water head height directly above the intersection.Finally,based on the Green-Ampt model,a wetting front migration model of ion-adsorption rare earth ores during the multi-hole unsaturated liquid injection was established.Error analysis results showed that the proposed model can accurately simulate the infiltration process under experimental conditions.The research results enrich the infiltration law and theory of ion-adsorption rare earth ores during the multi-hole liquid injection,and this study provides a scientific basis for optimizing the liquid injection well pattern parameters of ion-adsorption rare earth in situ leaching in the future.
文摘Spastic cerebral palsy is generally considered to result from cerebral cortical or pyramidal tract damage. Here, we precisely targeted the left pyramidal tract of 2-month-old Sprague-Dawley rats placed on a stereotaxic instrument under intraperitoneal anesthesia. Based on the rat brain stereotaxic map, a 1-mm hole was made 10 mm posterior to bregma and 0.8 mm left of sagittal suture. A microsyringe was inserted perpendicularly to the surface of the brain to a depth of 9.7 mm, and 15 wL of ethanol was slowly injected to establish a rat model of spastic cerebral palsy. After modeling, the rats appeared to have necrotic voids in the pyramidal tract and exhibited typical signs and symptoms of flexion spasms that lasted for a long period of time. These findings indicate that this is an effective and easy method of establishing a rat model of spastic cerebral palsy with good reproducibility. Ethanol as a chemical ablation agent specifically and thoroughly damages the py- ramidal tract, and therefore, the animals display flexion spasms, which are a typical symptom of the disease.
基金Supported by the National Natural Science Foundation of China(11231005)Promotive research fund for excellent young and middle-aged scientists of Shandong Province(BS2014SF006)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(15KJB110009)
文摘In the dual risk model, we consider the optimal dividend and capital injection problem, which involves a random time horizon and a ruin penalty. Both fixed and proportional costs from the transactions of capital injection are considered. The objective is to maximize the total value of the expected discounted dividends, and the penalized discounted both capital injections and ruin penalty during the horizon, which is described by the minimum of the time of ruin and an exponential random variable. The explicit solutions for optimal strategy and value function are obtained, when the income jumps follow a hyper-exponential distribution.Besides, some numerical examples are presented to illustrate our results.
基金The authors acknowledge the financial support from the Natural Science Foundation of China(U1704131)Program for Science&Technology Innovation Talents in Universities of Henan Province(18HASTIT018)the Program for Changjiang Scholars and Innovative Research Team in University(IRT_16R22).
文摘Improving the absorbed gas to active desorption and seepage and delaying gas drainage attenuation are considered as key methods for increasing drainage efficiency and gas output.According to the solid mechanics theory,the nonlinear Darcy seepage theory and thermodynamics,the heat-fluid-solid coupling model for gassy coal has been improved.The numerical model was founded from the improved multi-field coupling model by COMSOL Multiphysics and gas drainage by borehole down the coal seam enhanced by heat injection was modelled.The results show that the heatfluid-solid model with adsorption effects for gassy coal was well simulated by the improved multi-field model.The mechanism of coal seam gas desorption seepage under the combined action of temperature,stress and adsorption can be well described.Gas desorption and seepage can be enhanced by heat injection into coal seams.The gas drainage rate was directly proportional to the temperature of injected heat in the scope of 30-150 ℃ and increasing in the whole modelleddrainage process (0-1000 d).The increased level was maximum in the initial drainage time and decreasing gradually along with drainage time.The increasing ratio of drainage rate was maximum when the temperature raised from 30 to 60 ℃.Although the drainage rate would increase along with increasing temperature,when exceeding 60 ℃,the increasing ratio of drainage rate with rising temperature would decrease.Gas drainage promotion was more effective in coal seams with lower permeability than with higher permeability.The coal seam temperature in a 5 m distance surrounding the heat injection borehole would rise to around 60 ℃ in 3 months.That was much less than the time of gas drainage in the coal mines in sites with low permeability coal seams.Therefore,it is valuable and feasible to inject heat into coal seams to promote gas drainage,and this has strong feasibility for coal seams with low permeability which are widespread in China.
基金funded by the National Natural Science Foundation of China(Nos.52192622,51874253,U20A202)
文摘To investigate the height growth of multi-cluster fractures during variable fluid-viscosity fracturing in a layered shale oil reservoir,a two-dimensional finite element method(FEM)-discrete fracture network(DFN)model coupled with flow,stress and damage is proposed.A traction-separation law is used to describe the mixed-mode response of the damaged adhesive fractures,and the cubic law is used to describe the fluid flow within the fractures.The rock deformation is controlled by the in-situ stress,fracture cohesion and fluid pressure on the hydraulic fracture surface.The coupled finite element equations are solved by the explicit time difference method.The effects of the fracturing treatment parameters including fluid viscosity,pumping rate and cluster spacing on the geometries of multifractures are investigated.The results show that variable fluid-viscosity injection can improve the complexity of the fracture network and height of the main fractures simultaneously.The pumping rate of15 m^(3)/min,variable fluid-viscosity of 3-9-21-36-45 mPa s with a cluster spacing of 7.5 m is the ideal treatment strategy.The field application shows that the peak daily production of the application well with the optimized injection procedu re of variable fluid-viscosity fracturing is 171 tons(about 2.85 times that of the adjacent well),which is the highest daily production record of a single shale oil well in China,marking a strategic breakthrough of commercial shale oil production in the Jiyang Depression,Shengli Oilfield.The variable fluid-viscosity fracturing technique is proved to be very effective for improving shale oil production.
文摘The effect of hydrogen injection on blast furnace operation and carbon dioxide emissions was simulated using a 1D steady-state zonal model.The maximum hydrogen injection rate was evaluated on the basis of the simulation of the vertical temperature pattern in the blast furnace with a focus on the thermal reserve zone.The effects of blast temperature and oxygen enrichment were also examined to estimate coke replacement ratio,productivity,hydrogen utilization efficiency,and carbon dioxide emission reduction.For blast temperature of 1200℃,the maximum hydrogen injection rate was 19.0 and 28.3 kg of H_(2)/t of hot metal(HM)for oxygen enrichment of 2vol%and 12vol%,respectively.Results showed a coke replacement ratio of 3-4 kg of coke/kg of H_(2),direct CO_(2) emission reduction of 10.2%-17.8%,and increased productivity by up to 13.7%depending on oxygen enrichment level.Increasing blast temperature further reduced the direct CO_(2) emissions.Hydrogen utilization degree reached the maximum of 0.52-0.54 H_(2)O/(H_(2)O+H_(2)).The decarbonization potential of hydrogen injection was estimated in the range from 9.4 t of CO_(2)/t of H_(2) to 9.7 t of CO_(2)/t of H_(2).For economic feasibility,hydrogen injection requires revolutionary progress in terms of low-cost H_(2) generation unless the technological change is motivated by the carbon emission cost.Hydrogen injection may unfavorably affect the radial temperature pattern of the raceway,which could be addressed by adopting appropriate injection techniques.
文摘The study on the fluid flow, meniscus oscillation, slag entrapment in continuous casting mould was conducted mathematically and experimentally. The results show that the injection of argon into submerged nozzle enhances the meniscus oscillation, thus increases the probability of slag entrapment, and the critical argon blowing flow rate, which will give rise to slag entrapment, is around 10l/min. The trajectory of bubble is affected by the bubble diameter and the molten steel flow, and the bubble diameter is dominant. The bubble with diameter 1.4mm floats fastest with 0.47m/s terminal velocity.
基金Tehran University of Medical Sciences and Health ServicesGrant/Award Number:98-3-101-45499。
文摘Background:Bladder cancer poses a great burden on society and its high rate of recurrence and treatment failure necessitates use of appropriate animal models to study its pathogenesis and test novel treatments.Orthotopic models are superior to other types since they provide a normal microenvironment.Four methods are described for developing bladder cancer models inside the animal’s bladder.Direct intramural injection is one of these methods and is widely used.However,its efficacy in model development has not yet been studied.We aimed to evaluate the efficacy and success rate of the direct intramural injection method of developing an orthotopic model for the study of bladder cancer.Method:Tumor cell lines were prepared in four microtubes.Aliquots of 200×10^(3) cells were injected through a 27 gauge needle into the ventral wall of the bladders of 4male and 4 female BALB/c mice following a midline 1 cm laparotomy incision.In addition,1 million cells from each microtube were injected into the flanks of control mice.To prevent infection and alleviate pain,5 mg/kg enrofloxacin and 2.5 mg/kg flunixin meglumine,respectively,were injected subcutaneously.Results:Tumors formed in all mice,resulting in 100% take rate and zero post-operation mortality.Surgery time was≤15 min per mouse.In two mice,tumors were found in the peritoneal space as well.Conclusion:Direct intramural injection is a rapid,reliable,and reproducible method for developing orthotopic models of bladder cancer.It can be done on both male and female mice and only requires readily available surgical tools.However,needle track can result in cell spillage and peritoneal tumors.
基金Foundation item: The National Torch Program of China (No. 2001EB000991)
文摘A nonlinear mathematical model of the injection molding process for electrohydraulic servo injection molding machine (IMM) is developed.It was found necessary to consider the characteristics of asymmetric cylinder for electrohydraulic servo IMM.The model is based on the dynamics of the machine including servo valve,asymmetric cylinder and screw,and the non-Newtonian flow behavior of polymer melt in injection molding is also considered.The performance of the model was evaluated based on novel approach of molding - injection and compress molding,and the results of simulation and experimental data demonstrate the effectiveness of the model.
基金the financial support from National Natural Science Foundation of China(51504268)National Technology Major Project of China(2016ZX05014).
文摘Gas injection serves as a main enhanced oil recovery(EOR)method in fractured-vuggy carbonate reservoir,but its effect differs among single wells and multi-well groups because of the diverse fractured-vuggy configuration.Many researchers conducted experiments for the observation of fluid flow and the evaluation of production performance,while most of their physical models were fabricated based on the probability distribution of fractures and caves in the reservoir.In this study,a two-dimensional physical model of the karst fault system was designed and fabricated based on the geological model of TK748 well group in the seventh block of the Tahe Oilfield.The fluid flow and production performance of primary gas flooding were discussed.Gas-assisted gravity flooding was firstly introduced to take full use of gas-oil gravity difference,and its feasibility in the karst fault system was examined.Experimental results showed that primary gas flooding created more flow paths and achieved a remarkable increment of oil recovery compared to water flooding.Gas injection at a lower location was recommended to delay gas breakthrough.Gas-assisted gravity flooding achieved more stable gas-displacing-oil because oil production was at a lower location,and thus,the oil recovery was further enhanced.
基金Project(2018CFB439)supported by the Hubei Province Natural Science Foundation,China。
文摘In order to predict the powder flow law of the injection molding process of MgTiO3 ceramic parts with complex structures,a constitutive model and numerical simulation method for MgTiO3 ceramic injection molding were established based on the Hunt method.The material parameters of MgTiO3 such as elastic modulus,Poisson ratio,glass transition temperature,thermal conductivity and specific heat capacity were measured.Based on the fitting curve and the material parameters measured,the cross-WLF viscosity model and P-V-T model required for MgTiO3 ceramic injection molding were optimized.Furthermore,the influence of process parameters on mold filling flow and distribution of parts defects was researched.It was found that the gate position,injection speed and melt temperature have greater influence on mold filling flow and the packing process has an obvious effect on parts’defects.On this basis,the MgTiO3 ceramic parts injection molding experiment verification was carried out.By comparing the experimental results with the simulated results,it is found that the deformation error is within 1.5%and the density error is within 1%.Therefore,this research provided theoretical guidance for the engineering application of MgTiO3 ceramic parts fabricated by injection molding.
基金Supported by NationalNatural Science FoundationCouncil of the People’s Republic of China (20490224)
文摘The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality of design can be improved greatly. At the same time, it is helpful to confirm the cooling system structure and optimize the process conditions. In this paper, the 3D surface model of mold cavity is used to replace the middle-plane model in the simulation by Boundary Element Method, which break the bottleneck of the application of the injection molding simulation softwares base on the middle-plane model. With the improvements of this paper, a practical and commercial simulation software of injection molding cooling process named as HsCAE3D6.0 is developed.
文摘This paper introduces a novel multi-tiered defense architecture to protect language models from adversarial prompt attacks. We construct adversarial prompts using strategies like role emulation and manipulative assistance to simulate real threats. We introduce a comprehensive, multi-tiered defense framework named GUARDIAN (Guardrails for Upholding Ethics in Language Models) comprising a system prompt filter, pre-processing filter leveraging a toxic classifier and ethical prompt generator, and pre-display filter using the model itself for output screening. Extensive testing on Meta’s Llama-2 model demonstrates the capability to block 100% of attack prompts. The approach also auto-suggests safer prompt alternatives, thereby bolstering language model security. Quantitatively evaluated defense layers and an ethical substitution mechanism represent key innovations to counter sophisticated attacks. The integrated methodology not only fortifies smaller LLMs against emerging cyber threats but also guides the broader application of LLMs in a secure and ethical manner.
基金Project(10672197) supported by the National Natural Science Foundation of ChinaProject(07JJ1001) supported by the Natural Science Foundation of Hunan Province for Distinguished Young Scholars,China
文摘Mathematical model of filling disk-shaped mold cavity in steady state was studied.And the mathematical model under vibration field was developed from the model in steady state.According to the model of filling disk-shaped mold cavity in steady state,the filling time,the distribution of velocity field and the pressure field were obtained.The analysis results from rheological analytic model were compared with the numerical simulation results using Moldflow software in the powder injection molding filling process.Through the comparison,it is found that it is unreasonable to neglect the influence of temperature when calculated the pressure changing with the time at the cavity gate,while it can be neglected in other situations such as calculating the distribution of the velocity fields.This provides a theoretical reference for the establishment of correct model both in steady state and under vibration force field in the future.
文摘Water injection has shown to be one of the most successful,efficient,and cost-effective reservoir management strategies.By re-injecting treated and filtered water into reservoirs,this approach can help maintain reservoir pressure,increase hydrocarbon output,and reduce the environmental effect.The goal of this project is to create a water injection model utilizing Eclipse reservoir simulation software to better understand water injection methods for reservoir pressure maintenance.A basic reservoir model is utilized in this investigation.For simulation designs,the reservoir length,breadth,and thickness may be changed to different levels.The water-oil contact was discovered at 7000 feet,and the reservoir pressure was recorded at 3000 pounds per square inch at a depth of 6900 feet.The aquifer chosen was of the Fetkovich type and was linked to the reservoir in the j+direction.The porosity was estimated to be varied,ranging from 9%to 16%.The residual oil saturation was set to 25%and the irreducible water saturation was set at 20%.The vertical permeability was set at 50 md as a constant.Pressure Volume Temperature(PVT)data was used to estimate the gas and water characteristics.
基金Project(513150601)supported by the National Pre-Research Project Foundation of China
文摘A fault injection model-oriented testing strategy was proposed for detecting component vulnerabilities.A fault injection model was defined,and the faults were injected into the tested component based on the fault injection model to trigger security exceptions.The testing process could be recorded by the monitoring mechanism of the strategy,and the monitoring information was written into the security log.The component vulnerabilities could be detected by the detecting algorithm through analyzing the security log.Lastly,some experiments were done in an integration testing platform to verify the applicability of the strategy.The experimental results show that the strategy is effective and operable.The detecting rate is more than 90%for vulnerability components.
基金Supported by the National Key Research and Development Program of China(2016YED0501008)the National Natural Science Foundation of China(31772806)the Natural Science Foundation of Heilongjiang Province(C2017022)。
文摘The model of acute lung injury(ALI)was established by intraperitoneal administration,but there was no time-point observation and comparison.ALI model was established by intraperitoneal injection of lipopolysaccharide(LPS)at the concentration of 10 mg·kg^-1 (10 mg LPS dissolved in 1 mL normal saline to prepare 1 mL·kg^-1solution)in rats.The control group(CG)was intraperitoneally injected with saline of the same dose.In the LPS group,lung tissues were collected at 4,6,8,12 and 24 h after administration.Then,the morphology changes,the ratio of wet-to-dry weight(W/D),the expression of interleukin-1β(IL-1β)and tumor necrosis factor-α(TNF-α)proteins,the levels of malondialdehyde(MDA),the activities of superoxide dismutase(SOD),glutathione peroxidase(GSH)were measured.To verify the success of the model,the degrees of lung injury via Western blot,RT-PCR,ELISA and other techniques were detected at different time points,and the severe time of the ALI model established was deterimined by intraperitoneal administration,which provided a stable model basis for the study of the pathogenesis of ALI in the future.The results showed that the lung injury occurred in LPS group.W/D and lung pathological changes at 12 and 24 h of LPS group were significantly different from those in the CG.Compared with the CG,the expression of IL-1βand TNF-αproteins and the content of MDA in lung tissues of LPS group increased and most significant difference was found at 12 and 24 h(p<0.01).Compared with the CG,the activities of SOD and GSH in LPS 12 h group decreased significantly(p<0.01).In conclusion,inflammation and oxidative damage were the main causes of the ALI in rats.Lung injury was most obvious 12 h after intraperitoneal injection of 10 mg·kg^-1 LPS.
基金the National Natural Science Foundation(No50505044,60573175)the Key Technology Research and Development of China(No2006BAF01A37)+1 种基金the National High Technology Research and Development Programe of China(No2007AA04Z190)the Key Scientific and Techological Research Program of Zhejiang Province(No2008C11013)
文摘To illuminate the necessity of model evolvement and reuse, dynamics of injection molding machine's product models are analyzed. The performance knowledge is used to support the model evolvement and reuse. The driven factors of mechanical product model are concluded. The dynamic characteristics of reuse. Finally, HT1800X1N series injection molding machines are taken as examples to illuminate that the arithmetic is correct and practical.
文摘Pits are circular to elliptical,steep-sided,flat-bottomed depressions interpreted to form from collapse into a cavity.They occur on Earth,Venus and Mars and range in diameter from;00 m to several kilometres(e.g.