High-order interpolation algorithms for charge conservation in Particle-inCell(PIC)simulations are presented.The methods are valid for the case that a particle trajectory is a zigzag line.The second-order and third-or...High-order interpolation algorithms for charge conservation in Particle-inCell(PIC)simulations are presented.The methods are valid for the case that a particle trajectory is a zigzag line.The second-order and third-order algorithms which can be applied to any even-order and odd-order are discussed in this paper,respectively.Several test simulations are performed to demonstrate their validity in two-dimensional PIC code.Compared with the simulation results of one-order,high-order algorithms have advantages in computation precision and enlarging the grid scales which reduces the CPU time.展开更多
This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theor...This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.展开更多
The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compa...The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11).展开更多
We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse.Our findings reveal an intriguing manipulation of the frequency peak position...We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse.Our findings reveal an intriguing manipulation of the frequency peak position in the harmonic emission by adjusting the absolute phase parameter within the frequency domain of the shaping pulse.This phenomenon holds potential significance for experimental setups necessitating precisely tuned single harmonics.Notably,we observe a modulated shift in the created harmonic photon energy,spanning an impressive range of 1.2 eV.This frequency peak shift is rooted in the asymmetry exhibited by the rising and falling edges of the laser pulse,directly influencing the position of the peak frequency emission.Our study quantifies the dependence of this tuning range and the asymmetry of the laser pulse,offering valuable insights into the underlying mechanisms driving this phenomenon.Furthermore,our investigation uncovers the emergence of semi-integer order harmonics as the phase parameter is altered.We attribute this discovery to the intricate interference between harmonics generated by the primary and secondary return cores.This observation introduces an innovative approach for generating semi-integer order harmonics,thus expanding our understanding of high-order harmonic generation.Ultimately,our work contributes to the broader comprehension of complex phenomena in laser-matter interactions and provides a foundation for harnessing these effects in various applications,particularly those involving precise spectral control and the generation of unique harmonic patterns.展开更多
High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(...High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(ε) in the lower-order harmonics is observed,specifically in the 13rd-order,which displays a maximal harmonic intensity at ε ≈ 0.1,rather than at ε = 0 as expected.This contradicts the general trend of harmonic yield,which typically decreases with the increase of laser ellipticity.In this study,we attribute this phenomenon to the disruption of the symmetry of the wave function by the Coulomb effect,leading to the generation of a harmonic with high ellipticity.This finding provides valuable insights into the behavior of elliptically polarized harmonics and opens up a potential way for exploring new applications in ultrafast spectroscopy and light–matter interactions.展开更多
Missing value is one of the main factors that cause dirty data.Without high-quality data,there will be no reliable analysis results and precise decision-making.Therefore,the data warehouse needs to integrate high-qual...Missing value is one of the main factors that cause dirty data.Without high-quality data,there will be no reliable analysis results and precise decision-making.Therefore,the data warehouse needs to integrate high-quality data consistently.In the power system,the electricity consumption data of some large users cannot be normally collected resulting in missing data,which affects the calculation of power supply and eventually leads to a large error in the daily power line loss rate.For the problem of missing electricity consumption data,this study proposes a group method of data handling(GMDH)based data interpolation method in distribution power networks and applies it in the analysis of actually collected electricity data.First,the dependent and independent variables are defined from the original data,and the upper and lower limits of missing values are determined according to prior knowledge or existing data information.All missing data are randomly interpolated within the upper and lower limits.Then,the GMDH network is established to obtain the optimal complexity model,which is used to predict the missing data to replace the last imputed electricity consumption data.At last,this process is implemented iteratively until the missing values do not change.Under a relatively small noise level(α=0.25),the proposed approach achieves a maximum error of no more than 0.605%.Experimental findings demonstrate the efficacy and feasibility of the proposed approach,which realizes the transformation from incomplete data to complete data.Also,this proposed data interpolation approach provides a strong basis for the electricity theft diagnosis and metering fault analysis of electricity enterprises.展开更多
As a branch of quantum image processing,quantum image scaling has been widely studied.However,most of the existing quantum image scaling algorithms are based on nearest-neighbor interpolation and bilinear interpolatio...As a branch of quantum image processing,quantum image scaling has been widely studied.However,most of the existing quantum image scaling algorithms are based on nearest-neighbor interpolation and bilinear interpolation,the quantum version of bicubic interpolation has not yet been studied.In this work,we present the first quantum image scaling scheme for bicubic interpolation based on the novel enhanced quantum representation(NEQR).Our scheme can realize synchronous enlargement and reduction of the image with the size of 2^(n)×2^(n) by integral multiple.Firstly,the image is represented by NEQR and the original image coordinates are obtained through multiple CNOT modules.Then,16 neighborhood pixels are obtained by quantum operation circuits,and the corresponding weights of these pixels are calculated by quantum arithmetic modules.Finally,a quantum matrix operation,instead of a classical convolution operation,is used to realize the sum of convolution of these pixels.Through simulation experiments and complexity analysis,we demonstrate that our scheme achieves exponential speedup over the classical bicubic interpolation algorithm,and has better effect than the quantum version of bilinear interpolation.展开更多
Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a movi...Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.展开更多
High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduce...High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.展开更多
Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the...Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.展开更多
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r...In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.展开更多
The accuracy of interpolation models applied to groundwater depends, among other factors, on the interpolation method chosen. Therefore, it is necessary to compare different approaches. For this, different methods of ...The accuracy of interpolation models applied to groundwater depends, among other factors, on the interpolation method chosen. Therefore, it is necessary to compare different approaches. For this, different methods of interpolation of nitrate concentrations were contrasted in sixty-seven wells in an aquifer in Aguascalientes, Mexico. Four general interpolation methods were used in ArcGIS 10.5 to make the maps: IDW, Kriging, Natural Neighbor and Spline. In the modeling, only method type was varied. The input parameters (location, temporality, and nitrate concentration) were the same in the four interpolations;despite this, different maximum and minimum values were obtained for each interpolation method: for IDW, 0.2 to 22.0 mg/l, for Kriging, 3.5 to 16.5 mg/l, for Natural Neighbor, 0.3 to 21.7 mg/l and for Spline −30.8 to 37.2 mg/l. Finally, an assessment of the maps obtained was conducted by comparing them with the Official Mexican Standard (OMS), where 24 of the 67 wells were found outside the 10 mg/l that the OMS establishes as maximum permissible limit for human consumption. Taking as a starting point the measured values of nitrates (0.25 to 22.12 mg/l), as well as the spatial distribution of the interpolated values, it was determined that the Krigging method best fitted the data measured in the wells within the studied aquifer.展开更多
In this paper,we develop new high-order numerical methods for hyperbolic systems of nonlinear partial differential equations(PDEs)with uncertainties.The new approach is realized in the semi-discrete finite-volume fram...In this paper,we develop new high-order numerical methods for hyperbolic systems of nonlinear partial differential equations(PDEs)with uncertainties.The new approach is realized in the semi-discrete finite-volume framework and is based on fifth-order weighted essentially non-oscillatory(WENO)interpolations in(multidimensional)random space combined with second-order piecewise linear reconstruction in physical space.Compared with spectral approximations in the random space,the presented methods are essentially non-oscillatory as they do not suffer from the Gibbs phenomenon while still achieving high-order accuracy.The new methods are tested on a number of numerical examples for both the Euler equations of gas dynamics and the Saint-Venant system of shallow-water equations.In the latter case,the methods are also proven to be well-balanced and positivity-preserving.展开更多
The purpose of this paper is to investigate the spatial interpolation of rainfall variability with deterministic and geostatic inspections in the Prefecture of Kilkis (Greece). The precipitation data where recorded fr...The purpose of this paper is to investigate the spatial interpolation of rainfall variability with deterministic and geostatic inspections in the Prefecture of Kilkis (Greece). The precipitation data where recorded from 12 meteorological stations in the Prefecture of Kilkis for 36 hydrological years (1973-2008). The cumulative monthly values of rainfall were studied on an annual and seasonal basis as well as during the arid-dry season. In the deterministic tests, the I.D.W. and R.B.F. checks were inspected, while in the geostatic tests, Ordinary Kriging and Universal Kriging respectively. The selection of the optimum method was made based on the least Root Mean Square Error (R.M.S.E.), as well as on the Mean Error (M.E.), as assessed by the cross validation analysis. The geostatical Kriging also considered the impact of isotropy and anisotropy across all time periods of data collection. Moreover, for Universal Kriging, the study explored spherical, exponential and Gaussian models in various combinations. Geostatistical techniques consistently demonstrated greater reliability than deterministic techniques across all time periods of data collection. Specifically, during the annual period, anisotropy was the prevailing characteristic in geostatistical techniques. Moreover, the results for the irrigation and seasonal periods were generally comparable, with few exceptions where isotropic methods yielded lower (R.M.S.E.) in some seasonal observations.展开更多
In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton ...In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons.展开更多
In order to get the spatial grid data of monthly precipitation and monthly average temperature of Sanjiangyuan area, the Co-Kriging (COK) and thin plate smoothing splines(TPS) interpolation methods were applied by usi...In order to get the spatial grid data of monthly precipitation and monthly average temperature of Sanjiangyuan area, the Co-Kriging (COK) and thin plate smoothing splines(TPS) interpolation methods were applied by using the climate data during 1971-2000 of 58 meteorological stations around Qinghai Province and the 3 arc-second digital elevation model (DEM) data. The performance was evaluated by the smallest statistical errors by general cross validation (GCV). Root-mean-squared predicted errors (RMSE) and mean absolute errors (MAE) were used to compare the performance of the two methods. The results showed that: 1) After combing covariates into the models, both methods performed better; 2) The performance of TPS was significantly better than COK: for monthly average temperature, the RMSE derived from TPS was 69.48% higher than COK, as MAE increased by 70.56%. And for monthly precipitation, the RMSE derived from TPS was 28.07% higher than COK, as MAE increased by 29.06%.展开更多
The radial basis function (RBF) interpolation approach proposed by Freedman is used to solve inverse problems encountered in well-logging and other petrophysical issues. The approach is to predict petrophysical prop...The radial basis function (RBF) interpolation approach proposed by Freedman is used to solve inverse problems encountered in well-logging and other petrophysical issues. The approach is to predict petrophysical properties in the laboratory on the basis of physical rock datasets, which include the formation factor, viscosity, permeability, and molecular composition. However, this approach does not consider the effect of spatial distribution of the calibration data on the interpolation result. This study proposes a new RBF interpolation approach based on the Freedman's RBF interpolation approach, by which the unit basis functions are uniformly populated in the space domain. The inverse results of the two approaches are comparatively analyzed by using our datasets. We determine that although the interpolation effects of the two approaches are equivalent, the new approach is more flexible and beneficial for reducing the number of basis functions when the database is large, resulting in simplification of the interpolation function expression. However, the predicted results of the central data are not sufficiently satisfied when the data clusters are far apart.展开更多
To alleviate the distortion of XRII X-ray image intensifier images in the C-arm CT computer tomography imaging system an algorithm based on the Delaunay triangulation interpolation is proposed.First the causes of the ...To alleviate the distortion of XRII X-ray image intensifier images in the C-arm CT computer tomography imaging system an algorithm based on the Delaunay triangulation interpolation is proposed.First the causes of the phenomenon the classical correction algorithms and the Delaunay triangulation interpolation are analyzed.Then the algorithm procedure is explained using flow charts and illustrations. Finally experiments are described to demonstrate its effectiveness and feasibility. Experimental results demonstrate that the Delaunay triangulation interpolation can have the following effects.In the case of the same center the root mean square distances RMSD and standard deviation STD between the corrected image with Delaunay triangulation interpolation and the ideal image are 5.760 4 ×10 -14 and 5.354 2 ×10 -14 respectively.They increase to 1.790 3 2.388 8 2.338 8 and 1.262 0 1.268 1 1.202 6 after applying the quartic polynomial model L1 and model L2 to the distorted images respectively.The RMSDs and STDs between the corrected image with the Delaunay triangulation interpolation and the ideal image are 2.489 × 10 -13 and 2.449 8 ×10 -13 when their centers do not coincide. When the quartic polynomial model L1 and model L2 are applied to the distorted images they are 1.770 3 2.388 8 2.338 8 and 1.269 9 1.268 1 1.202 6 respectively.展开更多
Aim To study wind tunnel test data interpolation methods for flight vehicle with aerodynamic axial asymmetry. Methods For different body aerodynamic roll angles, proper wind tunnel test schemes were selected and ...Aim To study wind tunnel test data interpolation methods for flight vehicle with aerodynamic axial asymmetry. Methods For different body aerodynamic roll angles, proper wind tunnel test schemes were selected and trigonometric series were used for aerodynamic interpolation. Results and Conclusion A simple and effective scheme for wind tunnel test and an accurate aerodynamic interpolation method are developed with satisfactory results.展开更多
A direct interpolation algorithm for spatial curves on a surface is proposed for pen-cutting of sculptured surfaces. The algorithm can carry out the direct interpolation for projective curves lying on the sculptured s...A direct interpolation algorithm for spatial curves on a surface is proposed for pen-cutting of sculptured surfaces. The algorithm can carry out the direct interpolation for projective curves lying on the sculptured surface. It is based on the geometric and kinetic relationships between drive curves and cutter-contact (C-C) curves. It evaluates the parameter of drive curves corresponding to interpolation points by the Taylor formula. Then it gains coordinates of interpolation points indirectly by inverse calculation. Finally, it generates the motion commands for machine tool controller. This method extends the locus-controlled function in the computer numerical control (CNC) system effectively and improves the efficiency for the numerical control (NC) machining of sculptured surfaces. The simulation shows that the proposed algorithm is feasible and practical. This algorithm can also be applied to the machining of the whole surface.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.10905009,11174259,11175165 and 10975121)the Doctorate Foundation of the Ministry of Education of China(Grant No.200806141034)the Fundamental Research Funds for the Central Universities(Grant No.ZYGX2010J052).
文摘High-order interpolation algorithms for charge conservation in Particle-inCell(PIC)simulations are presented.The methods are valid for the case that a particle trajectory is a zigzag line.The second-order and third-order algorithms which can be applied to any even-order and odd-order are discussed in this paper,respectively.Several test simulations are performed to demonstrate their validity in two-dimensional PIC code.Compared with the simulation results of one-order,high-order algorithms have advantages in computation precision and enlarging the grid scales which reduces the CPU time.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272358 and 62103052)。
文摘This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.
基金supported by National Natural Science Foundation of China under Grants 42192531 and 42192534the Special Fund of Hubei Luojia Laboratory(China)under Grant 220100001the Natural Science Foundation of Hubei Province for Distinguished Young Scholars(China)under Grant 2022CFA090。
文摘The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11).
基金This project was supported by the National Key Research and Development Program of China(Grant Nos.2022YFE134200 and 2019YFA0307700)the National Natural Science Foundation of China(Grant Nos.11604119,12104177,11904192,12074145,and 11704147)the Fundamental Research Funds for the Central Universities(Grant Nos.GK202207012 and QCYRCXM-2022-241).
文摘We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse.Our findings reveal an intriguing manipulation of the frequency peak position in the harmonic emission by adjusting the absolute phase parameter within the frequency domain of the shaping pulse.This phenomenon holds potential significance for experimental setups necessitating precisely tuned single harmonics.Notably,we observe a modulated shift in the created harmonic photon energy,spanning an impressive range of 1.2 eV.This frequency peak shift is rooted in the asymmetry exhibited by the rising and falling edges of the laser pulse,directly influencing the position of the peak frequency emission.Our study quantifies the dependence of this tuning range and the asymmetry of the laser pulse,offering valuable insights into the underlying mechanisms driving this phenomenon.Furthermore,our investigation uncovers the emergence of semi-integer order harmonics as the phase parameter is altered.We attribute this discovery to the intricate interference between harmonics generated by the primary and secondary return cores.This observation introduces an innovative approach for generating semi-integer order harmonics,thus expanding our understanding of high-order harmonic generation.Ultimately,our work contributes to the broader comprehension of complex phenomena in laser-matter interactions and provides a foundation for harnessing these effects in various applications,particularly those involving precise spectral control and the generation of unique harmonic patterns.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.92250306,11974137,and 12304302)the National Key Program for Science and Technology Research and Development of China(Grant No.2019YFA0307700)+1 种基金the Natural Science Foundation of Jilin Province,China(Grant Nos.YDZJ202101ZYTS157 and YDZJ202201ZYTS314)the Scientific Research Foundation of the Education Department of Jilin Province,China(Grant No.JJKH20230283KJ)。
文摘High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(ε) in the lower-order harmonics is observed,specifically in the 13rd-order,which displays a maximal harmonic intensity at ε ≈ 0.1,rather than at ε = 0 as expected.This contradicts the general trend of harmonic yield,which typically decreases with the increase of laser ellipticity.In this study,we attribute this phenomenon to the disruption of the symmetry of the wave function by the Coulomb effect,leading to the generation of a harmonic with high ellipticity.This finding provides valuable insights into the behavior of elliptically polarized harmonics and opens up a potential way for exploring new applications in ultrafast spectroscopy and light–matter interactions.
基金This research was funded by the National Nature Sciences Foundation of China(Grant No.42250410321).
文摘Missing value is one of the main factors that cause dirty data.Without high-quality data,there will be no reliable analysis results and precise decision-making.Therefore,the data warehouse needs to integrate high-quality data consistently.In the power system,the electricity consumption data of some large users cannot be normally collected resulting in missing data,which affects the calculation of power supply and eventually leads to a large error in the daily power line loss rate.For the problem of missing electricity consumption data,this study proposes a group method of data handling(GMDH)based data interpolation method in distribution power networks and applies it in the analysis of actually collected electricity data.First,the dependent and independent variables are defined from the original data,and the upper and lower limits of missing values are determined according to prior knowledge or existing data information.All missing data are randomly interpolated within the upper and lower limits.Then,the GMDH network is established to obtain the optimal complexity model,which is used to predict the missing data to replace the last imputed electricity consumption data.At last,this process is implemented iteratively until the missing values do not change.Under a relatively small noise level(α=0.25),the proposed approach achieves a maximum error of no more than 0.605%.Experimental findings demonstrate the efficacy and feasibility of the proposed approach,which realizes the transformation from incomplete data to complete data.Also,this proposed data interpolation approach provides a strong basis for the electricity theft diagnosis and metering fault analysis of electricity enterprises.
基金Project supported by the Scientific Research Fund of Hunan Provincial Education Department,China (Grant No.21A0470)the Natural Science Foundation of Hunan Province,China (Grant No.2023JJ50268)+1 种基金the National Natural Science Foundation of China (Grant Nos.62172268 and 62302289)the Shanghai Science and Technology Project,China (Grant Nos.21JC1402800 and 23YF1416200)。
文摘As a branch of quantum image processing,quantum image scaling has been widely studied.However,most of the existing quantum image scaling algorithms are based on nearest-neighbor interpolation and bilinear interpolation,the quantum version of bicubic interpolation has not yet been studied.In this work,we present the first quantum image scaling scheme for bicubic interpolation based on the novel enhanced quantum representation(NEQR).Our scheme can realize synchronous enlargement and reduction of the image with the size of 2^(n)×2^(n) by integral multiple.Firstly,the image is represented by NEQR and the original image coordinates are obtained through multiple CNOT modules.Then,16 neighborhood pixels are obtained by quantum operation circuits,and the corresponding weights of these pixels are calculated by quantum arithmetic modules.Finally,a quantum matrix operation,instead of a classical convolution operation,is used to realize the sum of convolution of these pixels.Through simulation experiments and complexity analysis,we demonstrate that our scheme achieves exponential speedup over the classical bicubic interpolation algorithm,and has better effect than the quantum version of bilinear interpolation.
基金Project supported by the IACAS Young Elite Researcher Project(Grant No.QNYC201703)the Rising Star Foundation of Integrated Research Center for Islands and Reefs Sciences,CAS(Grant No.ZDRW-XH-2021-2-04)the Key Laboratory Foundation of Acoustic Science and Technology(Grant No.2021-JCJQ-LB-066-08).
文摘Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.
基金supported by the Natural Science Foundation of Jilin Province (Grant No.20220101010JC)the National Natural Science Foundation of China (Grant No.12074146)。
文摘High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.
基金supported by the NSFC Grant no.12271492the Natural Science Foundation of Henan Province of China Grant no.222300420550+1 种基金supported by the NSFC Grant no.12271498the National Key R&D Program of China Grant no.2022YFA1005202/2022YFA1005200.
文摘Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.
基金supported by the National Natural Science Foundation of China (No.12172154)the 111 Project (No.B14044)+1 种基金the Natural Science Foundation of Gansu Province (No.23JRRA1035)the Natural Science Foundation of Anhui University of Finance and Economics (No.ACKYC20043).
文摘In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.
文摘The accuracy of interpolation models applied to groundwater depends, among other factors, on the interpolation method chosen. Therefore, it is necessary to compare different approaches. For this, different methods of interpolation of nitrate concentrations were contrasted in sixty-seven wells in an aquifer in Aguascalientes, Mexico. Four general interpolation methods were used in ArcGIS 10.5 to make the maps: IDW, Kriging, Natural Neighbor and Spline. In the modeling, only method type was varied. The input parameters (location, temporality, and nitrate concentration) were the same in the four interpolations;despite this, different maximum and minimum values were obtained for each interpolation method: for IDW, 0.2 to 22.0 mg/l, for Kriging, 3.5 to 16.5 mg/l, for Natural Neighbor, 0.3 to 21.7 mg/l and for Spline −30.8 to 37.2 mg/l. Finally, an assessment of the maps obtained was conducted by comparing them with the Official Mexican Standard (OMS), where 24 of the 67 wells were found outside the 10 mg/l that the OMS establishes as maximum permissible limit for human consumption. Taking as a starting point the measured values of nitrates (0.25 to 22.12 mg/l), as well as the spatial distribution of the interpolated values, it was determined that the Krigging method best fitted the data measured in the wells within the studied aquifer.
基金supported in part by the NSF grant DMS-2208438.The work of M.Herty was supported in part by the DFG(German Research Foundation)through 20021702/GRK2326,333849990/IRTG-2379,HE5386/18-1,19-2,22-1,23-1under Germany’s Excellence Strategy EXC-2023 Internet of Production 390621612+1 种基金The work of A.Kurganov was supported in part by the NSFC grant 12171226the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design,China(No.2019B030301001).
文摘In this paper,we develop new high-order numerical methods for hyperbolic systems of nonlinear partial differential equations(PDEs)with uncertainties.The new approach is realized in the semi-discrete finite-volume framework and is based on fifth-order weighted essentially non-oscillatory(WENO)interpolations in(multidimensional)random space combined with second-order piecewise linear reconstruction in physical space.Compared with spectral approximations in the random space,the presented methods are essentially non-oscillatory as they do not suffer from the Gibbs phenomenon while still achieving high-order accuracy.The new methods are tested on a number of numerical examples for both the Euler equations of gas dynamics and the Saint-Venant system of shallow-water equations.In the latter case,the methods are also proven to be well-balanced and positivity-preserving.
文摘The purpose of this paper is to investigate the spatial interpolation of rainfall variability with deterministic and geostatic inspections in the Prefecture of Kilkis (Greece). The precipitation data where recorded from 12 meteorological stations in the Prefecture of Kilkis for 36 hydrological years (1973-2008). The cumulative monthly values of rainfall were studied on an annual and seasonal basis as well as during the arid-dry season. In the deterministic tests, the I.D.W. and R.B.F. checks were inspected, while in the geostatic tests, Ordinary Kriging and Universal Kriging respectively. The selection of the optimum method was made based on the least Root Mean Square Error (R.M.S.E.), as well as on the Mean Error (M.E.), as assessed by the cross validation analysis. The geostatical Kriging also considered the impact of isotropy and anisotropy across all time periods of data collection. Moreover, for Universal Kriging, the study explored spherical, exponential and Gaussian models in various combinations. Geostatistical techniques consistently demonstrated greater reliability than deterministic techniques across all time periods of data collection. Specifically, during the annual period, anisotropy was the prevailing characteristic in geostatistical techniques. Moreover, the results for the irrigation and seasonal periods were generally comparable, with few exceptions where isotropic methods yielded lower (R.M.S.E.) in some seasonal observations.
文摘In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons.
基金Supported by Forestry Science and Technology Support Project (2008BADB0B0203)National Technology Support Project (2007BAC03A08-5)
文摘In order to get the spatial grid data of monthly precipitation and monthly average temperature of Sanjiangyuan area, the Co-Kriging (COK) and thin plate smoothing splines(TPS) interpolation methods were applied by using the climate data during 1971-2000 of 58 meteorological stations around Qinghai Province and the 3 arc-second digital elevation model (DEM) data. The performance was evaluated by the smallest statistical errors by general cross validation (GCV). Root-mean-squared predicted errors (RMSE) and mean absolute errors (MAE) were used to compare the performance of the two methods. The results showed that: 1) After combing covariates into the models, both methods performed better; 2) The performance of TPS was significantly better than COK: for monthly average temperature, the RMSE derived from TPS was 69.48% higher than COK, as MAE increased by 70.56%. And for monthly precipitation, the RMSE derived from TPS was 28.07% higher than COK, as MAE increased by 29.06%.
基金supported by the National Science and Technology Major Projects(No.2011ZX05020-008)Well Logging Advanced Technique and Application Basis Research Project of Petrochina Company(No.2011A-3901)
文摘The radial basis function (RBF) interpolation approach proposed by Freedman is used to solve inverse problems encountered in well-logging and other petrophysical issues. The approach is to predict petrophysical properties in the laboratory on the basis of physical rock datasets, which include the formation factor, viscosity, permeability, and molecular composition. However, this approach does not consider the effect of spatial distribution of the calibration data on the interpolation result. This study proposes a new RBF interpolation approach based on the Freedman's RBF interpolation approach, by which the unit basis functions are uniformly populated in the space domain. The inverse results of the two approaches are comparatively analyzed by using our datasets. We determine that although the interpolation effects of the two approaches are equivalent, the new approach is more flexible and beneficial for reducing the number of basis functions when the database is large, resulting in simplification of the interpolation function expression. However, the predicted results of the central data are not sufficiently satisfied when the data clusters are far apart.
基金The Natural Science Foundation of Anhui Province(No.1308085MF96)the Project of Chuzhou University(No.2012qd06,2011kj010B)+1 种基金the Scientific Research Foundation of Education Department of Anhui Province(No.KJ2014A186)the National Basic Research Program of China(973 Program)(No.2010CB732503)
文摘To alleviate the distortion of XRII X-ray image intensifier images in the C-arm CT computer tomography imaging system an algorithm based on the Delaunay triangulation interpolation is proposed.First the causes of the phenomenon the classical correction algorithms and the Delaunay triangulation interpolation are analyzed.Then the algorithm procedure is explained using flow charts and illustrations. Finally experiments are described to demonstrate its effectiveness and feasibility. Experimental results demonstrate that the Delaunay triangulation interpolation can have the following effects.In the case of the same center the root mean square distances RMSD and standard deviation STD between the corrected image with Delaunay triangulation interpolation and the ideal image are 5.760 4 ×10 -14 and 5.354 2 ×10 -14 respectively.They increase to 1.790 3 2.388 8 2.338 8 and 1.262 0 1.268 1 1.202 6 after applying the quartic polynomial model L1 and model L2 to the distorted images respectively.The RMSDs and STDs between the corrected image with the Delaunay triangulation interpolation and the ideal image are 2.489 × 10 -13 and 2.449 8 ×10 -13 when their centers do not coincide. When the quartic polynomial model L1 and model L2 are applied to the distorted images they are 1.770 3 2.388 8 2.338 8 and 1.269 9 1.268 1 1.202 6 respectively.
文摘Aim To study wind tunnel test data interpolation methods for flight vehicle with aerodynamic axial asymmetry. Methods For different body aerodynamic roll angles, proper wind tunnel test schemes were selected and trigonometric series were used for aerodynamic interpolation. Results and Conclusion A simple and effective scheme for wind tunnel test and an accurate aerodynamic interpolation method are developed with satisfactory results.
基金The Natural Science Foundation of Jiangsu Province(No.BK2003005).
文摘A direct interpolation algorithm for spatial curves on a surface is proposed for pen-cutting of sculptured surfaces. The algorithm can carry out the direct interpolation for projective curves lying on the sculptured surface. It is based on the geometric and kinetic relationships between drive curves and cutter-contact (C-C) curves. It evaluates the parameter of drive curves corresponding to interpolation points by the Taylor formula. Then it gains coordinates of interpolation points indirectly by inverse calculation. Finally, it generates the motion commands for machine tool controller. This method extends the locus-controlled function in the computer numerical control (CNC) system effectively and improves the efficiency for the numerical control (NC) machining of sculptured surfaces. The simulation shows that the proposed algorithm is feasible and practical. This algorithm can also be applied to the machining of the whole surface.