Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the prope...Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the properties of the improved material leads to designers assuming a conservative,arbitrary and unjustified strength,which is even sometimes subjected to the results of the test fields.The present paper presents an approach for prediction of the uniaxial compressive strength(UCS)of jet grouting columns based on the analysis of several machine learning algorithms on a database of 854 results mainly collected from different research papers.The selected machine learning model(extremely randomized trees)relates the soil type and various parameters of the technique to the value of the compressive strength.Despite the complex mechanism that surrounds the jet grouting process,evidenced by the high dispersion and low correlation of the variables studied,the trained model allows to optimally predict the values of compressive strength with a significant improvement with respect to the existing works.Consequently,this work proposes for the first time a reliable and easily applicable approach for estimation of the compressive strength of jet grouting columns.展开更多
Soil is an essential component of what surrounds us in nature, providing as the basis for our infrastructure and construction. However, soil is not always suitable for construction due to a variety of geotechnical iss...Soil is an essential component of what surrounds us in nature, providing as the basis for our infrastructure and construction. However, soil is not always suitable for construction due to a variety of geotechnical issues such as inadequate bearing capacity, excessive settlement, and liquefaction susceptibility. Through improving the engineering qualities of soil, such as strength, permeability, and stability, ground grouting is a specific geotechnical method used. Using a fluid grout mixture injected into the subsurface, holes are filled and weak or loose strata are solidified as the material seeps into the soil matrix. The approach’s adaptability in addressing soil-related issues has made it more well-known in the fields of civil engineering and construction. In the end, this has improved groundwater management, foundation support, and overall geotechnical performance.展开更多
Soft clay soils cannot usually support large lateral loads,so clay soils must be improved to increase lateral resistance.The jet grouting method is one of the methods used to improve weak soils.In this paper,a series ...Soft clay soils cannot usually support large lateral loads,so clay soils must be improved to increase lateral resistance.The jet grouting method is one of the methods used to improve weak soils.In this paper,a series of 3D finite element studies were conducted using Plaxis 3D software to investigate the lateral behavior of piled rafts in improved soft clay utilizing the jet grouting method.Parametric models were analyzed to explore the influence of the width,depth,and location of the grouted clay on the lateral resistance.Additionally,the effect of vertical loads on the lateral behavior of piled rafts in grouted clay was also investigated.The numerical results indicate that the lateral resistance increases by increasing the dimensions of the jet grouting beneath and around the piled raft.Typical increases in lateral resistance are 11.2%,65%,177%,and 35%for applying jet grouting beside the raft,below the raft,below and around the raft,and grouted strips parallel to lateral loads,respectively.It was also found that increasing the depth of grouted clay enhances lateral resistance up to a certain depth,about 6 to 10 times the pile diameter(6 to 10D).In contrast,the improvement ratio is limited beyond 10D.Furthermore,the results demonstrate that the presence of vertical loads has a significant impact on sideward resistance.展开更多
Grouting is an effective method to improve the integrity and stability of fractured rocks that surround deep roadways.After years of research and practice,various theories and a complete set of grouting technologies f...Grouting is an effective method to improve the integrity and stability of fractured rocks that surround deep roadways.After years of research and practice,various theories and a complete set of grouting technologies for deep roadways with fractured rocks have been developed and are widely applied in Chinese coal mining production.This paper systematically summarizes and analyzes the research results concerning the theory,design,materials,processes,and equipment for the grouting and reinforcement of fractured rocks surrounding deep roadways.Specifically,in terms of grouting methods,pregrouting,groutingwhile-excavation,and postgrouting methods are explored;in terms of grouting theory,backfill grouting,compaction grouting,infiltration grouting,and fracture grouting theories are studied.In addition,this paper also studies grouting borehole arrangement,water-cement ratio,grouting pressure,grouting volume,grout diffusion radius,and other grouting parameters and their determination methods.On this basis,this paper explores the physical and mechanical properties of organic and organic-inorganic composite grouting materials,and assess grouting reinforcement quality testing methods and instruments.Taken as the field cases,the application of pregrouting in front of heading faces,groutingwhile-excavation,and postgrouting in the Kouzidong coal mine are then introduced,and the effects of the grouting reinforcements are evaluated.This paper proposes a development direction for grouting technology based on problems existing in the grouting reinforcement of fractured rocks surrounding deep roadways.展开更多
This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone...This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.展开更多
China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system i...China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system is configured, including high-flow pump sets, high-pressure rotary joint and high-pressure water jet injection device. In order to investigate the rock breaking performance of high-pressure water-jet-assisted TBM, in situ excavation tests were carried out at the Wan’anxi Water Diversion Project in Longyan, Fujian Province, China, under different water jet pressure and rotational speed. The rock-breaking performance of TBM was analyzed including penetration, cutterhead load, advance rate and field penetration index. The test results show that the adoption of high-pressure water-jet-assisted rock breaking technology can improve the boreability of rock mass, where the TBM penetration increases by 64% under the water jet pressure of 270 MPa. In addition, with the increase of the water jet pressure, the TBM penetration increases and the field penetration index decreases. The auxiliary rock-breaking effect of high-pressure water jet decreases with the increase of cutterhead rotational speed. In the case of the in situ tunneling test parameters of this study, the advance rate is the maximum when the pressure of the high-pressure water jet is 270 MPa and the cutterhead rotational speed is 6 r/min. The technical superiority of high-pressure water-jet-assisted rock breaking technology is highlighted and it provides guidance for the excavation parameter selection of high-pressure hydraulically coupled rock-breaking TBM.展开更多
Jet grouting is a method for improving of soil and its physical characteristics.However,in this method,grouting of cement slurry with high pressure and velocity may cause damaging to soil structure,and then excavated ...Jet grouting is a method for improving of soil and its physical characteristics.However,in this method,grouting of cement slurry with high pressure and velocity may cause damaging to soil structure,and then excavated grains of soil are removed from the borehole and replaced with cement slurry.The grains,which are remained around the borehole,mixed with slurry(cement) in-situ,can create an improved mass of soil.This mass is named"Soilcrete".Soilcrete mass has special characteristics such as high strength,low deformability and very low permeability.In this paper,principles of jet grouting and effective parameters have been analyzed.Then the test results obtained from Soilcrete column have been investigated.Finally,the paper concludes with presenting amount of principle jet grouting parameters at foundation of Shahriar dam according to the results of jet grouting test.Based on the measurements,the diameter,Soilcrete UCS(uniaxial compression strength),amount of the water,grout and air pressure and lifting and rotating speed in original site of jet grouting are 1.2~1.5 m,2~3 MPa,370~390 bar,10~15 bar,6~8 bar,7~8 cm/min and 7~8 cm/min,respectively.Also it can be seen that while the column diameter falls within the upper half of the range,some values of the compressive strength are close to the lower limit of the range.展开更多
For achieving optimized jet grout parameters and W/C ratio it is concluded to set trial tests in constant local soil as the conclusion depends on local soil and presence of the extensive range of the effective paramet...For achieving optimized jet grout parameters and W/C ratio it is concluded to set trial tests in constant local soil as the conclusion depends on local soil and presence of the extensive range of the effective parameters. Considering the benefits, due to abundance of the involved variables and the intrinsic geological complexity, this system follows a great expense in the trial and implementation phases. Utilizing the soft computing methods, this paper proposes a new approach to reduce or to eliminate the cost of the trial phase. Therefore, the Adaptive Neuro Fuzzy Inference System (ANFIS) was utilized to study the possibility of anticipating the diameter of the jet grout (Soilcrete) columns on the trial phase based on the Trial and Error procedure. Data were collected from several projects and formed three sets of data. Consequently, parameters were held constant (as input) and the diameters of the Soilcrete columns were recorded (as output). To increase the precision, aforementioned data sets were combined and ten different data sets were created and studied, with all the results being assessed in two different approaches. Accordingly, Gaussian Function results in a huge number of precise and acceptable outcomes among available functions. Based on the measurements, Gaussian Function achieves the values of the R which are frequently more than 0.8 and lower values of the RMSE. Therefore, utilizing Gaussian Function, mainly a congruent relation between the R and RMSE is experienced and it leads to close proximity of the actual and predicted values of the Soilcrete diameter.展开更多
Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied throug...Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied through theoretical analysis,experimentand field measurement.The results show that high-pressure pulsed water jet has threedynamic properties.What's more,the three dynamic effects can be found in low-permeabilitycoal seams.A new pulsed water jet with 200-1 000 Hz oscillation frequency andpeak pressure 2.5 times than average pressure was introduced.During bubble collapsing,sound vibration and instantaneous high pressures over 100 MPa enhanced the cuttingability of the high-pressure jet.Through high-pressure pulsed water jet drilling and slotting,the exposure area of coal bodies was greatly enlarged and pressure of the coal seamsrapidly decreased.Therefore,the permeability of coal seams was improved and gas absorptionrate also decreased.Application results show that gas adsorption rate decreasedby 30%-40%and the penetrability coefficient increased 100 times.This proves that high-pressurepulsed water is more efficient than other conventional methods.展开更多
The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous...The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated.展开更多
This paper focuses on the underpinning-induced ground movement due to jet-grouting. Jet-grouting technique can cause distortions as a result of an inaccurate processing sequence and/or errors made at different stages ...This paper focuses on the underpinning-induced ground movement due to jet-grouting. Jet-grouting technique can cause distortions as a result of an inaccurate processing sequence and/or errors made at different stages of work execution. The aim of this paper is to determine the minimum value of such movement on the basis of the findings obtained at two similar construction sites located in the Historical Center of Moscow, considering that the maximum value is usually unpredictable. Numerical simulation of the process of soil eroding agrees well with the observational data at the current stage. It was found that the minimum value of deformations (only settlement was considered in this study) due to jetgrouting is no less than 2-3 mm. By contrast, the negative scenario of deformation due to foundation underpinning is clearly demonstrated. Also, this paper provides some general solutions for excavation supporting system as well as for underpinning design.展开更多
Ordinary columns of jet grouting are circular or fan-shaped. But in recent years, such shapes as candy-shaped columns were put to practical use. They are constructed by switching the rotational speed of the stem in on...Ordinary columns of jet grouting are circular or fan-shaped. But in recent years, such shapes as candy-shaped columns were put to practical use. They are constructed by switching the rotational speed of the stem in one rotation. We applied this method to swing jet grouting. That is, we changed the rotational speeds in the swing jet grouting to make elongated columns near rectangle. The test construction was succeeded and the columns’ shapes conformed to those designed. In addition, the quality was confirmed to be as good as ordinary columns. Radii (distances from center to outer ends) were 1.03 to 1.21 times as large as those designed. Improvement ratios were 95% or more in any position. Strengths were varied by location, but they satisfied design strength 1.5 kN/m2 at any position. We concluded that this new column can be applied to practice in the same way as ordinary columns.展开更多
A novel and effective artificial neural network(ANN) optimized using differential evolution(DE) is first introduced to provide a robust and reliable forecasting of jet grouted column diameters.The proposed computation...A novel and effective artificial neural network(ANN) optimized using differential evolution(DE) is first introduced to provide a robust and reliable forecasting of jet grouted column diameters.The proposed computational method adopts the DE algorithm to tackle the difficulties in the training and performance of neural networks and optimize the four quintessential hyper-parameters(i.e.the epoch size,the number of neurons in a hidden layer,the number of hidden layers,and the regularization parameter) that govern the neural network efficacy.This approach is further enhanced by a stochastic gradient optimization algorithm to allow ’expensive’ computation efforts.The ANN-DE is first trained using a prepared jet grouting dataset,then verified and compared with the prevalent machine learning tools,i.e.neural networks and support vector machine(SVM).The results show that,the ANN-DE outperforms the existing methods for predicting the diameter of jet grouting columns since it well balances training efficiency and model performance.Specifically,the ANN-DE achieved root mean square error(RMSE)values of 0.90603 and 0.92813 for the training and testing phases,respectively.The corresponding values were 0.8905 and 0.9006 for the optimized ANN,then,0.87569 and 0.89968 for the optimized SVM,respectively.The proposed paradigm is bound to be useful for solving various geotechnical engineering problems regardless of multi-dimension and nonlinearity.展开更多
A chain event of the 2016 Kumamoto earthquakes caused considerable geotechnical damage related to liquefaction in many places around Kumamoto plain. Many low-rise houses and traditional Japanese style houses, which we...A chain event of the 2016 Kumamoto earthquakes caused considerable geotechnical damage related to liquefaction in many places around Kumamoto plain. Many low-rise houses and traditional Japanese style houses, which were constructed on <span style="font-family:Verdana;">shallow</span><span style="font-family:Verdana;"> foundation, suffered differential settlement and tilting due to liquefaction. To mitigate the building damages due to the liquefaction</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">, a new countermeasure method of jet grout grid form with a horizontal slab is introduced in this study.</span></span></span><span><span><span><span style="font-family:""><span style="font-family:Verdana;"> The effectiveness of the proposed technique was evaluated through physical </span><span style="font-family:Verdana;">modelling</span><span style="font-family:Verdana;"> and numerical </span><span style="font-family:Verdana;">modelling</span><span style="font-family:Verdana;">. As </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span></span><span><span><span><span style="font-family:""><span style="font-family:Verdana;">part of the physical </span><span style="font-family:Verdana;">modelling</span><span style="font-family:Verdana;">, a set of 1 g shaking table tests for </span><span style="font-family:Verdana;">unimproved</span><span style="font-family:Verdana;"> case and improved case were performed, in which the mitigation effects of the grid form with a horizontal reinforcing slab were examined based on the acceleration, excess pore water pressure ratio as well as ground settlement. Numerical simulation was also performed for assessing the effect of </span><span style="font-family:Verdana;">improved</span><span style="font-family:Verdana;"> method on soil-structure interaction and building </span><span style="font-family:Verdana;">settlement</span><span style="font-family:Verdana;"> during the earthquake. </span></span></span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">The physical and numerical results confirmed that the grid form with </span><span style="font-family:Verdana;">horizontal</span><span style="font-family:Verdana;"> slab reinforced method is effective in settlement control and offers favorable contribution </span><span style="font-family:Verdana;">in</span><span style="font-family:Verdana;"> liquefaction mitigation.</span></span></span></span>展开更多
基金This work has been supported by the Conselleria de Inno-vación,Universidades,Ciencia y Sociedad Digital de la Generalitat Valenciana(CIAICO/2021/335).
文摘Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the properties of the improved material leads to designers assuming a conservative,arbitrary and unjustified strength,which is even sometimes subjected to the results of the test fields.The present paper presents an approach for prediction of the uniaxial compressive strength(UCS)of jet grouting columns based on the analysis of several machine learning algorithms on a database of 854 results mainly collected from different research papers.The selected machine learning model(extremely randomized trees)relates the soil type and various parameters of the technique to the value of the compressive strength.Despite the complex mechanism that surrounds the jet grouting process,evidenced by the high dispersion and low correlation of the variables studied,the trained model allows to optimally predict the values of compressive strength with a significant improvement with respect to the existing works.Consequently,this work proposes for the first time a reliable and easily applicable approach for estimation of the compressive strength of jet grouting columns.
文摘Soil is an essential component of what surrounds us in nature, providing as the basis for our infrastructure and construction. However, soil is not always suitable for construction due to a variety of geotechnical issues such as inadequate bearing capacity, excessive settlement, and liquefaction susceptibility. Through improving the engineering qualities of soil, such as strength, permeability, and stability, ground grouting is a specific geotechnical method used. Using a fluid grout mixture injected into the subsurface, holes are filled and weak or loose strata are solidified as the material seeps into the soil matrix. The approach’s adaptability in addressing soil-related issues has made it more well-known in the fields of civil engineering and construction. In the end, this has improved groundwater management, foundation support, and overall geotechnical performance.
文摘Soft clay soils cannot usually support large lateral loads,so clay soils must be improved to increase lateral resistance.The jet grouting method is one of the methods used to improve weak soils.In this paper,a series of 3D finite element studies were conducted using Plaxis 3D software to investigate the lateral behavior of piled rafts in improved soft clay utilizing the jet grouting method.Parametric models were analyzed to explore the influence of the width,depth,and location of the grouted clay on the lateral resistance.Additionally,the effect of vertical loads on the lateral behavior of piled rafts in grouted clay was also investigated.The numerical results indicate that the lateral resistance increases by increasing the dimensions of the jet grouting beneath and around the piled raft.Typical increases in lateral resistance are 11.2%,65%,177%,and 35%for applying jet grouting beside the raft,below the raft,below and around the raft,and grouted strips parallel to lateral loads,respectively.It was also found that increasing the depth of grouted clay enhances lateral resistance up to a certain depth,about 6 to 10 times the pile diameter(6 to 10D).In contrast,the improvement ratio is limited beyond 10D.Furthermore,the results demonstrate that the presence of vertical loads has a significant impact on sideward resistance.
基金Innovation and Entrepreneurship Funds of Tiandi Science&Technology Co.Ltd.,Grant/Award Number:2022-2-TD-MS013。
文摘Grouting is an effective method to improve the integrity and stability of fractured rocks that surround deep roadways.After years of research and practice,various theories and a complete set of grouting technologies for deep roadways with fractured rocks have been developed and are widely applied in Chinese coal mining production.This paper systematically summarizes and analyzes the research results concerning the theory,design,materials,processes,and equipment for the grouting and reinforcement of fractured rocks surrounding deep roadways.Specifically,in terms of grouting methods,pregrouting,groutingwhile-excavation,and postgrouting methods are explored;in terms of grouting theory,backfill grouting,compaction grouting,infiltration grouting,and fracture grouting theories are studied.In addition,this paper also studies grouting borehole arrangement,water-cement ratio,grouting pressure,grouting volume,grout diffusion radius,and other grouting parameters and their determination methods.On this basis,this paper explores the physical and mechanical properties of organic and organic-inorganic composite grouting materials,and assess grouting reinforcement quality testing methods and instruments.Taken as the field cases,the application of pregrouting in front of heading faces,groutingwhile-excavation,and postgrouting in the Kouzidong coal mine are then introduced,and the effects of the grouting reinforcements are evaluated.This paper proposes a development direction for grouting technology based on problems existing in the grouting reinforcement of fractured rocks surrounding deep roadways.
基金supported by the National Natural Science Foundation of China (Nos. 51574243, 51404269)the Fundamental Research Funds for the Central Universities of China (No. 2014XT01)+1 种基金Guizhou Science and Technology Foundation of China (No. 20152072)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (No. SZBF2011-6B35)
文摘This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.
基金Project(2020YFF0426370) supported by the National Key Research and Development Program of ChinaProject(SF-202010) supported by the Water Conservancy Technology Demonstration,China。
文摘China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system is configured, including high-flow pump sets, high-pressure rotary joint and high-pressure water jet injection device. In order to investigate the rock breaking performance of high-pressure water-jet-assisted TBM, in situ excavation tests were carried out at the Wan’anxi Water Diversion Project in Longyan, Fujian Province, China, under different water jet pressure and rotational speed. The rock-breaking performance of TBM was analyzed including penetration, cutterhead load, advance rate and field penetration index. The test results show that the adoption of high-pressure water-jet-assisted rock breaking technology can improve the boreability of rock mass, where the TBM penetration increases by 64% under the water jet pressure of 270 MPa. In addition, with the increase of the water jet pressure, the TBM penetration increases and the field penetration index decreases. The auxiliary rock-breaking effect of high-pressure water jet decreases with the increase of cutterhead rotational speed. In the case of the in situ tunneling test parameters of this study, the advance rate is the maximum when the pressure of the high-pressure water jet is 270 MPa and the cutterhead rotational speed is 6 r/min. The technical superiority of high-pressure water-jet-assisted rock breaking technology is highlighted and it provides guidance for the excavation parameter selection of high-pressure hydraulically coupled rock-breaking TBM.
文摘Jet grouting is a method for improving of soil and its physical characteristics.However,in this method,grouting of cement slurry with high pressure and velocity may cause damaging to soil structure,and then excavated grains of soil are removed from the borehole and replaced with cement slurry.The grains,which are remained around the borehole,mixed with slurry(cement) in-situ,can create an improved mass of soil.This mass is named"Soilcrete".Soilcrete mass has special characteristics such as high strength,low deformability and very low permeability.In this paper,principles of jet grouting and effective parameters have been analyzed.Then the test results obtained from Soilcrete column have been investigated.Finally,the paper concludes with presenting amount of principle jet grouting parameters at foundation of Shahriar dam according to the results of jet grouting test.Based on the measurements,the diameter,Soilcrete UCS(uniaxial compression strength),amount of the water,grout and air pressure and lifting and rotating speed in original site of jet grouting are 1.2~1.5 m,2~3 MPa,370~390 bar,10~15 bar,6~8 bar,7~8 cm/min and 7~8 cm/min,respectively.Also it can be seen that while the column diameter falls within the upper half of the range,some values of the compressive strength are close to the lower limit of the range.
文摘For achieving optimized jet grout parameters and W/C ratio it is concluded to set trial tests in constant local soil as the conclusion depends on local soil and presence of the extensive range of the effective parameters. Considering the benefits, due to abundance of the involved variables and the intrinsic geological complexity, this system follows a great expense in the trial and implementation phases. Utilizing the soft computing methods, this paper proposes a new approach to reduce or to eliminate the cost of the trial phase. Therefore, the Adaptive Neuro Fuzzy Inference System (ANFIS) was utilized to study the possibility of anticipating the diameter of the jet grout (Soilcrete) columns on the trial phase based on the Trial and Error procedure. Data were collected from several projects and formed three sets of data. Consequently, parameters were held constant (as input) and the diameters of the Soilcrete columns were recorded (as output). To increase the precision, aforementioned data sets were combined and ten different data sets were created and studied, with all the results being assessed in two different approaches. Accordingly, Gaussian Function results in a huge number of precise and acceptable outcomes among available functions. Based on the measurements, Gaussian Function achieves the values of the R which are frequently more than 0.8 and lower values of the RMSE. Therefore, utilizing Gaussian Function, mainly a congruent relation between the R and RMSE is experienced and it leads to close proximity of the actual and predicted values of the Soilcrete diameter.
基金Supported by the National Natural Science Foundation of China(50604019)the Innovation Team Foundation of China(50621403)
文摘Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied through theoretical analysis,experimentand field measurement.The results show that high-pressure pulsed water jet has threedynamic properties.What's more,the three dynamic effects can be found in low-permeabilitycoal seams.A new pulsed water jet with 200-1 000 Hz oscillation frequency andpeak pressure 2.5 times than average pressure was introduced.During bubble collapsing,sound vibration and instantaneous high pressures over 100 MPa enhanced the cuttingability of the high-pressure jet.Through high-pressure pulsed water jet drilling and slotting,the exposure area of coal bodies was greatly enlarged and pressure of the coal seamsrapidly decreased.Therefore,the permeability of coal seams was improved and gas absorptionrate also decreased.Application results show that gas adsorption rate decreasedby 30%-40%and the penetrability coefficient increased 100 times.This proves that high-pressurepulsed water is more efficient than other conventional methods.
基金the National Natural Science Foundation of China(Nos.52304141 and 52074154)。
文摘The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated.
文摘This paper focuses on the underpinning-induced ground movement due to jet-grouting. Jet-grouting technique can cause distortions as a result of an inaccurate processing sequence and/or errors made at different stages of work execution. The aim of this paper is to determine the minimum value of such movement on the basis of the findings obtained at two similar construction sites located in the Historical Center of Moscow, considering that the maximum value is usually unpredictable. Numerical simulation of the process of soil eroding agrees well with the observational data at the current stage. It was found that the minimum value of deformations (only settlement was considered in this study) due to jetgrouting is no less than 2-3 mm. By contrast, the negative scenario of deformation due to foundation underpinning is clearly demonstrated. Also, this paper provides some general solutions for excavation supporting system as well as for underpinning design.
文摘Ordinary columns of jet grouting are circular or fan-shaped. But in recent years, such shapes as candy-shaped columns were put to practical use. They are constructed by switching the rotational speed of the stem in one rotation. We applied this method to swing jet grouting. That is, we changed the rotational speeds in the swing jet grouting to make elongated columns near rectangle. The test construction was succeeded and the columns’ shapes conformed to those designed. In addition, the quality was confirmed to be as good as ordinary columns. Radii (distances from center to outer ends) were 1.03 to 1.21 times as large as those designed. Improvement ratios were 95% or more in any position. Strengths were varied by location, but they satisfied design strength 1.5 kN/m2 at any position. We concluded that this new column can be applied to practice in the same way as ordinary columns.
基金funded by“The Pearl River Talent Recruitment Program”in 2019 for Professor Shui-Long Shen(Grant No.2019CX01G338),Guangdong Provincethe Research Funding of Shantou University for New Faculty Member(Grant No.NTF19024-2019)。
文摘A novel and effective artificial neural network(ANN) optimized using differential evolution(DE) is first introduced to provide a robust and reliable forecasting of jet grouted column diameters.The proposed computational method adopts the DE algorithm to tackle the difficulties in the training and performance of neural networks and optimize the four quintessential hyper-parameters(i.e.the epoch size,the number of neurons in a hidden layer,the number of hidden layers,and the regularization parameter) that govern the neural network efficacy.This approach is further enhanced by a stochastic gradient optimization algorithm to allow ’expensive’ computation efforts.The ANN-DE is first trained using a prepared jet grouting dataset,then verified and compared with the prevalent machine learning tools,i.e.neural networks and support vector machine(SVM).The results show that,the ANN-DE outperforms the existing methods for predicting the diameter of jet grouting columns since it well balances training efficiency and model performance.Specifically,the ANN-DE achieved root mean square error(RMSE)values of 0.90603 and 0.92813 for the training and testing phases,respectively.The corresponding values were 0.8905 and 0.9006 for the optimized ANN,then,0.87569 and 0.89968 for the optimized SVM,respectively.The proposed paradigm is bound to be useful for solving various geotechnical engineering problems regardless of multi-dimension and nonlinearity.
文摘A chain event of the 2016 Kumamoto earthquakes caused considerable geotechnical damage related to liquefaction in many places around Kumamoto plain. Many low-rise houses and traditional Japanese style houses, which were constructed on <span style="font-family:Verdana;">shallow</span><span style="font-family:Verdana;"> foundation, suffered differential settlement and tilting due to liquefaction. To mitigate the building damages due to the liquefaction</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">, a new countermeasure method of jet grout grid form with a horizontal slab is introduced in this study.</span></span></span><span><span><span><span style="font-family:""><span style="font-family:Verdana;"> The effectiveness of the proposed technique was evaluated through physical </span><span style="font-family:Verdana;">modelling</span><span style="font-family:Verdana;"> and numerical </span><span style="font-family:Verdana;">modelling</span><span style="font-family:Verdana;">. As </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span></span><span><span><span><span style="font-family:""><span style="font-family:Verdana;">part of the physical </span><span style="font-family:Verdana;">modelling</span><span style="font-family:Verdana;">, a set of 1 g shaking table tests for </span><span style="font-family:Verdana;">unimproved</span><span style="font-family:Verdana;"> case and improved case were performed, in which the mitigation effects of the grid form with a horizontal reinforcing slab were examined based on the acceleration, excess pore water pressure ratio as well as ground settlement. Numerical simulation was also performed for assessing the effect of </span><span style="font-family:Verdana;">improved</span><span style="font-family:Verdana;"> method on soil-structure interaction and building </span><span style="font-family:Verdana;">settlement</span><span style="font-family:Verdana;"> during the earthquake. </span></span></span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">The physical and numerical results confirmed that the grid form with </span><span style="font-family:Verdana;">horizontal</span><span style="font-family:Verdana;"> slab reinforced method is effective in settlement control and offers favorable contribution </span><span style="font-family:Verdana;">in</span><span style="font-family:Verdana;"> liquefaction mitigation.</span></span></span></span>