An equation of state (EOS) for high-pressure liquids, i.e., Tait EOS, is deduced according to isothermal 1 3V compressibility KT= -1/V· (2V/2p)T·.Based on the equation, a generalized EOS for high pressu...An equation of state (EOS) for high-pressure liquids, i.e., Tait EOS, is deduced according to isothermal 1 3V compressibility KT= -1/V· (2V/2p)T·.Based on the equation, a generalized EOS for high pressure-liquids is established by using the reduced state principle and introducing a characteristic parameter-configuration factor ξ. Reasonably satisfactory P-V-T data for many organic compounds, including some polar components, were calculated by using the equation.展开更多
To address the high rock strength and low drilling rate issues in deep oil/gas and geothermal exploitation, we performed mechanical property tests on three kinds of rock samples(granite, shale and sandstone) subjected...To address the high rock strength and low drilling rate issues in deep oil/gas and geothermal exploitation, we performed mechanical property tests on three kinds of rock samples(granite, shale and sandstone) subjected to liquid nitrogen(LN2) cooling and conducted rock-breaking experiments using LN2 jet. Rock-breaking characteristics and mechanisms of LN2 jet, heat transfer features between LN2 and rock and thermal stress evolution in rock were analyzed. A novel high-pressure LN2 jet assisted drilling method was proposed accordingly. The study results show that LN2 thermal shock can significantly reduce uniaxial compression strength and elastic modulus of rock. Rock damage and corresponding mechanical deterioration become more pronounced with increasing rock temperature. The LN2 jet has merits of high rock-breaking efficiency and low threshold rock-breaking pressure. Rock failure under LN2 jet impact is characterized by large volume breakage and the rock-breaking performance becomes more significant with increase of rock temperature. Under the impact of LN2 jet, the damage of granite is the most remarkable among the three rock samples. Thus, this method works better for high temperature granite formations. It has a good application prospect in speeding up drilling rate in deep hot dry rock geothermal reservoirs.展开更多
Liquid lead-lithium (Pb-16Li) is of primary interest as one of the candidate materials for tritium breeder, neutron multiplier and coolant fluid in liquid metal blanket concepts relevant to fusion power plants. For an...Liquid lead-lithium (Pb-16Li) is of primary interest as one of the candidate materials for tritium breeder, neutron multiplier and coolant fluid in liquid metal blanket concepts relevant to fusion power plants. For an effective and reliable operation of such high temperature liquid metal systems, monitoring and control of critical process parameters is essential. However, limited operational experience coupled with high temperature operating conditions and corrosive nature of Pb-16Li severely limited application of commercially available diagnostic tools. This paper illustrates indigenous calibration test facility designs and experimental methods used to develop non-contact configuration level diagnostics using pulse radar level sensor, wetted configuration pressure diagnostics using diaphragm seal type pressure sensor and bulk temperature diagnostics with temperature profiling for high temperature, high pressure liquid Pb and Pb-16Li applications. Calibration check of these sensors was performed using analytical methods, at temperature between 380°C - 400°C and pressure upto 1 MPa (g). Reliability and performance validation were achieved through long duration testing of sensors in liquid Pb and liquid Pb-16Li environment for over 1000 hour. Estimated deviation for radar level sensor lies within [−3.36 mm, +13.64 mm] and the estimated error for pressure sensor lies within 1.1% of calibrated span over the entire test duration. Results obtained and critical observations from these tests are presented in this paper.展开更多
The distribution of pesticide by-product in tissues of wistar rats were analyzed using high pressure liquid chromatography. The limit of detection of the HPLC was 0.1 μg. Results show bioaccumulation factor of pestic...The distribution of pesticide by-product in tissues of wistar rats were analyzed using high pressure liquid chromatography. The limit of detection of the HPLC was 0.1 μg. Results show bioaccumulation factor of pesticide “Raid?” in lipid, up to three times that of the feed at the first concentration and gradually decreased as the concentration increased in the muscle > (0.7), brain > (0.5) and liver > (0.3) as indicated in the text. At higher concentration of 961 μg/g, bioaccumulation factor decreased in the lipid to 1.2 and 0.6 in the muscle, 0.03 in the brain and 0.08 in the liver respectively. High Pressure Liquid Chromatography (HPLC) analysis of raid extract suggests the presence of micprothrin and palethrin. The implications are numerous, but simply put that accidental ingestion of chlorinated hydrocarbon as in “Raid?” may involve convulsions, collapse and coma after only brief excitation and ataxia at the onset.展开更多
High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro...High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.展开更多
To improve the comprehensive mechanical properties of Al-Si-Cu alloy,it was treated by a high-pressure torsion process,and the effect of the deformation degree on the microstructure and properties of the Al-Si-Cu allo...To improve the comprehensive mechanical properties of Al-Si-Cu alloy,it was treated by a high-pressure torsion process,and the effect of the deformation degree on the microstructure and properties of the Al-Si-Cu alloy was studied.The results show that the reinforcements(β-Si andθ-CuAl_(2)phases)of the Al-Si-Cu alloy are dispersed in theα-Al matrix phase with finer phase size after the treatment.The processed samples exhibit grain sizes in the submicron or even nanometer range,which effectively improves the mechanical properties of the material.The hardness and strength of the deformed alloy are both significantly raised to 268 HV and 390.04 MPa by 10 turns HPT process,and the fracture morphology shows that the material gradually transits from brittle to plastic before and after deformation.The elements interdiffusion at the interface between the phases has also been effectively enhanced.In addition,it is found that the severe plastic deformation at room temperature induces a ternary eutectic reaction,resulting in the formation of ternary Al+Si+CuAl_(2)eutectic.展开更多
Repairs of corroded high-pressure pipelines are essential for fluids transportation under high pressure.One of the methods used in their repairs is the use of layered composites.The composite used must have the necess...Repairs of corroded high-pressure pipelines are essential for fluids transportation under high pressure.One of the methods used in their repairs is the use of layered composites.The composite used must have the necessary strength.Therefore,the experiments and analytical solutions presented in this paper are performed according to the relevant standards and codes,including ASME PCC-2,ASME B31.8S,ASME B31.4,ISO 24817 and ASME B31.G.In addition,the experimental tests are replicated numerically using the finite element method.Setting the strain gauges at different distances from the defect location,can reduce the nonlinear effects,deformation,and fluctuations due to the high pressure.The direct relationship between the depth of an axial defect and the stress concentration is observed at the inner side edges of the defect.Composite reparation reduces the non-linearities related to the sharp variation of the geometry and a more reliable numerical simulation could be performed.展开更多
To thoroughly study the extinguishing effect of a high-pressure water mist fire extinguishing system when a transformer fire occurs,a 3D experimental model of a transformer is established in this work by employing Fir...To thoroughly study the extinguishing effect of a high-pressure water mist fire extinguishing system when a transformer fire occurs,a 3D experimental model of a transformer is established in this work by employing Fire Dynamics Simulator(FDS)software.More specifically,by setting different parameters,the process of the highpressure water mist fire extinguishing system with the presence of both diverse ambient temperatures and water mist sprinkler laying conditions is simulated.In addition,the fire extinguishing effect of the employed high-pressure water mist system with the implementation of different strategies is systematically analyzed.The extracted results show that a fire source farther away fromthe centerline leads to a lower local temperature distribution.In addition,as the ambient temperature increases,the temperature above the fire source decreases,while the temperature and the concentrationof theupperflue gas layer bothdecrease.Interestingly,after thehigh-pressurewatermist sprinkler begins to operate,both the temperature distribution above the fire source and the concentration of the flue gas decrease,which indicates that the high-pressure water mist system plays the role of cooling and dust removal.By comparing various sprinkler laying methods,it is found that the lower sprinkler height has a better effect on the temperature above the fire source,the temperature of the upper flue gas layer,and the concentration of the flue gas.Moreover,when the sprinkler is spread over thewhole transformer,the cooling effect on both the temperature above the fire source and the temperature of the upper flue gas layer is good,whereas the change in the concentration of the flue gas above the fire source is not obvious compared to the case where the sprinkler is not fully spread.展开更多
We report the discovery of TiO_(2)-Ⅱ in the unmelted rock of the shocked Suizhou L6 chondrite.Natural TiO_(2)-Ⅱ was previously found in ultrahigh-pressure metamorphic and mantle-derived rocks,terrestrial impact stru...We report the discovery of TiO_(2)-Ⅱ in the unmelted rock of the shocked Suizhou L6 chondrite.Natural TiO_(2)-Ⅱ was previously found in ultrahigh-pressure metamorphic and mantle-derived rocks,terrestrial impact structures,and tektite.Our microscopic,Raman spectroscopic,electron microprobe and transmission electron microscopic investigations have revealed:(1) All observed TiO_(2)-Ⅱ grains are related with ilmenite and pyrophanite;(2) TiO_(2)-Ⅱ occurs as needle-and leaf-shaped inclusions in llmenite and patch-,tape-shaped body in pyrophanite;(3)The composition of TiO_(2)-Ⅱ is identical with that of its precursor rutile;(4) The Raman spectrum of TiO_(2)-Ⅱ is in good agreement with that of natural and synthesized α-PbO_(2)-type TiO_(2);(5) TiO_(2)-Ⅱ occurs mainly in the form of well-ordered nano-domains and small mis-orientation among the domains can be observed.(6) All electron diffraction reflections from TiO_(2)-Ⅱ can be indexed to α-PbO_(2)structure in space group Pbcn with lattice parameters of a=4.481 ?,b=5.578 A and c=4.921 A;(7) The exsolution inclusions of rutile from host ilmenite are mostly connected with an alternation process along the lamellar twinning plane of ilmenite induced by shockinduced high pressure and high temperature;(8) The P-T regime of 20-25 GPa and 1000 ℃ estimated for the Suizhou unmelted rock is suitable for phase transition of rutile into TiO_(2)-Ⅱ phase.展开更多
As extraction solvents,ionic liquids have green characteristics.In this study,an environmentally benign analytical method termed temperature-controlled ionic liquid dispersive liquid phase microextraction (TIL-DLME) c...As extraction solvents,ionic liquids have green characteristics.In this study,an environmentally benign analytical method termed temperature-controlled ionic liquid dispersive liquid phase microextraction (TIL-DLME) combined with ultra-highpressure liquid chromatography (UHPLC)-tunable ultraviolet detection (TUV) was developed for the pre-concentration and determination of triclosan (TCS),triclocarban (TCC) and methyl-triclosan (M-TCS) in water samples.Significant parameters that may affect extraction efficiencies were examined and optimized,including the types and amount of ionic liquids,volume of the diluent,heating temperature,cooling time,salt effect and pH value.Under the optimum conditions,linearity of the method was observed in the ranges of 0.0100-100 μgL-1 for TCS and M-TCS,and 0.00500-50.0 μgL-1 for TCC with correlation coefficients (r2) 】 0.9903.The limits of detection (LODs) ranged from 1.15 to 5.33 ngL-1.TCS in domestic water and TCC in reclaimed water were detected at the concentrations of 1.01 and 0.126 μgL-1,respectively.The spiked recoveries of the three target compounds in reclaimed water,irrigating water,waste water and domestic water samples were obtained in the ranges of 68.4%-71.9%,61.6%-87.8%,58.9%-74.9% and 64.9%-92.4%,respectively.Compared with the previous dispersive liquid-liquid microextraction method (DLLME) about the determination of TCS,TCC and M-TCS,this method is not only more environmentally friendly but also more sensitive.展开更多
On March 16–17, 2008, a sea fog occurred in Dianbai in the west of Guangdong Province and was accompanied by a high-pressure synoptic system. Using comprehensive observation datasets, this study analyzes the evolutio...On March 16–17, 2008, a sea fog occurred in Dianbai in the west of Guangdong Province and was accompanied by a high-pressure synoptic system. Using comprehensive observation datasets, this study analyzes the evolution of liquid water content during this sea fog and investigates the relationships between liquid water content and the average diameters and count densities of fog droplets, air temperature, wind speed and turbulence exchanges. The main results are presented as follows. (1) The sea fog showed a quasi-periodic oscillation characteristic, i.e., it developed, disappeared and then developed again. (2) During the sea fog, the number of fog droplets changed significantly while the changes in average diameter of the fog droplets were relatively small. The development and disappearance of the sea fog correlated significantly with the fog droplet numbers. (3) The air-cooling mechanism played a significant role in sea fog formation and development. However, the influences of this mechanism were not evident during fog persistence. (4) During sea fog formation, weak turbulence exchanges were helpful for fog formation. During sea fog development and persistence, liquid water content increased when turbulence exchanges weakened, and vice versa. The changes in turbulence exchanges were closely related to the quasi-periodic oscillations observed in sea fog presence.展开更多
In this study,based on the Luo bubble coalescence model,a model correction factor C_e for pressures according to the literature experimental results was introduced in the bubble coalescence efficiency term.Then,a coup...In this study,based on the Luo bubble coalescence model,a model correction factor C_e for pressures according to the literature experimental results was introduced in the bubble coalescence efficiency term.Then,a coupled modified population balance model(PBM) with computational fluid dynamics(CFD) was used to simulate a high-pressure bubble column.The simulation results with and without C_e were compared with the experimental data.The modified CFD-PBM coupled model was used to investigate its applicability to broader experimental conditions.These results showed that the modified CFD-PBM coupled model can predict the hydrodynamic behaviors under various operating conditions.展开更多
Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since...Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.展开更多
Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typicall...Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typically have static optical responses with fixed geometries of nanostructures,which poses challenges for implementing transition to technology by replacing conventional optical components.To solve this problem,liquid crystals(LCs)have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time.Here,we review recent studies on LCpowered tunable metasurfaces,which are categorized as wavefront tuning and spectral tuning.Compared to numerous reviews on tunable metasurfaces,this review intensively explores recent development of LC-integrated metasurfaces.At the end of this review,we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs.We hope that this review will accelerate the development of new and innovative LC-powered devices.展开更多
Monoclinicα-MoP_(2),with the OsGe2-type structure(space group C2/m,Z=4)and lattice parameters a=8.7248(11)Å,b=3.2322(4)Å,c=7.4724(9)Å,andβ=119.263°,was synthesized under a pressure of 4~GPa at a ...Monoclinicα-MoP_(2),with the OsGe2-type structure(space group C2/m,Z=4)and lattice parameters a=8.7248(11)Å,b=3.2322(4)Å,c=7.4724(9)Å,andβ=119.263°,was synthesized under a pressure of 4~GPa at a temperature between 1100℃and 1200℃.The structure ofα-MoP_(2) and its relationship to other transition metal diphosphides are discussed.Surprisingly,the ambient pressure phase orthorhombicβ-MoP_(2)(space group Cmc21)is denser in structure thanα-MoP_(2).Room-temperature high-pressure x-ray diffraction studies exclude the possibility of phase transition fromβ-MoP_(2) to α-MoP_(2),suggesting thatα-MoP_(2) is a stable phase at ambient conditions;this is also supported by the total energy and phonon calculations.展开更多
A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainab...A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance.展开更多
An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a qu...An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a quaternary ammonium phosphotungstate-based hexadecyltrimethylammonium chloride ionic liquid(CTAC-HPW)by the ion exchange method for the photocatalytic oxidative desulfurization of dibenzothiophene sulfide.The keggin structure of HPW and highly mass transfer performance of organic cations synergistically enhanced the photocatalytic activity towards the effective convertion of dibenzothiophene(DBT)with the excitation of visible light.The deep desulfurization(<10 mg·kg^(-1))is attained within 30 min,and well stability is demonstrated within 25 cycles.Moreover,the CTAC-HPW photocatalyst projects well selectivity to interference from coexisting compounds such as olefins and aromatic hydrocarbons and universality of dibenzothiophenes,for example,4-methyldibenzothiophene(4-MDBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT).Ultimately,a possible photocatalytic desulfurization mechanism is proposed according to the Gaschromatography-mass spectrometry(GC-MS),proving that the final product is the corresponding sulfone.The trapping experiment and electron spin resonance(ESR)analysis confirmed that h^(+)and,COOH played critical roles in the oxidation process.The work offers a practicable strategy for efficiently converting DBT to DBTO_(2) with added value.展开更多
The high-pressure diagram of V–N compounds is enriched by proposed seven new stable high-pressure phases.The P-1-VN_4with the armchair N-rich structure may be quenched to ambient conditions.The formed N–N covalent b...The high-pressure diagram of V–N compounds is enriched by proposed seven new stable high-pressure phases.The P-1-VN_4with the armchair N-rich structure may be quenched to ambient conditions.The formed N–N covalent bond plays an important role for the structural stability of N-chain.The charge transfer results in a V–N ionic bond interaction,which further improves the stability of N-chain structure.The P-1-VN_4,P4mnc-VN_8,and Immm-VN_(10)with the outstanding detonation properties have potential application in explosive field.展开更多
The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the cr...The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials.展开更多
With the rapid development of science and technology,cell-free DNA(cfDNA)is rapidly becoming an important biomarker for tumor diagnosis,monitoring and prognosis,and this cfDNA-based liquid biopsy technology has great ...With the rapid development of science and technology,cell-free DNA(cfDNA)is rapidly becoming an important biomarker for tumor diagnosis,monitoring and prognosis,and this cfDNA-based liquid biopsy technology has great potential to become an important part of precision medicine.cfDNA is the total amount of free DNA in the systemic circulation,including DNA fragments derived from tumor cells and all other somatic cells.Tumor cells release fragments of DNA into the bloodstream,and this source of cfDNA is called circulating tumor DNA(ctDNA).cfDNA detection has become a major focus in the field of tumor research in recent years,which provides a new opportunity for non-invasive diagnosis and prognosis of cancer.In this paper,we discuss the limitations of the study on the origin and dynamics analysis of ctDNA,and how to solve these problems in the future.Although the future faces major challenges,it also con-tains great potential.展开更多
文摘An equation of state (EOS) for high-pressure liquids, i.e., Tait EOS, is deduced according to isothermal 1 3V compressibility KT= -1/V· (2V/2p)T·.Based on the equation, a generalized EOS for high pressure-liquids is established by using the reduced state principle and introducing a characteristic parameter-configuration factor ξ. Reasonably satisfactory P-V-T data for many organic compounds, including some polar components, were calculated by using the equation.
基金Supported by National Science Fund for Distinguished Young Scholars(NO.51725404)Program of Introducing Talents of Discipline to Chinese Universities(NO.B17045)National Natural Science Foundation of China(NO.51521063)
文摘To address the high rock strength and low drilling rate issues in deep oil/gas and geothermal exploitation, we performed mechanical property tests on three kinds of rock samples(granite, shale and sandstone) subjected to liquid nitrogen(LN2) cooling and conducted rock-breaking experiments using LN2 jet. Rock-breaking characteristics and mechanisms of LN2 jet, heat transfer features between LN2 and rock and thermal stress evolution in rock were analyzed. A novel high-pressure LN2 jet assisted drilling method was proposed accordingly. The study results show that LN2 thermal shock can significantly reduce uniaxial compression strength and elastic modulus of rock. Rock damage and corresponding mechanical deterioration become more pronounced with increasing rock temperature. The LN2 jet has merits of high rock-breaking efficiency and low threshold rock-breaking pressure. Rock failure under LN2 jet impact is characterized by large volume breakage and the rock-breaking performance becomes more significant with increase of rock temperature. Under the impact of LN2 jet, the damage of granite is the most remarkable among the three rock samples. Thus, this method works better for high temperature granite formations. It has a good application prospect in speeding up drilling rate in deep hot dry rock geothermal reservoirs.
文摘Liquid lead-lithium (Pb-16Li) is of primary interest as one of the candidate materials for tritium breeder, neutron multiplier and coolant fluid in liquid metal blanket concepts relevant to fusion power plants. For an effective and reliable operation of such high temperature liquid metal systems, monitoring and control of critical process parameters is essential. However, limited operational experience coupled with high temperature operating conditions and corrosive nature of Pb-16Li severely limited application of commercially available diagnostic tools. This paper illustrates indigenous calibration test facility designs and experimental methods used to develop non-contact configuration level diagnostics using pulse radar level sensor, wetted configuration pressure diagnostics using diaphragm seal type pressure sensor and bulk temperature diagnostics with temperature profiling for high temperature, high pressure liquid Pb and Pb-16Li applications. Calibration check of these sensors was performed using analytical methods, at temperature between 380°C - 400°C and pressure upto 1 MPa (g). Reliability and performance validation were achieved through long duration testing of sensors in liquid Pb and liquid Pb-16Li environment for over 1000 hour. Estimated deviation for radar level sensor lies within [−3.36 mm, +13.64 mm] and the estimated error for pressure sensor lies within 1.1% of calibrated span over the entire test duration. Results obtained and critical observations from these tests are presented in this paper.
文摘The distribution of pesticide by-product in tissues of wistar rats were analyzed using high pressure liquid chromatography. The limit of detection of the HPLC was 0.1 μg. Results show bioaccumulation factor of pesticide “Raid?” in lipid, up to three times that of the feed at the first concentration and gradually decreased as the concentration increased in the muscle > (0.7), brain > (0.5) and liver > (0.3) as indicated in the text. At higher concentration of 961 μg/g, bioaccumulation factor decreased in the lipid to 1.2 and 0.6 in the muscle, 0.03 in the brain and 0.08 in the liver respectively. High Pressure Liquid Chromatography (HPLC) analysis of raid extract suggests the presence of micprothrin and palethrin. The implications are numerous, but simply put that accidental ingestion of chlorinated hydrocarbon as in “Raid?” may involve convulsions, collapse and coma after only brief excitation and ataxia at the onset.
基金financially supported by the National Natural Science Foundation of China(Nos.52175284 and 52474396)the National Key Research and Development Program of China(No.2022YFB3404201)。
文摘High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.
基金Funded by the National Natural Science Foundation of China(No.51905215)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX23_1233)+1 种基金Major Scientific and Technological Innovation Project of Shandong Province of China(No.2019JZZY020111)the National College Students Innovation and Entrepreneurship Training Program of China(No.CX2022415)。
文摘To improve the comprehensive mechanical properties of Al-Si-Cu alloy,it was treated by a high-pressure torsion process,and the effect of the deformation degree on the microstructure and properties of the Al-Si-Cu alloy was studied.The results show that the reinforcements(β-Si andθ-CuAl_(2)phases)of the Al-Si-Cu alloy are dispersed in theα-Al matrix phase with finer phase size after the treatment.The processed samples exhibit grain sizes in the submicron or even nanometer range,which effectively improves the mechanical properties of the material.The hardness and strength of the deformed alloy are both significantly raised to 268 HV and 390.04 MPa by 10 turns HPT process,and the fracture morphology shows that the material gradually transits from brittle to plastic before and after deformation.The elements interdiffusion at the interface between the phases has also been effectively enhanced.In addition,it is found that the severe plastic deformation at room temperature induces a ternary eutectic reaction,resulting in the formation of ternary Al+Si+CuAl_(2)eutectic.
文摘Repairs of corroded high-pressure pipelines are essential for fluids transportation under high pressure.One of the methods used in their repairs is the use of layered composites.The composite used must have the necessary strength.Therefore,the experiments and analytical solutions presented in this paper are performed according to the relevant standards and codes,including ASME PCC-2,ASME B31.8S,ASME B31.4,ISO 24817 and ASME B31.G.In addition,the experimental tests are replicated numerically using the finite element method.Setting the strain gauges at different distances from the defect location,can reduce the nonlinear effects,deformation,and fluctuations due to the high pressure.The direct relationship between the depth of an axial defect and the stress concentration is observed at the inner side edges of the defect.Composite reparation reduces the non-linearities related to the sharp variation of the geometry and a more reliable numerical simulation could be performed.
基金supported by Science and Technology Projects Funded by State Grid Corporation of China (5200202024105A0000).
文摘To thoroughly study the extinguishing effect of a high-pressure water mist fire extinguishing system when a transformer fire occurs,a 3D experimental model of a transformer is established in this work by employing Fire Dynamics Simulator(FDS)software.More specifically,by setting different parameters,the process of the highpressure water mist fire extinguishing system with the presence of both diverse ambient temperatures and water mist sprinkler laying conditions is simulated.In addition,the fire extinguishing effect of the employed high-pressure water mist system with the implementation of different strategies is systematically analyzed.The extracted results show that a fire source farther away fromthe centerline leads to a lower local temperature distribution.In addition,as the ambient temperature increases,the temperature above the fire source decreases,while the temperature and the concentrationof theupperflue gas layer bothdecrease.Interestingly,after thehigh-pressurewatermist sprinkler begins to operate,both the temperature distribution above the fire source and the concentration of the flue gas decrease,which indicates that the high-pressure water mist system plays the role of cooling and dust removal.By comparing various sprinkler laying methods,it is found that the lower sprinkler height has a better effect on the temperature above the fire source,the temperature of the upper flue gas layer,and the concentration of the flue gas.Moreover,when the sprinkler is spread over thewhole transformer,the cooling effect on both the temperature above the fire source and the temperature of the upper flue gas layer is good,whereas the change in the concentration of the flue gas above the fire source is not obvious compared to the case where the sprinkler is not fully spread.
文摘We report the discovery of TiO_(2)-Ⅱ in the unmelted rock of the shocked Suizhou L6 chondrite.Natural TiO_(2)-Ⅱ was previously found in ultrahigh-pressure metamorphic and mantle-derived rocks,terrestrial impact structures,and tektite.Our microscopic,Raman spectroscopic,electron microprobe and transmission electron microscopic investigations have revealed:(1) All observed TiO_(2)-Ⅱ grains are related with ilmenite and pyrophanite;(2) TiO_(2)-Ⅱ occurs as needle-and leaf-shaped inclusions in llmenite and patch-,tape-shaped body in pyrophanite;(3)The composition of TiO_(2)-Ⅱ is identical with that of its precursor rutile;(4) The Raman spectrum of TiO_(2)-Ⅱ is in good agreement with that of natural and synthesized α-PbO_(2)-type TiO_(2);(5) TiO_(2)-Ⅱ occurs mainly in the form of well-ordered nano-domains and small mis-orientation among the domains can be observed.(6) All electron diffraction reflections from TiO_(2)-Ⅱ can be indexed to α-PbO_(2)structure in space group Pbcn with lattice parameters of a=4.481 ?,b=5.578 A and c=4.921 A;(7) The exsolution inclusions of rutile from host ilmenite are mostly connected with an alternation process along the lamellar twinning plane of ilmenite induced by shockinduced high pressure and high temperature;(8) The P-T regime of 20-25 GPa and 1000 ℃ estimated for the Suizhou unmelted rock is suitable for phase transition of rutile into TiO_(2)-Ⅱ phase.
基金the support from the National High Technology Research and Development Program of China(122007AA061601)the National Natural Science Foundation of Chinathe National Basic Research Program of China(20607026,20877092& 20877005)
文摘As extraction solvents,ionic liquids have green characteristics.In this study,an environmentally benign analytical method termed temperature-controlled ionic liquid dispersive liquid phase microextraction (TIL-DLME) combined with ultra-highpressure liquid chromatography (UHPLC)-tunable ultraviolet detection (TUV) was developed for the pre-concentration and determination of triclosan (TCS),triclocarban (TCC) and methyl-triclosan (M-TCS) in water samples.Significant parameters that may affect extraction efficiencies were examined and optimized,including the types and amount of ionic liquids,volume of the diluent,heating temperature,cooling time,salt effect and pH value.Under the optimum conditions,linearity of the method was observed in the ranges of 0.0100-100 μgL-1 for TCS and M-TCS,and 0.00500-50.0 μgL-1 for TCC with correlation coefficients (r2) 】 0.9903.The limits of detection (LODs) ranged from 1.15 to 5.33 ngL-1.TCS in domestic water and TCC in reclaimed water were detected at the concentrations of 1.01 and 0.126 μgL-1,respectively.The spiked recoveries of the three target compounds in reclaimed water,irrigating water,waste water and domestic water samples were obtained in the ranges of 68.4%-71.9%,61.6%-87.8%,58.9%-74.9% and 64.9%-92.4%,respectively.Compared with the previous dispersive liquid-liquid microextraction method (DLLME) about the determination of TCS,TCC and M-TCS,this method is not only more environmentally friendly but also more sensitive.
基金Natural Science Foundation of China (40675013)Foundation project of Nanjing University of Information Science & TechnologyProject on natural science for universities and colleges in Jiangsu province
文摘On March 16–17, 2008, a sea fog occurred in Dianbai in the west of Guangdong Province and was accompanied by a high-pressure synoptic system. Using comprehensive observation datasets, this study analyzes the evolution of liquid water content during this sea fog and investigates the relationships between liquid water content and the average diameters and count densities of fog droplets, air temperature, wind speed and turbulence exchanges. The main results are presented as follows. (1) The sea fog showed a quasi-periodic oscillation characteristic, i.e., it developed, disappeared and then developed again. (2) During the sea fog, the number of fog droplets changed significantly while the changes in average diameter of the fog droplets were relatively small. The development and disappearance of the sea fog correlated significantly with the fog droplet numbers. (3) The air-cooling mechanism played a significant role in sea fog formation and development. However, the influences of this mechanism were not evident during fog persistence. (4) During sea fog formation, weak turbulence exchanges were helpful for fog formation. During sea fog development and persistence, liquid water content increased when turbulence exchanges weakened, and vice versa. The changes in turbulence exchanges were closely related to the quasi-periodic oscillations observed in sea fog presence.
基金Supported by the National Natural Science Foundation of China(91634101)The Project of Construction of Innovative TeamsTeacher Career Development for Universities and Colleges under Beijing Municipality(IDHT20180508)
文摘In this study,based on the Luo bubble coalescence model,a model correction factor C_e for pressures according to the literature experimental results was introduced in the bubble coalescence efficiency term.Then,a coupled modified population balance model(PBM) with computational fluid dynamics(CFD) was used to simulate a high-pressure bubble column.The simulation results with and without C_e were compared with the experimental data.The modified CFD-PBM coupled model was used to investigate its applicability to broader experimental conditions.These results showed that the modified CFD-PBM coupled model can predict the hydrodynamic behaviors under various operating conditions.
基金support from the National Natural Science Foundation of China (No.62005164,62222507,62175101,and 62005166)the Shanghai Natural Science Foundation (23ZR1443700)+3 种基金Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23SG41)the Young Elite Scientist Sponsorship Program by CAST (No.20220042)Science and Technology Commission of Shanghai Municipality (Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program (2021-2025 No.20).
文摘Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.
基金supported by the POSCO-POSTECH-RIST Convergence Research Center program funded by POSCO,the Samsung Research Funding&Incubation Center for Future Technology grant(SRFC-IT1901-52)funded by Samsung Electronicsthe National Research Foundation(NRF)grants(NRF-2022M3C1A3081312,NRF-2022M3H4A1A-02074314,NRF-2022M3H4A1A02046445,NRF-2021M3H4A1A04086357,NRF-2019R1A5A8080290,RS-2024-00356928,RS-2023-00283667)funded by the Ministry of Science and ICT of the Korean governmentthe Korea Evaluation Institute of Industrial Technology(KEIT)grant(No.1415185027/20019169,Alchemist project)funded by the Ministry of Trade,Industry and Energy(MOTIE)of the Korean government.H.Kim and J.Kim acknowledge the POSTECH Alchemist fellowship,the Asan Foundation Biomedical Science fellowship,and Presidential Science fellowship funded by the MSIT of the Korean government.
文摘Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typically have static optical responses with fixed geometries of nanostructures,which poses challenges for implementing transition to technology by replacing conventional optical components.To solve this problem,liquid crystals(LCs)have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time.Here,we review recent studies on LCpowered tunable metasurfaces,which are categorized as wavefront tuning and spectral tuning.Compared to numerous reviews on tunable metasurfaces,this review intensively explores recent development of LC-integrated metasurfaces.At the end of this review,we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs.We hope that this review will accelerate the development of new and innovative LC-powered devices.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.92065201,11874264,and 11974154)the Starting Grant of ShanghaiTech University and Analytical Instrumentation Center,SPST,ShanghaiTech University (Grant No.SPST-AIC10112914)support from the Natural Science Foundation of Shandong Province,China (Grant No.ZR2022MA004)。
文摘Monoclinicα-MoP_(2),with the OsGe2-type structure(space group C2/m,Z=4)and lattice parameters a=8.7248(11)Å,b=3.2322(4)Å,c=7.4724(9)Å,andβ=119.263°,was synthesized under a pressure of 4~GPa at a temperature between 1100℃and 1200℃.The structure ofα-MoP_(2) and its relationship to other transition metal diphosphides are discussed.Surprisingly,the ambient pressure phase orthorhombicβ-MoP_(2)(space group Cmc21)is denser in structure thanα-MoP_(2).Room-temperature high-pressure x-ray diffraction studies exclude the possibility of phase transition fromβ-MoP_(2) to α-MoP_(2),suggesting thatα-MoP_(2) is a stable phase at ambient conditions;this is also supported by the total energy and phonon calculations.
基金supported by the Natural Science Founda-tion of Beijing(Grant No.2182017,2202017).
文摘A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance.
基金the financial supports from National Natural Science Foundation of China(22172066,22378176)supported by State Key Laboratory of Heavy Oil ProcessingSupported by Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment,Suzhou University of Science and Technology。
文摘An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a quaternary ammonium phosphotungstate-based hexadecyltrimethylammonium chloride ionic liquid(CTAC-HPW)by the ion exchange method for the photocatalytic oxidative desulfurization of dibenzothiophene sulfide.The keggin structure of HPW and highly mass transfer performance of organic cations synergistically enhanced the photocatalytic activity towards the effective convertion of dibenzothiophene(DBT)with the excitation of visible light.The deep desulfurization(<10 mg·kg^(-1))is attained within 30 min,and well stability is demonstrated within 25 cycles.Moreover,the CTAC-HPW photocatalyst projects well selectivity to interference from coexisting compounds such as olefins and aromatic hydrocarbons and universality of dibenzothiophenes,for example,4-methyldibenzothiophene(4-MDBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT).Ultimately,a possible photocatalytic desulfurization mechanism is proposed according to the Gaschromatography-mass spectrometry(GC-MS),proving that the final product is the corresponding sulfone.The trapping experiment and electron spin resonance(ESR)analysis confirmed that h^(+)and,COOH played critical roles in the oxidation process.The work offers a practicable strategy for efficiently converting DBT to DBTO_(2) with added value.
文摘The high-pressure diagram of V–N compounds is enriched by proposed seven new stable high-pressure phases.The P-1-VN_4with the armchair N-rich structure may be quenched to ambient conditions.The formed N–N covalent bond plays an important role for the structural stability of N-chain.The charge transfer results in a V–N ionic bond interaction,which further improves the stability of N-chain structure.The P-1-VN_4,P4mnc-VN_8,and Immm-VN_(10)with the outstanding detonation properties have potential application in explosive field.
基金This work was supported by the National Natural Science Foundation of China(nos.21988102,and 22305026)the China Postdoctoral Science Foundation(2019M650433).
文摘The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials.
基金Supported by Talent Scientific Research Start-up Foundation of Wannan Medical College,No.WYRCQD2023045.
文摘With the rapid development of science and technology,cell-free DNA(cfDNA)is rapidly becoming an important biomarker for tumor diagnosis,monitoring and prognosis,and this cfDNA-based liquid biopsy technology has great potential to become an important part of precision medicine.cfDNA is the total amount of free DNA in the systemic circulation,including DNA fragments derived from tumor cells and all other somatic cells.Tumor cells release fragments of DNA into the bloodstream,and this source of cfDNA is called circulating tumor DNA(ctDNA).cfDNA detection has become a major focus in the field of tumor research in recent years,which provides a new opportunity for non-invasive diagnosis and prognosis of cancer.In this paper,we discuss the limitations of the study on the origin and dynamics analysis of ctDNA,and how to solve these problems in the future.Although the future faces major challenges,it also con-tains great potential.