期刊文献+
共找到28,701篇文章
< 1 2 250 >
每页显示 20 50 100
High-rate capability of spinel LiNi_(0.05)Mn_(1.95)O_4 cathode for Li-ion batteries prepared via coprecipitated precursor 被引量:1
1
作者 孙斌 申国培 胡燕龙 《中国有色金属学会会刊:英文版》 CSCD 2007年第A02期937-940,共4页
Spinel LiNi0.05Mn1.95O4 cathode material for lithium ion batteries was synthesized by solid-state reaction from coprecipitated Ni-Mn hydroxide precursors and characterized by X-ray diffraction(XRD),scanning electron m... Spinel LiNi0.05Mn1.95O4 cathode material for lithium ion batteries was synthesized by solid-state reaction from coprecipitated Ni-Mn hydroxide precursors and characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and galvanostatic charge-discharge tests. It is found that LiNi0.05Mn1.95O4 powder has an ordered cubic spinel phase(space group Fd 3m) and exhibits superior rate capability. After 450 cycles,the LiNi0.05Mn1.95O4/carbonaceous mesophase spheres(CMS) Li-ion batteries can retain 96.0% and 93.3% capacity at 5C and 10C charge/discharge rate,respectively,compared with 85.3%(5C) and 80.5%(10C) retention for LiMn2O4 batteries. However,the initial discharge capacity of LiNi0.05Mn1.95O4/CMS batteries at 1C charge/discharge rate(96.20 mA·h/g) is slightly lower than that of the LiMn2O4 batteries(100.98 mA·h/g) due to the increased average oxidation state of Mn in LiNi0.05Mn1.95O4. 展开更多
关键词 锂离子电池 阴极材料 共沉淀法 尖晶石型结构
下载PDF
Thick Electrodes of a Self-Assembled MXene Hydrogel Composite for High-Rate Energy Storage
2
作者 Leiqiang Qin Jianxia Jiang +2 位作者 Lintao Hou Fengling Zhang Johanna Rosen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期255-261,共7页
Supercapacitors based on two-dimensional MXene(Ti_(3)C_(2)T_(z))have shown extraordinary performance in ultrathin electrodes with low mass loading,but usually there is a significant reduction in high-rate performance ... Supercapacitors based on two-dimensional MXene(Ti_(3)C_(2)T_(z))have shown extraordinary performance in ultrathin electrodes with low mass loading,but usually there is a significant reduction in high-rate performance as the thickness increases,caused by increasing ion diffusion limitation.Further limitations include restacking of the nanosheets,which makes it challenging to realize the full potential of these electrode materials.Herein,we demonstrate the design of a vertically aligned MXene hydrogel composite,achieved by thermal-assisted self-assembled gelation,for high-rate energy storage.The highly interconnected MXene network in the hydrogel architecture provides very good electron transport properties,and its vertical ion channel structure facilitates rapid ion transport.The resulting hydrogel electrode show excellent performance in both aqueous and organic electrolytes with respect to high capacitance,stability,and high-rate capability for up to 300μm thick electrodes,which represents a significant step toward practical applications. 展开更多
关键词 energy storage high-rate HYDROGEL MXene SELF-ASSEMBLE
下载PDF
Phase Engineering of MXene Derivatives Via Molecular Design for High-Rate Sodium-Ion Batteries
3
作者 Hui Zhang Xingwu Zhai +10 位作者 Xin Cao Zhihao Liu Xinfeng Tang Zhihong Hu Hang Wang Zhandong Wang Yang Xu Wei He Wei Zheng Min Zhou Zheng Ming Sun 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期122-130,共9页
Since 2019,research into MXene derivatives has seen a dramatic rise;further progress requires a rational design for specific functionality.Herein,through a molecular design by selecting suitable functional groups in t... Since 2019,research into MXene derivatives has seen a dramatic rise;further progress requires a rational design for specific functionality.Herein,through a molecular design by selecting suitable functional groups in the MXene coating,we have implemented the dual N doping of the derivatives,nitrogen-doped TiO_(2)@nitrogen-doped carbon nanosheets(N-TiO_(2)@NC),to strike a balance between the active anatase TiO_(2)at low temperatures,and carbon activation at high temperatures.The NH_(3)reduction environment generated at 400℃as evidenced by the in situ pyrolysis SVUV-PIMS process is crucial for concurrent phase engineering.With both electrical conductivity and surface Na+availability,the N-TiO_(2)@NC achieves higher interface capacitive-like sodium storage with long-term stability.More than 100 mAh g^(-1)is achieved at 2 A g^(-1)after 5000 cycles.The proposed design may be extended to other MXenes and solidify the growing family of MXene derivatives for energy storage. 展开更多
关键词 high-rate sodium-ion batteries molecular design MXene derivative phase engineering
下载PDF
High power nano-LiMn_2O_4 cathode materials with high-rate pulse discharge capability for lithium-ion batteries 被引量:1
4
作者 陈颖超 谢凯 +2 位作者 盘毅 郑春满 王华林 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期532-537,共6页
Nano-LiMn2O4 cathode materials with nano-sized particles are synthesized via a citric acid assisted sol-gel route. The structure, the morphology and the electrochemical properties of the nano-LiMn204 are investigated.... Nano-LiMn2O4 cathode materials with nano-sized particles are synthesized via a citric acid assisted sol-gel route. The structure, the morphology and the electrochemical properties of the nano-LiMn204 are investigated. Compared with the micro-sized LiMn2O4, the nano-LiMn2O4 possesses a high initial capacity (120 mAh/g) at a discharge rate of 0.2 C (29.6 mA/g). The nano-LiMn2O4 also has a good high-rate discharge capability, retaining 91% of its capacity at a discharge rate of 10 C and 73~ at a discharge rate of 40 C. In particular, the nano-LiMn2O4 shows an excellent high-rate pulse discharge capability. The cut-off voltage at the end of 50-ms pulse discharge with a discharge rate of 80 C is above 3.40 V, and the voltage returns to over 4.10 V after the pulse discharge. These results show that the prepared nano-LiMn2O4 could be a potential cathode material for the power sources with the capability to deliver very high-rate pulse currents. 展开更多
关键词 lithium-ion batteries lithium manganese oxide high-rate pulse discharge
下载PDF
High-rate metal-free MXene microsupercapacitors on paper substrates
5
作者 Han Xue Po‐Han Huang +11 位作者 Lee‐Lun Lai Yingchun Su Axel Strömberg Gaolong Cao Yuzhu Fan Sergiy Khartsev Mats Göthelid Yan‐Ting Sun Jonas Weissenrieder Kristinn BGylfason Frank Niklaus Jiantong Li 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期94-104,共11页
MXene is a promising energy storage material for miniaturized microbatteries and microsupercapacitors(MSCs).Despite its superior electrochemical performance,only a few studies have reported MXene-based ultrahigh-rate(... MXene is a promising energy storage material for miniaturized microbatteries and microsupercapacitors(MSCs).Despite its superior electrochemical performance,only a few studies have reported MXene-based ultrahigh-rate(>1000 mV s^(−1))on-paper MSCs,mainly due to the reduced electrical conductance of MXene films deposited on paper.Herein,ultrahigh-rate metal-free on-paper MSCs based on heterogeneous MXene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)-stack electrodes are fabricated through the combination of direct ink writing and femtosecond laser scribing.With a footprint area of only 20 mm^(2),the on-paper MSCs exhibit excellent high-rate capacitive behavior with an areal capacitance of 5.7 mF cm^(−2)and long cycle life(>95%capacitance retention after 10,000 cycles)at a high scan rate of 1000 mV s^(−1),outperforming most of the present on-paper MSCs.Furthermore,the heterogeneous MXene/PEDOT:PSS electrodes can interconnect individual MSCs into metal-free on-paper MSC arrays,which can also be simultaneously charged/discharged at 1000 mV s^(−1),showing scalable capacitive performance.The heterogeneous MXene/PEDOT:PSS stacks are a promising electrode structure for on-paper MSCs to serve as ultrafast miniaturized energy storage components for emerging paper electronics. 展开更多
关键词 direct ink writing femtosecond laser scribing MXene on-paper microsupercapacitors PEDOT:PSS ultrahigh rate capability
下载PDF
NiCoSe2/Ni3Se2 lamella arrays grown on N-doped graphene nanotubes with ultrahigh-rate capability and long-term cycling for asymmetric supercapacitor 被引量:3
6
作者 Alan Meng Tong Shen +4 位作者 Tianqi Huang Guanying Song Zhenjiang Li Shuqin Tan Jian Zhao 《Science China Materials》 SCIE EI CSCD 2020年第2期229-239,共11页
In this paper, we report a one-step electrodeposited synthesis strategy for directly growing NiCoSe2/Ni3Se2 lamella arrays(LAs) on N-doped graphene nanotubes(N-GNTs) as advanced free-standing positive electrode for as... In this paper, we report a one-step electrodeposited synthesis strategy for directly growing NiCoSe2/Ni3Se2 lamella arrays(LAs) on N-doped graphene nanotubes(N-GNTs) as advanced free-standing positive electrode for asymmetric supercapacitors. Benefiting from the synergetic contribution between the distinctive electroactive materials and the skeletons, the as-constructed N-GNTs@NiCoSe2/Ni3-Se2LAs present a specific capacitance of ~1308 F g^-1 at a current density of 1 A g^-1. More importantly, the hybrid electrode also reveals excellent rate capability(~1000 F g^-1 even at 100 A g^-1) and appealing cycling performance(~103.2% of capacitance retention over 10,000 cycles). Furthermore, an asymmetric supercapacitor is fabricated by using the obtained N-GNTs@NiCoSe2/Ni3Se2LAs and active carbon(AC) as the positive and negative electrodes respectively,which holds a high energy density of 42.8 W h kg^-1 at 2.6 k W kg^-1, and superior cycling stability of ~94.4% retention over 10,000 cycles. Accordingly, our fabrication technique and new insight herein can both widen design strategy of multicomponent composite electrode materials and promote the practical applications of the latest emerging transition metal selenides in next-generation high-performance supercapacitors. 展开更多
关键词 NiCoSe2/Ni3 Se2 lamella arrays electrodeposition Ndoped graphene nanotubes rate capability asymmetric supercapacitor
原文传递
Low-temperature performance and high-rate discharge capability of AB_5-type non-stoichiometric hydrogen storage alloy 被引量:1
7
作者 陆延静 朱磊 +3 位作者 成艳 陈晖 简旭宇 王忠 《中国有色金属学会会刊:英文版》 CSCD 2007年第A02期978-984,共7页
Low-temperature performance and high-rate discharge capability of AB5-type non-stoichiometric hydrogen storage are studied. X-ray diffraction(XRD),pressure-composition-temperature(PCT) curves and electrochemical imped... Low-temperature performance and high-rate discharge capability of AB5-type non-stoichiometric hydrogen storage are studied. X-ray diffraction(XRD),pressure-composition-temperature(PCT) curves and electrochemical impedance spectroscopy(EIS) are applied to characterize the electrochemical properties of ABx(x=4.8,4.9,5.0,5.1,5.2) alloys. The results show that the non-stoichiometric alloys exhibit better electrochemical properties compared with that of the AB5 alloy. 展开更多
关键词 储氢合金 化学计量学 低温性能 放电容量
下载PDF
Boosting High-Rate Zinc-Storage Performance by the Rational Design of Mn_(2)O_(3) Nanoporous Architecture Cathode 被引量:2
8
作者 Danyang Feng Tu‑Nan Gao +4 位作者 Ling Zhang Bingkun Guo Shuyan Song Zhen‑An Qiao Sheng Dai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第1期195-207,共13页
Manganese oxides are regarded as one of the most promising cathode materials in rechargeable aqueous Zn-ion batteries(ZIBs)because of the low price and high security.However,the practical application of Mn2O3 in ZIBs ... Manganese oxides are regarded as one of the most promising cathode materials in rechargeable aqueous Zn-ion batteries(ZIBs)because of the low price and high security.However,the practical application of Mn2O3 in ZIBs is still plagued by the low specific capacity and poor rate capability.Herein,highly crystalline Mn2O3 materials with interconnected mesostructures and controllable pore sizes are obtained via a ligand-assisted self-assembly process and used as high-performance electrode materials for reversible aqueous ZIBs.The coordination degree between Mn2+and citric acid ligand plays a crucial role in the formation of the mesostructure,and the pore sizes can be easily tuned from 3.2 to 7.3 nm.Ascribed to the unique feature of nanoporous architectures,excellent zinc-storage performance can be achieved in ZIBs during charge/discharge processes.The Mn2O3 electrode exhibits high reversible capacity(233 mAh g−1 at 0.3 A g−1),superior rate capability(162 mAh g−1 retains at 3.08 A g−1)and remarkable cycling durability over 3000 cycles at a high current rate of 3.08 A g−1.Moreover,the corresponding electrode reaction mechanism is studied in depth according to a series of analytical methods.These results suggest that rational design of the nanoporous architecture for electrode materials can effectively improve the battery performance. 展开更多
关键词 Porous Mn_(2)O_(3) high-rate capability Zn-ion battery Cathode material Zn-storage mechanism
下载PDF
Designing N-doped graphene/ReSe_(2)/Ti_(3)C_(2) MXene heterostructure frameworks as promising anodes for high-rate potassium-ion batteries 被引量:10
9
作者 Zhou Xia Xiwen Chen +7 位作者 Haina Cia Zhaodi Fan Yuyang Yi Wanjian Yin Nan Wei Jingsheng Cai Yanfeng Zhang Jingyu Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期155-162,I0006,共9页
Developing high-performance anodes for potassium ion batteries(KIBs) is of paramount significance but remains challenging.In the normal sense,electrode materials are prepared by ubiquitous wet chemical routes,which ot... Developing high-performance anodes for potassium ion batteries(KIBs) is of paramount significance but remains challenging.In the normal sense,electrode materials are prepared by ubiquitous wet chemical routes,which otherwise might not be versatile enough to create desired heterostructures and/or form clean interfacial areas for fast transport of K-ions and electrons.Along this line,rate capability/cycling stability of resulting KIBs are greatly handicapped.Herein we present an all-chemical vapor deposition approach to harness the direct synthesis of nitrogen-doped graphene(NG)/rhenium diselenide(ReSe_2)hybrids over three-dimensional MXene supports as superior heterostructure anode material for KIBs.In such an innovative design,1 T'-ReSe2 nanoparticles are sandwiched in between the NG coatings and MXene frameworks via strong interfacial interactions,thereby affording facile K~+ diffusion,enhancing overall conductivity,boosting high-power performance and reinforcing structural stability of electrodes.Thus-constructed anode delivers an excellent rate performance of 138 mAh g^(-1) at 10.0 A g^(-1) and a high reversible capacity of 90 mAh g^(-1) at 5 A g^(-1) after 300 cycles.Furthermore,the potassium storage mechanism has been systematically probed by advanced in situlex situ characterization techniques in combination with first principles computations. 展开更多
关键词 K-ion batteries high-rate ReSe_(2) N-doped graphene HETEROSTRUCTURE
下载PDF
Surface pseudocapacitance of mesoporous Mo_(3)N_(2) nanowire anode toward reversible high-rate sodium-ion storage 被引量:3
10
作者 Yalong Jiang Jun Dong +8 位作者 Shuangshuang Tan Qiulong Wei Fangyu Xiong Wei Yang Yuanhao Shen Qingxun Zhang Zi'ang Liu Qinyou An Liqiang Mai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期295-303,共9页
Sodium-ion storage devices are highly desirable for large-scale energy storage applications owing to the wide availability of sodium resources and low cost.Transition metal nitrides(TMNs)are promising anode materials ... Sodium-ion storage devices are highly desirable for large-scale energy storage applications owing to the wide availability of sodium resources and low cost.Transition metal nitrides(TMNs)are promising anode materials for sodium-ion storage,while their detailed reaction mechanism remains unexplored.Herein,we synthesize the mesoporous Mo3N2 nanowires(Meso-Mo_(3)N_(2)-NWs).The sodium-ion storage mechanism of Mo3N2 is systematically investigated through in-situ XRD,ex-situ experimental characterizations and detailed kinetics analysis.Briefly,the Mo_(3)N_(2) undergoes a surface pseudocapacitive redox charge storage process.Benefiting from the rapid surface redox reaction,the Meso-Mo_(3)N_(2)-NWs anode delivers high specific capacity(282 m Ah g^(-1) at 0.1 A g^(-1)),excellent rate capability(87 m Ah g^(-1) at 16 A g^(-1))and long cycling stability(a capacity retention of 78.6%after 800 cycles at 1 A g^(-1)).The present work highlights that the surface pseudocapacitive sodium-ion storage mechanism enables to overcome the sluggish sodium-ion diffusion process,which opens a new direction to design and synthesize high-rate sodiumion storage materials. 展开更多
关键词 Surface pseudocapacitance Sodium-ion storage Nitrogen vacancy Molybdenum nitride high-rate
下载PDF
Drying-Mediated Self-Assembly of Graphene for Inkjet Printing of High-Rate Micro-supercapacitors 被引量:5
11
作者 Szymon Sollami Delekta Mika‑Matti Laurila +1 位作者 Matti Mantysalo Jiantong Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第3期155-168,共14页
Scalable fabrication of high-rate micro-supercapacitors(MSCs)is highly desired for on-chip integration of energy storage components.By virtue of the special self-assembly behavior of 2D materials during drying thin fi... Scalable fabrication of high-rate micro-supercapacitors(MSCs)is highly desired for on-chip integration of energy storage components.By virtue of the special self-assembly behavior of 2D materials during drying thin films of their liquid dispersion,a new inkjet printing technique of passivated graphene micro-flakes is developed to directly print MSCs with 3D networked porous microstructure.The presence of macroscale through-thickness pores provides fast ion transport pathways and improves the rate capability of the devices even with solid-state electrolytes.During multiple-pass printing,the porous microstructure effectively absorbs the successively printed inks,allowing full printing of 3D structured MSCs comprising multiple vertically stacked cycles of current collectors,electrodes,and sold-state electrolytes.The all-solid-state heterogeneous 3D MSCs exhibit excellent vertical scalability and high areal energy density and power density,evidently outperforming the MSCs fabricated through general printing techniques. 展开更多
关键词 high-rate micro-supercapacitor 3D micro-supercapacitor Drying-mediated self-assembly GRAPHENE Inkjet printing
下载PDF
Architecture engineering of carbonaceous anodes for high-rate potassium-ion batteries 被引量:5
12
作者 Tianlai Wu Weicai Zhang +6 位作者 Jiaying Yang Qiongqiong Lu Jing Peng Mingtao Zheng Fei Xu Yingliang Liu Yeru Liang 《Carbon Energy》 CAS 2021年第4期554-581,共28页
The limited lithium resource in earth's crust has stimulated the pursuit of alternative energy storage technologies to lithium-ion battery.Potassium-ion batteries(KIBs)are regarded as a kind of promising candidate... The limited lithium resource in earth's crust has stimulated the pursuit of alternative energy storage technologies to lithium-ion battery.Potassium-ion batteries(KIBs)are regarded as a kind of promising candidate for large-scale energy storage owing to the high abundance and low cost of potassium resources.Nevertheless,further development and wide application of KIBs are still challenged by several obstacles,one of which is their fast capacity deterioration at high rates.A considerable amount of effort has recently been devoted to address this problem by developing advanced carbonaceous anode materials with diverse structures and morphologies.This review presents and highlights how the architecture engineering of carbonaceous anode materials gives rise to high-rate performances for KIBs,and also the beneficial conceptions are consciously extracted from the recent progress.Particularly,basic insights into the recent engineering strategies,structural innovation,and the related advances of carbonaceous anodes for high-rate KIBs are under specific concerns.Based on the achievements attained so far,a perspective on the foregoing,and proposed possible directions,and avenues for designing high-rate anodes,are presented finally. 展开更多
关键词 carbonaceous anodes electronic conductivity high-rate performance ion diffusivity potassiumion batteries
下载PDF
Effect of surface treatment on the structure and high-rate dischargeability properties of AB_5-type hydrogen storage alloy 被引量:3
13
作者 张沛龙 王秀丽 +1 位作者 涂江平 陈国良 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第3期510-513,共4页
Surface-treated MmNi3.55Co0.75Mn0.4Al0.3 alloy as negative electrode material of nickel-metal hydride battery was employed to improve the high-rate dischargeability. Surface treatment was realized by dipping and stirr... Surface-treated MmNi3.55Co0.75Mn0.4Al0.3 alloy as negative electrode material of nickel-metal hydride battery was employed to improve the high-rate dischargeability. Surface treatment was realized by dipping and stirring the alloy into a HCl aqueous solution with various concentrations at room temperature. The microstructure of the alloy before and after surface treatment was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties before and after surface treatment were compared, and the alloy treated in 0.025 mol/L HCl solution showed the optimal high-rate dischargeability. 展开更多
关键词 hydrogen storage alloys surface treatment electrochemical properties high-rate dischargeability rare earths
下载PDF
Tuning dual-atom mediator toward high-rate bidirectional polysulfide conversion in Li-S batteries 被引量:2
14
作者 Yifan Ding Zhongti Sun +8 位作者 Jianghua Wu Tianran Yan Lin Shen Zixiong Shi Yuhan Wu Xiaoqing Pan Liang Zhang Qiang Zhang Jingyu Sun 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期462-472,I0012,共12页
An emerging practice in the realm of Li-S batteries lies in the employment of single-atom catalysts(SACs)as effective mediators to promote polysulfide conversion,but monometallic SACs affording isolated geometric disp... An emerging practice in the realm of Li-S batteries lies in the employment of single-atom catalysts(SACs)as effective mediators to promote polysulfide conversion,but monometallic SACs affording isolated geometric dispersion and sole electronic configuration limit the catalytic benefits and curtail the cell performance.Here,we propose a class of dual-atom catalytic moieties comprising hetero-or homo-atomic pairs anchored on N-doped graphene(NG)to unlock the liquid–solid redox puzzle of sulfur,readily realizing Li-S full cell under high-rate-charging conditions.As for Fe-Ni-NG,in-depth experimental and theoretical analysis reveal that the hetero-atomic orbital coupling leads to altered energy levels,unique electronic structures,and varied Fe oxidation states in comparison with homo-atomic structures(FeFe-NG or Ni-Ni-NG).This would weaken the bonding energy of polysulfide intermediates and thus enable facile electrochemical kinetics to gain rapid liquid-solid Li_(2)S_(4)?Li_(2)S conversion.Encouragingly,a Li-S battery based on the S@Fe-Ni-NG cathode demonstrates unprecedented fast-charging capability,documenting impressive rate performance(542.7 mA h g^(-1)at 10.0 C)and favorable cyclic stability(a capacity decay of 0.016%per cycle over 3000 cycles at 10.0 C).This finding offers insights to the rational design and application of dual-atom mediators for Li-S batteries. 展开更多
关键词 Li-S batteries Reaction kinetics Dual-atom Rate-determining step high-rate performance
下载PDF
Highly active CoP-CO_(2)N confined in nanocarbon enabling efficient electrocatalytic immobilizing-conversion of polysulfide targeting high-rate lithium-sulfur batteries 被引量:3
15
作者 Xiaojun Zhao Tianqi Gao +3 位作者 Wenhao Ren Chuan Zhao Zhi-Hong Liu Linbo Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期250-259,I0006,共11页
Lithium-sulfur batteries suffer from poor cycling stability because of the intrinsic shuttling effect of intermediate polysulfides and sluggish reaction kinetics,especially at high rates and high sulfur loading.Herein... Lithium-sulfur batteries suffer from poor cycling stability because of the intrinsic shuttling effect of intermediate polysulfides and sluggish reaction kinetics,especially at high rates and high sulfur loading.Herein,we report the construction of a CoP-CO_(2)N@N-doped carbon polyhedron uniformly anchored on three-dimensional carbon nanotubes/graphene(CoP-CO_(2)N@NC/CG)scaffold as a sulfur reservoir to achieve the trapping-diffusion-conversion of polysulfides.Highly active CoP-CO_(2)N shows marvelous catalytic effects by effectively accelerating the reduction of sulfur and the oxidation of Li_(2)S during the discharging and charging process,respectively,while the conductive NC/CG network with massive mesoporous channels ensures fast and continuous long-distance electron/ion transportation.DFT calculations demonstrate that the CoP-CO_(2)N with excellent intrinsic conductivity serves as job-synergistic immobilizing-conversion sites for polysulfides through the formation of P…Li/N…Li and Co…S bonds.As a result,the S@CoP-CO_(2)N@NC/CG cathode(sulfur content 1.7 mg cm^(-2))exhibits a high capacity of988 mAh g^(-1)at 2 C after 500 cycles,which is superior to most of the electrochemical performance reported.Even under high sulfur content(4.3 mg cm^(-2)),it also shows excellent cyclability with high capacity at 1 C. 展开更多
关键词 CoP-CO_(2)N@NC/CG Trapping-diffusion-conversion high-rate DFT calculation Li-S battery
下载PDF
Facile synthesis of sulfurized polyacrylonitrile composite as cathode for high-rate lithium-sulfur batteries 被引量:2
16
作者 Jingwei Xiang Zezhou Guo +5 位作者 Ziqi Yi Yi Zhang Lixia Yuan Zexiao Cheng Yue Shen Yunhui Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期161-165,共5页
Sulfurized polyacrylonitrile(SPAN)as a promising cathode material for lithium sulfur(Li-S)batteries has drawn increasing attention for its improved electrochemical performance in carbonate-based electrolyte.However,th... Sulfurized polyacrylonitrile(SPAN)as a promising cathode material for lithium sulfur(Li-S)batteries has drawn increasing attention for its improved electrochemical performance in carbonate-based electrolyte.However,the relatively poor electronic and ionic conductivities of SPAN limit its high-rate and lowtemperature performances.In this work,a novel one-dimensional nanofiber SPAN(SFPAN)composite is developed as the cathode material for Li-S batteries.Benefitting from its one-dimensional nanostructure,the SFPAN composite cathode provides fast channels for the migration of ions and electronics,thus effectively improving its electrochemical performance at high rates and low temperature.As a result,the SFPAN maintains a high reversible specific capacity^1200 mAh g−1 after 400 cycles at 0.3 A g−1 and can deliver a high capacity of^850 mAh g−1 even at a high current density of 12.5 A g−1.What is more,the SFPAN can achieve a capacity of^800 mAh g−1 at 0℃and^1550 mAh g−1 at 60℃,thus providing a wider temperature range of applications.This work provides new perspectives on the cathode design for high-rate lithium-sulfur batteries. 展开更多
关键词 Sulfurized polyacrylonitrile One-dimensional nanofiber high-rate peformance Lithium sulfur batteries
下载PDF
Lithium manganese spinel materials for high-rate electrochemical applications 被引量:1
17
作者 Anna V.Potapenko Sviatoslav A.Kirillov 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第5期543-543,544-558,共16页
In order to successively compete with supercapacitors, an ability of fast discharge is a must for lithium-ion batteries. From this point of view, stoichiometric and substituted lithium manganese spinels as cathode mat... In order to successively compete with supercapacitors, an ability of fast discharge is a must for lithium-ion batteries. From this point of view, stoichiometric and substituted lithium manganese spinels as cathode materials are one of the most prospective candidates, especially in their nanosized form. In this article, an overview of the most recent data regarding physico-chemical and electrochemical properties of lithium manganese spinels, especially, LiMn2O4 and LiNi0.5Mn1.5O4, synthesized by means of various methods is presented, with special emphasis of their use in high-rate electrochemical applications. In particular, specific capacities and rate capabilities of spinel materials are analyzed. It is suggested that reduced specific capacity is determined primarily by the aggregation of material particles, whereas good high-rate capability is governed not only by the size of crystallites but also by the perfectness of crystals. The most technologically advantageous solutions are described, existing gaps in the knowledge of spinel materials are outlined, and the ways of their filling are suggested, in a hope to be helpful in keeping lithium batteries afloat in the struggle for a worthy place among electrochemical energy systems of the 21st century. 展开更多
关键词 lithium-ion batteries high-rate applications cathode materials SPINELS
下载PDF
Engineered NiCo-LDH nanosheets- and ZnFe_(2)O_(4) nanocubes-decorated carbon nanofiber bonded mats for high-rate asymmetric supercapacitors 被引量:1
18
作者 Jae-Gyoung Seong Tae Hoon Ko +4 位作者 Danyun Lei Woong-Ki Choi Yun-Su Kuk Min-Kang Seo Byoung-Suhk Kim 《Green Energy & Environment》 SCIE EI CSCD 2022年第6期1228-1240,共13页
In this work,we have prepared the hierarchically nanostructured core–shell NiCo layered double hydroxide(NiCo-LDH)nanosheets-and ZnFe_(2)O_(4) nanocubes-decorated polyacrylonitrile(PAN)/pitch-based carbon nanofibers(... In this work,we have prepared the hierarchically nanostructured core–shell NiCo layered double hydroxide(NiCo-LDH)nanosheets-and ZnFe_(2)O_(4) nanocubes-decorated polyacrylonitrile(PAN)/pitch-based carbon nanofibers(PPCNs)webs(NiCo-LDH@PPCNs as cathode and ZnFe_(2)O_(4)@PPCNs as anode materials)with the bonded network structure by a facile and scalable hydrothemal method.Herein,the low-cost pitch with lower softening point(~90℃)as co-precursor was utilized to produce the PAN/pitch-based carbon nanofibers(PPCNs)with enhanced electrical conductivity.The obtained PPCNs with pitch content of 30%(PP30CNs)electrode material delivered higher specific capacitance(~67 F g^(-1))than that(~48 F g^(-1))of the PAN-based carbon nanofibers(PCNs)at 1 A g^(-1),due to the increased electrical conductivity and lower interfacial charge transfer resistance(RCT)of~0.16 U.Further,the NiCo-LDH-decorated PP30CNs(NiCoLDH@PP30CNs)as cathode material showed superior specific capacitance of 1162 F g^(-1) at 1.0 A g^(-1) and ultra-high retention rate of 91.56%at 10 A g^(-1).The ZnFe_(2)O_(4)@PP30CNs as anode material also showed higher specific capacitance of 282 F g^(-1) at 1 A g^(-1) and good rate capability with capacitance retention of 56.73%at 10 A g^(-1).The as-fabricated asymmetric NiCo-LDH@PP30CNs//ZnFe_(2)O_(4)@PP30CNs hybrid supercapacitor device delivered a specific capacitance of~98 F g^(-1) at 1 A g^(-1) and excellent capacitance retention of~88%after 5000 charge–discharge cycles. 展开更多
关键词 Carbon nanofiber Pitch Asymmetric Rate capability SUPERCAPACITOR
下载PDF
Large-scale production of holey graphite as high-rate anode for lithium ion batteries 被引量:1
19
作者 Feng Xiao Xianghong Chen +4 位作者 Jiakui Zhang Chunmao Huang Tong Hu Bo Hong Jiantie Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期122-127,I0004,共7页
Lithium ion batteries(LIBs)have been widely used in portable and smart devices because of their high energy densities,long cycle life and environmental friendliness.In order to meet the evergrowing demand for human-be... Lithium ion batteries(LIBs)have been widely used in portable and smart devices because of their high energy densities,long cycle life and environmental friendliness.In order to meet the evergrowing demand for human-beings utilizing electronic devices,electric vehicles and energy storage grids. 展开更多
关键词 H2O Holey graphite Rate capability ANODE Lithium ion batteries
下载PDF
Measuring ground deformations caused by 2015 Mw7.8 Nepal earthquake using high-rate GPS data 被引量:1
20
作者 Yong Huang Shaomin Yang +3 位作者 Xuejun Qiao Mu Lin Bin Zhao Kai Tan 《Geodesy and Geodynamics》 2017年第4期285-291,共7页
The April 25, 2015 Mw7.8 Nepal earthquake was successfully recorded by Crustal Movement Observation Network of China (CMONOC) and Nepal Geodetic Array (NGA). We processed the high-rate GPS data (1 Hz and 5 Hz) b... The April 25, 2015 Mw7.8 Nepal earthquake was successfully recorded by Crustal Movement Observation Network of China (CMONOC) and Nepal Geodetic Array (NGA). We processed the high-rate GPS data (1 Hz and 5 Hz) by using relative kinematic positioning and derived dynamic ground motions caused by this large earthquake. The dynamic displacements time series clearly indicated the displacement amplitude of each station was related to the rupture directivity. The stations which located in the di- rection of rupture propagation had larger displacement amplitudes than others. Also dynamic ground displacement exceeding 5 cm was detected by the GPS station that was 2000 km away from the epicenter. Permanent coseismic displacements were resolved from the near-field high-rate GPS stations with wavelet decomposition-reconstruction method and P-wave arrivals were also detected with S transform method. The results of this study can be used for earthquake rupture process and Earthquake Early Warning studies. 展开更多
关键词 high-rate GPS Mw7.8 Nepal earthquake Dynamic ground motion Permanent coseismic displacements P-wave arrival detection
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部