End-pumped by a 976 nm diode laser,a high-repetition-rate Er:Yb:YAl3(BO3)4 microchip laser passively Q-switched by a Co2+:MgAl2 O4 crystal is reported.At a quasi-continuous-wave pump power of 20 W,a 1553 nm passively ...End-pumped by a 976 nm diode laser,a high-repetition-rate Er:Yb:YAl3(BO3)4 microchip laser passively Q-switched by a Co2+:MgAl2 O4 crystal is reported.At a quasi-continuous-wave pump power of 20 W,a 1553 nm passively Q-switched laser with the repetition rate of 544 kHz,pulse duration of 8.3 ns,and pulse energy of 3.9 μJ was obtained.To the best of our knowledge,the 544 kHz is the highest reported value for the 1.5 μm passively Q-switched pulse laser.In the continuous-wave pumping experiment,the maximum repetition rate of 144 kHz with the pulse duration of 8.0 ns and pulse energy of 1.7 μJ was obtained at the incident pump power of 6.3 W.展开更多
High-repetition-rate(HRR) pulsed fiber lasers have attracted much attention in various fields. To effectively achieve HRR pulses in fiber lasers, dissipative four-wave-mixing mode-locking is a promising method. In thi...High-repetition-rate(HRR) pulsed fiber lasers have attracted much attention in various fields. To effectively achieve HRR pulses in fiber lasers, dissipative four-wave-mixing mode-locking is a promising method. In this work, we demonstrated an HRR pulsed fiber laser based on a virtually imaged phased array(VIPA), serving as a comb filter. Due to the high spectral resolution and low polarization sensitivity features of VIPA, the 30 GHz pulse with high quality and high stability could be obtained. In the experiments, both the single-waveband and dual-waveband HRR pulses were achieved. Such an HRR pulsed fiber laser could have potential applications in related fields, such as optical communications.展开更多
We experimentally demonstrate the ultra-high range resolution of a photonics-based microwave radar using a high repetition rate actively mode-locked laser(AMLL). The transmitted signal and sampling clock in the rada...We experimentally demonstrate the ultra-high range resolution of a photonics-based microwave radar using a high repetition rate actively mode-locked laser(AMLL). The transmitted signal and sampling clock in the radar originate from the same AMLL to achieve a large instantaneous bandwidth. A Ka band linearly frequency modulated signal with a bandwidth up to 8 GHz is successfully generated and processed with the electro-optical upconversion and direct photonic sampling. The minor lobe suppression(MLS) algorithm is adopted to enhance the dynamic range at a cost of the range resolution. Two-target discrimination with the MLS algorithm proves the range resolution reaches 2.8 cm. The AMLL-based microwave-photonics radar shows promising applications in high-resolution imaging radars having the features of high-frequency band and large bandwidth.展开更多
We present the development and characterization of a high-stability,multi-material,multi-thickness tape-drive target for laser-driven acceleration at repetition rates of up to 100 Hz.The tape surface position was meas...We present the development and characterization of a high-stability,multi-material,multi-thickness tape-drive target for laser-driven acceleration at repetition rates of up to 100 Hz.The tape surface position was measured to be stable on the sub-micrometre scale,compatible with the high-numerical aperture focusing geometries required to achieve relativistic intensity interactions with the pulse energy available in current multi-Hz and near-future higher repetition-rate lasers(>kHz).Long-term drift was characterized at 100 Hz demonstrating suitability for operation over extended periods.The target was continuously operated at up to 5 Hz in a recent experiment for 70,000 shots without intervention by the experimental team,with the exception of tape replacement,producing the largest data-set of relativistically intense laser–solid foil measurements to date.This tape drive provides robust targetry for the generation and study of high-repetitionrate ion beams using next-generation high-power laser systems,also enabling wider applications of laser-driven proton sources.展开更多
A high-gradient radiofrequency(RF)gun operated in continuous-wave(CW)mode is required in various accelerating applications.Due to the high RF power loss,a traditional normal-conducting(NC)RF electron gun has difficult...A high-gradient radiofrequency(RF)gun operated in continuous-wave(CW)mode is required in various accelerating applications.Due to the high RF power loss,a traditional normal-conducting(NC)RF electron gun has difficulty meeting the requirement of generating a high-repetition-rate electron beam.The development of a scheme for a CW NC-RF gun is urgently required.Demonstrated as a photoinjector of a high-repetition-rate free-electron laser(FEL),an electron gun operated in CW mode and the VHF band is designed.An analysis of the reentrant gun cavity is presented in this paper to increase the gradient and decrease the power density and power dissipation.Referring to the analysis results,the design of a162.5 MHz gun cavity is optimized by a multi-objective evolutionary algorithm to achieve better performance in CW mode.Multipacting and thermal analyses are also deliberated in the design to coordinate with RF and mechanical design.The optimized 162.5 MHz gun cavity can be operated in CW mode to generate a high-repetition-rate beam with voltage up to 1 MV and gradient up to 32.75 MV/m at the cathode.展开更多
We present detailed characterization of laser-driven fusion and neutron production(-10^(5)/second) using 8 mJ, 40 fs laser pulses on a thin(<1 μm) D_2O liquid sheet employing a measurement suite. At relativistic i...We present detailed characterization of laser-driven fusion and neutron production(-10^(5)/second) using 8 mJ, 40 fs laser pulses on a thin(<1 μm) D_2O liquid sheet employing a measurement suite. At relativistic intensity(~ 5 × 10^(18)W/cm^(2))and high repetition rate(1 kHz), the system produces deuterium±deuterium(D-D) fusion, allowing for consistent neutron generation. Evidence of D-D fusion neutron production is verified by a measurement suite with three independent detection systems: an EJ-309 organic scintillator with pulse-shape discrimination, a ~3He proportional counter and a set of 36 bubble detectors. Time-of-flight analysis of the scintillator data shows the energy of the produced neutrons to be consistent with 2.45 MeV. Particle-in-cell simulations using the WarpX code support significant neutron production from D-D fusion events in the laser±target interaction region. This high-repetition-rate laser-driven neutron source could provide a low-cost, on-demand test bed for radiation hardening and imaging applications.展开更多
In inertial fusion energy(IFE) research, a considerable attention has recently been focused on the issue of large target fabrication for MJ-class laser facilities. The ignition and high-gain target designs require a c...In inertial fusion energy(IFE) research, a considerable attention has recently been focused on the issue of large target fabrication for MJ-class laser facilities. The ignition and high-gain target designs require a condensed uniform layer of hydrogen fuel on the inside of a spherical shell. In this report, we discuss the current status and further trends in the area of developing the layering techniques intended to produce ignition, and layering techniques proposed to high repetition rate and mass production of IFE targets.展开更多
Thermal effects are typically considered as obstacles to high-repetition-rate stimulated Brillouin scattering(SBS)pulse compression.In this paper,a novel method is proposed for improving the SBS output characteristics...Thermal effects are typically considered as obstacles to high-repetition-rate stimulated Brillouin scattering(SBS)pulse compression.In this paper,a novel method is proposed for improving the SBS output characteristics by exploiting thermal effects on the liquid medium.Using HT270,the SBS output parameters with the medium purification and rotating off-centered lens methods are studied at different repetition rates.The results indicate that these two methods can alleviate thermal effects and improve the energy efficiency,but the rotating method reduces the energy stability because of the aggravated optical breakdown at the kilohertz-level repetition rate.For a 35-mJ pump energy,the energy efficiency at 2 kHz without the rotating method is 30%higher than that at 100 Hz and 70%higher than that at 500 Hz.The enhancement of the SBS output characteristics by thermal effects is demonstrated theoretically and experimentally,and 2-kHz high-power SBS pulsecompression is achieved with HT270.展开更多
基金supported by the National Natural Science Foundation of China (Nos.61875199 and 61975208)Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB20000000)Science and Technology Service Network Initiative of the Chinese Academy of Sciences (No.KFJ-STS-QYZX-069)。
文摘End-pumped by a 976 nm diode laser,a high-repetition-rate Er:Yb:YAl3(BO3)4 microchip laser passively Q-switched by a Co2+:MgAl2 O4 crystal is reported.At a quasi-continuous-wave pump power of 20 W,a 1553 nm passively Q-switched laser with the repetition rate of 544 kHz,pulse duration of 8.3 ns,and pulse energy of 3.9 μJ was obtained.To the best of our knowledge,the 544 kHz is the highest reported value for the 1.5 μm passively Q-switched pulse laser.In the continuous-wave pumping experiment,the maximum repetition rate of 144 kHz with the pulse duration of 8.0 ns and pulse energy of 1.7 μJ was obtained at the incident pump power of 6.3 W.
基金supported in part by the National Natural Science Foundation of China(NSFC)(Nos.61805084,11974006,11874018 and 61875058)Science and Technology Program of Guangzhou(No.2019050001)+4 种基金Guangdong Key R&D Program(No.2018B090904003)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515010879)Foundation for Young Talents in Higher Education of Guangdong(No.2017KQNCX051)Scientific Research Foundation of Young Teacher of South China Normal University(No.17KJ09)Open Fund of the Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques(South China University of Technology,2019-2)
文摘High-repetition-rate(HRR) pulsed fiber lasers have attracted much attention in various fields. To effectively achieve HRR pulses in fiber lasers, dissipative four-wave-mixing mode-locking is a promising method. In this work, we demonstrated an HRR pulsed fiber laser based on a virtually imaged phased array(VIPA), serving as a comb filter. Due to the high spectral resolution and low polarization sensitivity features of VIPA, the 30 GHz pulse with high quality and high stability could be obtained. In the experiments, both the single-waveband and dual-waveband HRR pulses were achieved. Such an HRR pulsed fiber laser could have potential applications in related fields, such as optical communications.
基金partially supported by the National Natural Science Foundation of China(Nos.61571292and 61535006)by the State Key Lab Project of Shanghai Jiao Tong University(No.2014ZZ03016)by STCSM
文摘We experimentally demonstrate the ultra-high range resolution of a photonics-based microwave radar using a high repetition rate actively mode-locked laser(AMLL). The transmitted signal and sampling clock in the radar originate from the same AMLL to achieve a large instantaneous bandwidth. A Ka band linearly frequency modulated signal with a bandwidth up to 8 GHz is successfully generated and processed with the electro-optical upconversion and direct photonic sampling. The minor lobe suppression(MLS) algorithm is adopted to enhance the dynamic range at a cost of the range resolution. Two-target discrimination with the MLS algorithm proves the range resolution reaches 2.8 cm. The AMLL-based microwave-photonics radar shows promising applications in high-resolution imaging radars having the features of high-frequency band and large bandwidth.
基金Special thanks go to the staff at the Central Laser Facility who provided laser operational support,mechanical and electrical support and computational and administrative support throughout the experiment.We acknowledge funding from UK STFC,Grant Nos.ST/P002021/1 and ST/V001639/1U.S.DOE Office of Science,Fusion Energy Sciences under FWP No.100182+2 种基金in part by the National Science Foundation under Grant No.1632708G.D.G.acknowledges support from the DOE NNSA SSGF program under DE-NA0003960This work has been partially supported by the project Advanced Research Using High-intensity Laser-produced Photons and Particles(CZ.02.1.01/0.0/0.0/16_019/0000789)from the European Regional Development Fund(ADONIS).
文摘We present the development and characterization of a high-stability,multi-material,multi-thickness tape-drive target for laser-driven acceleration at repetition rates of up to 100 Hz.The tape surface position was measured to be stable on the sub-micrometre scale,compatible with the high-numerical aperture focusing geometries required to achieve relativistic intensity interactions with the pulse energy available in current multi-Hz and near-future higher repetition-rate lasers(>kHz).Long-term drift was characterized at 100 Hz demonstrating suitability for operation over extended periods.The target was continuously operated at up to 5 Hz in a recent experiment for 70,000 shots without intervention by the experimental team,with the exception of tape replacement,producing the largest data-set of relativistically intense laser–solid foil measurements to date.This tape drive provides robust targetry for the generation and study of high-repetitionrate ion beams using next-generation high-power laser systems,also enabling wider applications of laser-driven proton sources.
文摘A high-gradient radiofrequency(RF)gun operated in continuous-wave(CW)mode is required in various accelerating applications.Due to the high RF power loss,a traditional normal-conducting(NC)RF electron gun has difficulty meeting the requirement of generating a high-repetition-rate electron beam.The development of a scheme for a CW NC-RF gun is urgently required.Demonstrated as a photoinjector of a high-repetition-rate free-electron laser(FEL),an electron gun operated in CW mode and the VHF band is designed.An analysis of the reentrant gun cavity is presented in this paper to increase the gradient and decrease the power density and power dissipation.Referring to the analysis results,the design of a162.5 MHz gun cavity is optimized by a multi-objective evolutionary algorithm to achieve better performance in CW mode.Multipacting and thermal analyses are also deliberated in the design to coordinate with RF and mechanical design.The optimized 162.5 MHz gun cavity can be operated in CW mode to generate a high-repetition-rate beam with voltage up to 1 MV and gradient up to 32.75 MV/m at the cathode.
基金supported by Air Force Office of Scientific Research(AFOSR)Award number 23AFCOR004(PM:Dr.Andrew B.Stickrath)partially supported by DTRANSREC Award number HDTRA-1343332。
文摘We present detailed characterization of laser-driven fusion and neutron production(-10^(5)/second) using 8 mJ, 40 fs laser pulses on a thin(<1 μm) D_2O liquid sheet employing a measurement suite. At relativistic intensity(~ 5 × 10^(18)W/cm^(2))and high repetition rate(1 kHz), the system produces deuterium±deuterium(D-D) fusion, allowing for consistent neutron generation. Evidence of D-D fusion neutron production is verified by a measurement suite with three independent detection systems: an EJ-309 organic scintillator with pulse-shape discrimination, a ~3He proportional counter and a set of 36 bubble detectors. Time-of-flight analysis of the scintillator data shows the energy of the produced neutrons to be consistent with 2.45 MeV. Particle-in-cell simulations using the WarpX code support significant neutron production from D-D fusion events in the laser±target interaction region. This high-repetition-rate laser-driven neutron source could provide a low-cost, on-demand test bed for radiation hardening and imaging applications.
文摘In inertial fusion energy(IFE) research, a considerable attention has recently been focused on the issue of large target fabrication for MJ-class laser facilities. The ignition and high-gain target designs require a condensed uniform layer of hydrogen fuel on the inside of a spherical shell. In this report, we discuss the current status and further trends in the area of developing the layering techniques intended to produce ignition, and layering techniques proposed to high repetition rate and mass production of IFE targets.
基金the National Natural Science Foundation of China(No.62105303)the Shanxi Scholarship Council of China(No.2020-102)+2 种基金the Fundamental Research Program of Shanxi Province(No.20210302124026)the Scientific and Technological Innovation Programs in Shanxi(No.2020L0265)the 2021 China-Korea Young Scientist Exchange Program.
文摘Thermal effects are typically considered as obstacles to high-repetition-rate stimulated Brillouin scattering(SBS)pulse compression.In this paper,a novel method is proposed for improving the SBS output characteristics by exploiting thermal effects on the liquid medium.Using HT270,the SBS output parameters with the medium purification and rotating off-centered lens methods are studied at different repetition rates.The results indicate that these two methods can alleviate thermal effects and improve the energy efficiency,but the rotating method reduces the energy stability because of the aggravated optical breakdown at the kilohertz-level repetition rate.For a 35-mJ pump energy,the energy efficiency at 2 kHz without the rotating method is 30%higher than that at 100 Hz and 70%higher than that at 500 Hz.The enhancement of the SBS output characteristics by thermal effects is demonstrated theoretically and experimentally,and 2-kHz high-power SBS pulsecompression is achieved with HT270.