期刊文献+
共找到237篇文章
< 1 2 12 >
每页显示 20 50 100
DXF File Identification with C# for CNC Engraving Machine System 被引量:1
1
作者 Huibin Yang Juan Yan 《Intelligent Control and Automation》 2015年第1期20-28,共9页
This paper researches the main technology of open CNC engraving machine, the DXF identification technology. Agraphic information extraction method is proposed. By this method, the graphic information in DXF file can b... This paper researches the main technology of open CNC engraving machine, the DXF identification technology. Agraphic information extraction method is proposed. By this method, the graphic information in DXF file can be identified and transformed into bottom motion controller’s code. So the engraving machine can achieve trajectory tracking. Then the open CNC engraving machine system is developed with C#. At last, the method is validated on a three axes motion experiment platform. The result shows that this method can efficiently identify the graphic information including line, circle, arc etc. in DXF file and the CNC engraving machine can be controlled well. 展开更多
关键词 DXF CNC engraving machine GALIL C#
下载PDF
High-Speed Permanent Magnet Electrical Machines - Applications, Key Issues and Challenges 被引量:8
2
作者 Jianxin Shen Xuefei Qin Yunchong Wang 《CES Transactions on Electrical Machines and Systems》 2018年第1期23-33,共11页
In this paper,application examples of high-speed electrical machines are presented,and the machine structures are categorized.Key issues of design and control for the high-speed permanent magnet machines are reviewed,... In this paper,application examples of high-speed electrical machines are presented,and the machine structures are categorized.Key issues of design and control for the high-speed permanent magnet machines are reviewed,including bearings selection,rotor dynamics analysis and design,rotor stress analysis and protection,thermal analysis and design,electromagnetic losses analysis and reduction,sensorless control strategies,as well as comparison and selection of sine-wave and square-wave drive modes.Some challenges are also discussed,so that future studies could be focused. 展开更多
关键词 high-speed machine multi-physics analysis permanent magnet machine power loss sensorless control
下载PDF
Calculation for Stator Loss of High-Speed Permanent Magnet Synchronous Machine in Torque-speed Envelope and Restraint Approach for Circulating Current in Windings 被引量:1
3
作者 Yanan Yu Deliang Liang +2 位作者 Senior Member Zhe Liang Qiji Ze 《CES Transactions on Electrical Machines and Systems》 2018年第2期211-219,共9页
Iron loss and copper loss are the significant parts of electrical loss of machines,which are the major parts particularly under high frequency condition.High-speed permanent magnet synchronous machines(HS-PMSM)have th... Iron loss and copper loss are the significant parts of electrical loss of machines,which are the major parts particularly under high frequency condition.High-speed permanent magnet synchronous machines(HS-PMSM)have the benefits of high power density,high efficiency and wide speed range.Which causes the calculation for iron loss and copper loss in whole operating range complex.By analyzing the components and influencing factors of iron loss and copper loss in stator,we have deduced the calculation formula of iron loss and copper loss in whole operating range based on the analytical solution and finite element approach(EFA)solution.According to the calculation solution,taking the influence of operating temperature on the iron loss and copper loss into account,we propose a temperature correction factor and establish the calculation method for the iron loss and copper loss with temperature influences.Finally,by the conductor transposition,we restrain the circulating current under high-frequency operating condition. 展开更多
关键词 Circulating high-speed permanent magnet machines iron loss torque-speed envelope.
下载PDF
Development and Application of Complete Equipment for High-speed Tunnel Boring and Bolting Machines
4
作者 Jinling Xing 《Frontiers Research of Architecture and Engineering》 2019年第1期15-23,共9页
With the improvement of coal mining speed and mechanization level in China,traditional tunnel boring methods can no longer meet the actual needs.In order to solve the problems of low efficiency,high labor intensity,sl... With the improvement of coal mining speed and mechanization level in China,traditional tunnel boring methods can no longer meet the actual needs.In order to solve the problems of low efficiency,high labor intensity,slow tunnel boring speed,bad working environment and poor safety in traditional tunnel boring,on the basis of analyzing the development and application of coal roadway tunnel boring equipment at home and abroad,complete equipment for high-speed tunnel boring and bolting machines was developed by using the integrated technology of tunnel boring and bolting.The complete equipment for high-speed tunnel boring and bolting machines has the functions of tunnel boring and bolting synchronization,once-tunneling,negative pressure dust removal,digital guidance,independent cutting feed,digital cutting,safety monitoring and data interaction,which has the advantages of safety in use,reliability and efficiency. 展开更多
关键词 TUNNEL BORING and BOLTING synchronization high-speed TUNNEL BORING and BOLTING machineS Application
下载PDF
Continuous prediction method of earthquake early warning magnitude for high-speed railway based on support vector machine
5
作者 Jindong Song Jingbao Zhu Shanyou Li 《Railway Sciences》 2022年第2期307-323,共17页
Purpose–Using the strong motion data ofK-net in Japan,the continuous magnitude prediction method based on support vector machine(SVM)was studied.Design/methodology/approach–In the range of 0.5–10.0 s after the P-wa... Purpose–Using the strong motion data ofK-net in Japan,the continuous magnitude prediction method based on support vector machine(SVM)was studied.Design/methodology/approach–In the range of 0.5–10.0 s after the P-wave arrival,the prediction time window was established at an interval of 0.5 s.12 P-wave characteristic parameters were selected as the model input parameters to construct the earthquake early warning(EEW)magnitude prediction model(SVM-HRM)for high-speed railway based on SVM.Findings–The magnitude prediction results of the SVM-HRM model were compared with the traditional magnitude prediction model and the high-speed railway EEW current norm.Results show that at the 3.0 s time window,themagnitude prediction error of the SVM-HRMmodel is obviously smaller than that of the traditionalτc method and Pd method.The overestimation of small earthquakes is obviously improved,and the construction of the model is not affected by epicenter distance,so it has generalization performance.For earthquake events with themagnitude range of 3–5,the single station realization rate of the SVM-HRMmodel reaches 95%at 0.5 s after the arrival of P-wave,which is better than the first alarm realization rate norm required by“The TestMethod of EEW andMonitoring Systemfor High-Speed Railway.”For earthquake eventswithmagnitudes ranging from3 to 5,5 to 7 and 7 to 8,the single station realization rate of the SVM-HRM model is at 0.5 s,1.5 s and 0.5 s after the P-wave arrival,respectively,which is better than the realization rate norm of multiple stations.Originality/value–At the latest,1.5 s after the P-wave arrival,the SVM-HRM model can issue the first earthquake alarm that meets the norm of magnitude prediction realization rate,which meets the accuracy and continuity requirements of high-speed railway EEW magnitude prediction. 展开更多
关键词 high-speed railway Earthquake early warning Magnitude prediction Support vector machine Characteristic parameters
下载PDF
An Optimal Feed Interpolator Based on G^2 Continuous Bézier Curves for High-Speed Machining of Linear Tool Path 被引量:6
6
作者 Yongqiao Jin Sheng Zhao Yuhan Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第3期109-118,共10页
A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tange... A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tangency and curvature, huge number of line segments, and short lengths of line segments. These disadvantages hinder the development of high speed machining. To smooth the linear tool path and improve machining efficiency of short line segments, this paper presents an optimal feed interpolator based on G^2 continuous Bézier curves for the linear tool path. First, the areas suitable for fitting are screened out based on the geometric characteristics of continuous short segments (CSSs). CSSs in every area are compressed and fitted into a G^2 Continuous Bézier curve by using the least square method. Then a series of cubic Bézier curves are generated. However, the junction between adjacent Bézier curves is only G^0 continuous. By adjusting the control points and inserting Bézier transition curves between adjacent Bézier curves, the G^2 continuous tool path is constructed. The fitting error is estimated by the second-order Taylor formula. Without iteration, the fitting algorithm can be implemented in real-time environment. Second, the optimal feed interpolator considering the comprehensive constraints (such as the chord error constraint, the maximum normal acceleration, servo capacity of each axis, etc.) is proposed. Simulation and experiment are conducted. The results shows that the proposed method can generate smooth path, decrease the amount of segments and reduce machining time for machining of linear tool path. The proposed research provides an effective method for high-speed machining of complex 2-D/3-D profiles described by short line segments. 展开更多
关键词 G^2 CONTINUOUS path Least SQUARE method high-speed machinING CONTINUOUS short SEGMENTS Optimal FEED INTERPOLATOR Data compression
下载PDF
Adaptation of feed rate for 3-axis CNC high-speed machining 被引量:1
7
作者 张得礼 周来水 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第3期391-395,共5页
To improve the efficiency of CNC machining, assumptive transit circular arc is used to contour two adjacent moves together on the comer to make smooth paths. The radios of transit circular arc can be adjusted with con... To improve the efficiency of CNC machining, assumptive transit circular arc is used to contour two adjacent moves together on the comer to make smooth paths. The radios of transit circular arc can be adjusted with contour accuracy, and the feed rate on the corner can be controlled through limiting the maximum feed rate of transit circular arc segment. A look-ahead algorithm for a series of moves is proposed for speed adjustment in advance, which avoids the occurrence of overload of cutting tool on the comer and reduces the servo track error of parts on the corner or of circular arc move. Equivalent trapezoidal velocity profile is used to analyze the speed of S-curve velocity profile and work out its accurate interpolation, which overcomes the disadvantage of looking up table to calculate feed rate approximately, hence high accuracy and fine surface quality can be obtained while the machining speed is high. The proposed methods can meet the requirements of real-time analysis of high-speed machining. The presented algorithm is effective and has been adopted by CNC system of newly developed high-speed milling machine. 展开更多
关键词 CNC feedrate smoothing S-curve velocity profile high-speed machining
下载PDF
Machine learning for fault diagnosis of high-speed train traction systems: A review
8
作者 Huan WANG Yan-Fu LI Jianliang REN 《Frontiers of Engineering Management》 CSCD 2024年第1期62-78,共17页
High-speed trains(HSTs)have the advantages of comfort,efficiency,and convenience and have gradually become the mainstream means of transportation.As the operating scale of HSTs continues to increase,ensuring their saf... High-speed trains(HSTs)have the advantages of comfort,efficiency,and convenience and have gradually become the mainstream means of transportation.As the operating scale of HSTs continues to increase,ensuring their safety and reliability has become more imperative.As the core component of HST,the reliability of the traction system has a substantially influence on the train.During the long-term operation of HSTs,the core components of the traction system will inevitably experience different degrees of performance degradation and cause various failures,thus threatening the running safety of the train.Therefore,performing fault monitoring and diagnosis on the traction system of the HST is necessary.In recent years,machine learning has been widely used in various pattern recognition tasks and has demonstrated an excellent performance in traction system fault diagnosis.Machine learning has made considerably advancements in traction system fault diagnosis;however,a comprehensive systematic review is still lacking in this field.This paper primarily aims to review the research and application of machine learning in the field of traction system fault diagnosis and assumes the future development blueprint.First,the structure and function of the HST traction system are briefly introduced.Then,the research and application of machine learning in traction system fault diagnosis are comprehensively and systematically reviewed.Finally,the challenges for accurate fault diagnosis under actual operating conditions are revealed,and the future research trends of machine learning in traction systems are discussed. 展开更多
关键词 high-speed train traction systems machine learning fault diagnosis
原文传递
Heterogeneity identification method for surrounding rock of large-section rock tunnel faces based on support vector machine
9
作者 Wenhao Yi Mingnian Wang +4 位作者 Jianjun Tong Siguang Zhao Jiawang Li Dengbin Gui Xiao Zhang 《Railway Sciences》 2023年第1期48-67,共20页
Purpose–The purpose of the study is to quickly identify significant heterogeneity of surrounding rock of tunnel face that generally occurs during the construction of large-section rock tunnels of high-speed railways.... Purpose–The purpose of the study is to quickly identify significant heterogeneity of surrounding rock of tunnel face that generally occurs during the construction of large-section rock tunnels of high-speed railways.Design/methodology/approach–Relying on the support vector machine(SVM)-based classification model,the nominal classification of blastholes and nominal zoning and classification terms were used to demonstrate the heterogeneity identification method for the surrounding rock of tunnel face,and the identification calculation was carried out for the five test tunnels.Then,the suggestions for local optimization of the support structures of large-section rock tunnels were put forward.Findings–The results show that compared with the two classification models based on neural networks,the SVM-based classification model has a higher classification accuracy when the sample size is small,and the average accuracy can reach 87.9%.After the samples are replaced,the SVM-based classification model can still reach the same accuracy,whose generalization ability is stronger.Originality/value–By applying the identification method described in this paper,the significant heterogeneity characteristics of the surrounding rock in the process of two times of blasting were identified,and the identification results are basically consistent with the actual situation of the tunnel face at the end of blasting,and can provide a basis for local optimization of support parameters. 展开更多
关键词 Rock tunnel Surrounding rock HETEROGENEITY Support vector machine high-speed railway
下载PDF
Development of High-speed Machining Database with Case-based Reasoning
10
作者 WANG Zun-tong, LIU Zhan-qiang, AI Xing (School of Mechanical Engineering, Shandong University, Jinan 250061, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期48-49,共2页
Applying high-speed machining technology in shop floor has many benefits, such as manufacturing more accurate parts with better surface finishes. The selection of the appropriate machining parameters plays a very impo... Applying high-speed machining technology in shop floor has many benefits, such as manufacturing more accurate parts with better surface finishes. The selection of the appropriate machining parameters plays a very important role in the implementation of high-speed machining technology. The case-based reasoning is used in the developing of high-speed machining database to overcome the shortage of available high-speed cutting parameters in machining data handbooks and shop floors. The high-speed machining database developed in this paper includes two main components: the machining database and the case-base. The machining database stores the cutting parameters, cutting tool data, work pieces and their materials data, and other relative data, while the case-base stores mainly the successfully solved cases that are problems of work pieces and their machining. The case description and case retrieval methods are described to establish the case-based reasoning high-speed machining database. With the case retrieval method, some succeeded cases similar to the new machining problem can be retrieved from the case-base. The solution of the most matched case is evaluated and modified, and then it is regarded as the proposed solution to the new machining problem. After verification, the problem and its solution are packed up into a new case, and are stored in the case-base for future applications. 展开更多
关键词 case-based reasoning high-speed machining DATABASE CASE
下载PDF
Tool-path planning for free-form surface high-speed high-resolution machining using torus cutter
11
作者 王宇晗 李儒琼 +1 位作者 吴祖育 陈兆能 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第3期337-342,共6页
In CNC machining, two essential components decide the accuracy and machining time for a sculptured surface: one is the step-size interval, the other is the tool-path interval. Due to the limitation of the conventional... In CNC machining, two essential components decide the accuracy and machining time for a sculptured surface: one is the step-size interval, the other is the tool-path interval. Due to the limitation of the conventional method for calculating the tool-path interval, it cannot satisfy the machining requirement for high-speed and high-resolution machining. Accordingly, for high-speed and high-resolution machining, the current study proposes a new tool-path interval algorithm, plus a variable step-size algorithm for NURBS. Furthermore, a new type cutter, which can improve the cutting efficiency, is investigated in the paper. The transversal equation of the torus cutter onto the flat plan is given in this paper. The tool-path interval is calculated with the transversal equation and the proposed algorithm. The illustrated example shows that the redundant tool paths can be reduced because an accurate tool-path interval could be calculated. 展开更多
关键词 high-speed machining tool-path planning free-form surface torus cutter
下载PDF
Microstructure and cutting performance of CrTiAlN coating for high-speed dry milling 被引量:9
12
作者 鲁力 王启民 +5 位作者 陈柄洲 敖永翠 余东海 王成勇 伍尚华 Kwang Ho KIM 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1800-1806,共7页
Using a closed field unbalanced magnetron sputtering system,the cemented carbide end mills were coated with a CrTiAlN hard coating,which consisted of a Cr adhesive layer,a CrN interlayer and a CrTiAlN top layer.The mi... Using a closed field unbalanced magnetron sputtering system,the cemented carbide end mills were coated with a CrTiAlN hard coating,which consisted of a Cr adhesive layer,a CrN interlayer and a CrTiAlN top layer.The microstructure and mechanical properties of the coating were investigated by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),micro indentation and scratch test.The cutting performance of the coated end mills were conducted by high-speed dry milling hardened steel(P20,HRC 45).The results indicates that the coating is composed of(Cr,Ti,Al)N columnar grains with nanolayers.The coating exhibits good adhesion to cemented carbide substrate and high microhardness of around 30 GPa.The coated end mills show significant improvement on tool life and much lower cutting force as compared to the uncoated ones.And the related mechanisms were discussed. 展开更多
关键词 CrTiAlN coating high-speed machining hardened steel tool wear
下载PDF
Research Progress of Key Technology of High-Speed and High Precision Motorized Spindles 被引量:3
13
作者 XIONGWan-li MIHai-qing HUANGHong-wu 《International Journal of Plant Engineering and Management》 2005年第2期70-76,共7页
High speed machining and high precision machining are two tendencies of themanufacturing technology worldwide. The motorized spindle is the core component of the machine toolsfor achieving the high speed and high prec... High speed machining and high precision machining are two tendencies of themanufacturing technology worldwide. The motorized spindle is the core component of the machine toolsfor achieving the high speed and high precise machining, which affects the general developmentlevel of the machine tools to a great extent. Progress of the key techniques is reviewed in thispaper, in which the high speed and high precision spindle bearings, the dynamical and thermalcharacteristics of spindles, the design technique of the high frequency motors and the drivers, theanti-electromagnetic damage technique of the motors, and the machining and assembling technique areinvolved. Finally, tha development tendencies of the motorized spindles are presented. 展开更多
关键词 motorized spindles high-speed machining
下载PDF
Failure mode change and material damage with varied machining speeds:a review 被引量:1
14
作者 Jianqiu Zhang Binbin He Bi Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期36-60,共25页
High-speed machining(HSM) has been studied for several decades and has potential application in various industries, including the automobile and aerospace industries. However,the underlying mechanisms of HSM have not ... High-speed machining(HSM) has been studied for several decades and has potential application in various industries, including the automobile and aerospace industries. However,the underlying mechanisms of HSM have not been formally reviewed thus far. This article focuses on the solid mechanics framework of adiabatic shear band(ASB) onset and material metallurgical microstructural evolutions in HSM. The ASB onset is described using partial differential systems. Several factors in HSM were considered in the systems, and the ASB onset conditions were obtained by solving these systems or applying the perturbation method to the systems. With increasing machining speed, an ASB can be depressed and further eliminated by shock pressure. The damage observed in HSM exhibits common features. Equiaxed fine grains produced by dynamic recrystallization widely cause damage to ductile materials, and amorphization is the common microstructural evolution in brittle materials. Based on previous studies, potential mechanisms for the phenomena in HSM are proposed. These include the thickness variation of the white layer of ductile materials. These proposed mechanisms would be beneficial to deeply understanding the various phenomena in HSM. 展开更多
关键词 high-speed machining adiabatic shear band subsurface damage dynamic recrystallization
下载PDF
Energy field-assisted high-speed dry milling green machining technology for difficult-to-machine metal materials 被引量:1
15
作者 Jin ZHANG Xuefeng HUANG +3 位作者 Xinzhen KANG Hao YI Qianyue WANG Huajun CAO 《Frontiers of Mechanical Engineering》 SCIE CSCD 2023年第2期33-97,共65页
Energy field-assisted machining technology has the potential to overcome the limitations of machining difficult-to-machine metal materials,such as poor machinability,low cutting efficiency,and high energy consumption.... Energy field-assisted machining technology has the potential to overcome the limitations of machining difficult-to-machine metal materials,such as poor machinability,low cutting efficiency,and high energy consumption.High-speed dry milling has emerged as a typical green processing technology due to its high processing efficiency and avoidance of cutting fluids.However,the lack of necessary cooling and lubrication in high-speed dry milling makes it difficult to meet the continuous milling requirements for difficult-to-machine metal materials.The introduction of advanced energy-field-assisted green processing technology can improve the machinability of such metallic materials and achieve efficient precision manufacturing,making it a focus of academic and industrial research.In this review,the characteristics and limitations of high-speed dry milling of difficult-to-machine metal materials,including titanium alloys,nickel-based alloys,and high-strength steel,are systematically explored.The laser energy field,ultrasonic energy field,and cryogenic minimum quantity lubrication energy fields are introduced.By analyzing the effects of changing the energy field and cutting parameters on tool wear,chip morphology,cutting force,temperature,and surface quality of the workpiece during milling,the superiority of energy-field-assisted milling of difficult-to-machine metal materials is demonstrated.Finally,the shortcomings and technical challenges of energy-field-assisted milling are summarized in detail,providing feasible ideas for realizing multi-energy field collaborative green machining of difficult-to-machine metal materials in the future. 展开更多
关键词 difficult-to-machine metal material green machining high-speed dry milling laser energy fieldassisted milling ultrasonic energy field-assisted milling cryogenic minimum quantity lubrication energy field-assisted milling
原文传递
基于MCGS组态软件的板材雕刻机控制系统设计
16
作者 邓玉良 《科技创新与应用》 2024年第11期135-138,共4页
板材雕刻机是一种用于在板材上进行雕刻、切割、剪裁的机器。为提高雕刻机的速度和精度,并研究其在控制方面的应用,通常采用PLC控制伺服电机带动刀头进行精确的雕刻操作。板材雕刻机可以根据预先设计好的图案或模型进行雕刻,广泛应用于... 板材雕刻机是一种用于在板材上进行雕刻、切割、剪裁的机器。为提高雕刻机的速度和精度,并研究其在控制方面的应用,通常采用PLC控制伺服电机带动刀头进行精确的雕刻操作。板材雕刻机可以根据预先设计好的图案或模型进行雕刻,广泛应用于家具制造、建筑装饰、艺术品制作等领域。在板材雕刻机的控制系统中,通过MCGS组态软件,可以直观地反映雕刻过程,并精确地控制雕刻机进行预设图案的雕刻。通过优化控制、调整运动路径和采用高精度的传感器和编码器,可以大大提高雕刻机的速度和精度,实现更精细的雕刻效果。控制系统还能实时监测刀头位置和状态,及时调整雕刻参数,保证雕刻结果的准确性。 展开更多
关键词 板材雕刻机 伺服电机 MCGS组态软件 传感器 PLC控制系统
下载PDF
主动消声技术在双头雕刻机噪声抑制中的应用
17
作者 杨晓鹏 张德瑞 王小婷 《电声技术》 2024年第8期24-26,41,共4页
针对双头雕刻机在操作过程中产生的噪声问题,分析主动消声技术在双头雕刻机噪声抑制的应用。首先分析主动消声技术的工作原理,其次分析双头雕刻机的工作原理和噪声的特点,再次分析主动消声技术的设计与实施方案,最后进行实验分析。实验... 针对双头雕刻机在操作过程中产生的噪声问题,分析主动消声技术在双头雕刻机噪声抑制的应用。首先分析主动消声技术的工作原理,其次分析双头雕刻机的工作原理和噪声的特点,再次分析主动消声技术的设计与实施方案,最后进行实验分析。实验结果表明,主动消声技术能够有效减少双头雕刻机的噪声,优于对照组。 展开更多
关键词 主动消声技术 双头雕刻机 噪声抑制
下载PDF
电解放电复合加工技术现状与展望
18
作者 赵永华 刘为东 +2 位作者 刘江文 卢家俊 邹治湘 《电加工与模具》 北大核心 2024年第1期1-18,共18页
电解放电复合加工是实现电加工技术创新和突破的重要途径,可通过耦合放电与电解能场,利用其时/空协同效应实现在可加工性、加工精度及表面质量等方面的提升,故在介绍电解放电复合加工技术概念和原理分类的基础上,着重概述该领域近十年... 电解放电复合加工是实现电加工技术创新和突破的重要途径,可通过耦合放电与电解能场,利用其时/空协同效应实现在可加工性、加工精度及表面质量等方面的提升,故在介绍电解放电复合加工技术概念和原理分类的基础上,着重概述该领域近十年来的关键性研究进展和新技术创新,对除电火花-电解组合加工和电弧复合加工之外的各类电解放电复合加工技术的未来发展方向进行了展望,指出该技术的规模化工程应用仍需在性能突破、精确建模、加工过程智能控制、复合加工装备等方面取得突破性进展。 展开更多
关键词 电解辅助电火花加工 电火花辅助电解加工 等离子体辅助电解加工 火花辅助化学雕刻 射流电化学放电加工 电解等离子体化学刻蚀
下载PDF
B-550E高速精雕机静动态特性分析
19
作者 李洲 周俊荣 赵天义 《机床与液压》 北大核心 2024年第13期195-199,共5页
以B-550E高速精雕机为研究对象,在ANSYS Workbench软件中建立其整机有限元模型,并对其进行静动态特性分析。通过分析机床在仅受重力以及重力与铣削力共同作用下的整机静态特性,找出机床结构系统静刚度的薄弱环节。通过模态分析得到整机... 以B-550E高速精雕机为研究对象,在ANSYS Workbench软件中建立其整机有限元模型,并对其进行静动态特性分析。通过分析机床在仅受重力以及重力与铣削力共同作用下的整机静态特性,找出机床结构系统静刚度的薄弱环节。通过模态分析得到整机的前6阶固有频率及主振型,在此基础上,对整机进行谐响应分析,获得整机在铣削力激励作用下各方向的幅频特性曲线。结果表明:前2阶固有频率对机床的动态性能影响较大;整机的最大变形及应力均发生在主轴箱,且前2阶固有频率的主振型均为主轴箱部件,因此影响机床动态性能的关键部件是主轴箱。 展开更多
关键词 高速精雕机 有限元分析 静动态特性
下载PDF
Serrated chip characteristics and formation mechanism in high-speed machining of selective laser melted Ti6Al4V alloys
20
作者 LIU DeJian WANG YouQiang +2 位作者 NI ChenBing ZHU LiDa ZHENG ZhongPeng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第5期1435-1450,共16页
Serrated chips,consisting of extremely uneven plastic deformation,are a prominent feature of high-speed machining of difficultto-machine materials.This paper focuses on the evolution of chip form,chip morphology featu... Serrated chips,consisting of extremely uneven plastic deformation,are a prominent feature of high-speed machining of difficultto-machine materials.This paper focuses on the evolution of chip form,chip morphology features(chip free surface,tool-chip contact surface,and chip edge),and chip segment parameters in subsequent high-speed(vc=50 and 150 m min-1)machining of selective laser melted(SLMed)Ti6Al4V alloys,which are significantly different from conventional Ti6Al4V alloy in microstructure,mechanical properties and machinability.The effect of laser beam scanning schemes(0°,67.5°,and 90°),machined surfaces(top and front),and cutting speeds on serrated chip characteristics of SLMed Ti6Al4Valloys was investigated.Based on the Johnson-Cook constitutive model of SLMed Ti6Al4Valloys,an orthogonal cutting model was developed to better understand the effect of physical-mechanical properties on the shear localization,which dominates the formation mechanism of serrated chips in post-machining of SLMed Ti6Al4V alloy.The results showed that the critical cutting speed(CCS)for chip serration of SLMed Ti6Al4V alloy is lower than that for serrated chips of conventional Ti6Al4V alloy,and the serrated profile of SLMed Ti6Al4V chips was more regular and pronounced.Besides,due to anisotropic microstructure and mechanical properties of SLMed Ti6Al4Valloys,the serration degree of chips produced on the top surfaces of SLMed Ti6Al4Valloys is more prominent than that of chips generated on the front surfaces.In addition,because of the poor deformation coordination and high plastic flow stresses of needle-like martensiteα′,the plastic flow and grain distortion in the adiabatic shear band(ASB)of SLMed Ti6Al4V chips are significantly smaller than those in the ASB of conventional Ti6Al4V with equiaxed grains. 展开更多
关键词 serrated chips selective laser melted Ti6Al4V alloys high-speed machining chip characteristics anisotropic properties
原文传递
上一页 1 2 12 下一页 到第
使用帮助 返回顶部