期刊文献+
共找到16,748篇文章
< 1 2 250 >
每页显示 20 50 100
Flow and sound fields of scaled high-speed trains with different coach numbers running in long tunnel
1
作者 Qiliang Li Yuqing Sun +1 位作者 Menghan Ouyang Zhigang Yang 《Railway Engineering Science》 EI 2024年第3期401-420,共20页
Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aer... Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aerodynamic results were verified by wind tunnel test with the same scale two-coach train model.Time-averaged drag coefficients of the head coach of three trains are similar,but at the tail coach of the multi-group trains it is much larger than that of the three-coach train.The eight-coach train presents the largest increment from the head coach to the tail coach in the standard deviation(STD)of aerodynamic force coefficients:0.0110 for drag coefficient(Cd),0.0198 for lift coefficient(Cl)and 0.0371 for side coef-ficient(Cs).Total sound pressure level at the bottom of multi-group trains presents a significant streamwise increase,which is different from the three-coach train.Tunnel walls affect the acoustic distribution at the bottom,only after the coach number reaches a certain value,and the streamwise increase in the sound pressure fluctuation of multi-group trains is strengthened by coach number.Fourier transform of the turbulent and sound pressures presents that coach number has little influence on the peak frequencies,but increases the sound pressure level values at the tail bogie cavities.Furthermore,different from the turbulent pressure,the first two sound pressure proper orthogonal decomposition(POD)modes in the bogie cavities contain 90%of the total energy,and the spatial distributions indicate that the acoustic distributions in the head and tail bogies are not related to coach number. 展开更多
关键词 flow and sound fields Scaled high-speed trains Different coach numbers Long tunnel Proper orthogonal decomposition
下载PDF
Field survey and analysis on near-fault severely damaged high-speed railway bridge in 2022 M6.9 Menyuan earthquake
2
作者 Lin Xuchuan Liu Fuxiang Shan Wenchen 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期1043-1055,共13页
The 2022 M6.9 Menyuan earthquake caused severe damage to a high-speed railway bridge,which was designed for high-speed trains running at speeds of above 250 km/h and is located right next to the fault.Bridges of this ... The 2022 M6.9 Menyuan earthquake caused severe damage to a high-speed railway bridge,which was designed for high-speed trains running at speeds of above 250 km/h and is located right next to the fault.Bridges of this type have been widely used for rapidly constructing the high-speed railway network,but few bridges have been tested by near-fault devastating earthquakes.The potential severe impact of the earthquake on the high-speed railway is not only the safety of the infrastructure,trains and passengers,but also economic loss due to interrupted railway use.Therefore,a field survey was carried out immediately after the earthquake to collect time-sensitive data.The damage to the bridge was carefully investigated,and quantitative analyses were conducted to better understand the mechanism of the bridge failure.It was found that seismic action perpendicular to the bridge’s longitudinal direction caused severe damage to the girders and rails,while none of the piers showed obvious deformation or cracking.The maximum values of transverse displacement,out-of-plane rotation and twisting angle of girders reached 212.6 cm,3.1 degrees and 19.9 degrees,respectively,causing severe damage to the bearing supports and anti-seismic retaining blocks.These observations provide a basis for improving the seismic design of high-speed railway bridges located in near-fault areas. 展开更多
关键词 Menyuan earthquake field survey high-speed railway bridge near fault seismic damage
下载PDF
Optimal Design of High-Speed Partial Flow Pumps using Orthogonal Tests and Numerical Simulations
3
作者 Jiaqiong Wang Tao Yang +2 位作者 Chen Hu Yu Zhang Ling Zhou 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1203-1218,共16页
To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second... To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model. 展开更多
关键词 high-speed partial flow pump orthogonal test optimal design numerical calculation
下载PDF
Numerical simulation of melt flow and temperature field during DC casting 2024 aluminium alloy under different casting conditions
4
作者 Jin-chuan Wang Yu-bo Zuo +3 位作者 Qing-feng Zhu Jing Li Rui Wang Xu-dong Liu 《China Foundry》 SCIE EI CAS CSCD 2024年第4期387-396,共10页
Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during ... Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during casting,which are crucial for the quality of the ingot and can determine the success or failure of the casting operation.Numerical simulation,with the advantages of low cost,rapid execution,and visualized results,is an important method to study and optimize the DC casting process.In the present work,a simulation model of DC casting 2024 aluminum alloy was established,and the reliability of the model was verified.Then,the influence of casting parameters on flow field and temperature field was studied in detail by numerical simulation method.Results show that with the increase of casting speed,the melt flow becomes faster,the depths of slurry zone and mushy zone increase,and the variation of slurry zone depth is greater than that of mushy zone.With an increase in casting temperature,the melt flow rate increases,the depth of the slurry zone becomes shallower,and the depth of the mushy zone experiences only minor changes.The simulation results further indicate that the increase of the flow rate of the secondary cooling water slightly reduces the depths of both slurry and mushy zone. 展开更多
关键词 aluminium DC casting flow field temperature field numerical simulation
下载PDF
Numerical simulation of flow field deposition and erosion characteristics around bridge-road transition section
5
作者 ZHANG Kai WANG Zhenghui +3 位作者 WANG Tao TIAN Jianjin ZHANG Hailong LIU Yonghe 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1491-1508,共18页
Wind-sand flow generates erosion and deposition around obstacles such as bridges and roadbeds, resulting in sand damage and endangering railway systems in sandy regions. Previous studies have mainly focused on the flo... Wind-sand flow generates erosion and deposition around obstacles such as bridges and roadbeds, resulting in sand damage and endangering railway systems in sandy regions. Previous studies have mainly focused on the flow field around roadbeds, overlooking detailed examinations of sand particle erosion and deposition patterns near bridges and roadbeds. This study employs numerical simulations to analyze the influence of varying heights and wind speeds on sand deposition and erosion characteristics at different locations: the bridge-road transition section(side piers), middle piers, and roadbeds. The results show that the side piers, experience greater accumulation than the middle piers. Similarly, the leeward side of the roadbed witnesses more deposition compared to the windward side. Another finding reveals a reduced sand deposition length as the vertical profile, in alignment with the wind direction, moves further from the bridge abutments at the same clearance height. As wind speeds rise, there’s a decline in sand deposition and a marked increase in erosion around the side piers, middle piers and roadbeds. In conclusion, a bridge clearance that’s too low can cause intense sand damage near the side piers, while an extremely high roadbed may lead to extensive surface sand deposition. Hence, railway bridges in areas prone to sandy winds should strike a balance in clearance height. This research provides valuable guidelines for determining the most suitable bridge and roadbed heights in regions affected by wind and sand. 展开更多
关键词 SANDSTORM flow field Bridge-road transition section Sedimentation erosion Numerical simulation
下载PDF
Flow Field Characteristics of Multi-Trophic Artificial Reef Based on Computation Fluid Dynamics
6
作者 HUANG Junlin LI Jiao +3 位作者 LI Yan GONG Pihai GUAN Changtao XIA Xu 《Journal of Ocean University of China》 CAS CSCD 2024年第2期317-327,共11页
On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the ef... On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the effect of spacing between reefs on flow scale and the flow state,were analyzed.Results indicate upwelling,slow flow,and eddy around a single reef.Maximum velocity,height,and volume of upwelling in front of a single reef were positively correlated with inflow velocity.The length and volume of slow flow increased with the increase in inflow velocity.Eddies were present both inside and backward,and vorticity was positively correlated with inflow velocity.Space between reefs had a minor influence on the maximum velocity and height of upwelling.With the increase in space from 0.5 L to 1.5 L(L is the reef lehgth),the length of slow flow in the front and back of the combined reefs increased slightly.When the space was 2.0 L,the length of the slow flow decreased.In four different spaces,eddies were present inside and at the back of each reef.The maximum vorticity was negatively correlated with space from 0.5 L to 1.5 L,but under 2.0 L space,the maximum vorticity was close to the vorticity of a single reef under the same inflow velocity. 展开更多
关键词 artificial reef flow field characteristics computation fluid dynamics multi-trophic structure
下载PDF
Research on simulation of gun muzzle flow field empowered by artificial intelligence
7
作者 Mengdi Zhou Linfang Qian +3 位作者 Congyong Cao Guangsong Chen Jin Kong Ming-hao Tong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期196-208,共13页
Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow fie... Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions. 展开更多
关键词 Muzzle flow field Artificial intelligence Deep learning Data-physical fusion driven Shock wave
下载PDF
Flow field, sedimentation, and erosion characteristics around folded linear HDPE sheet sand fence: Numerical simulation study
8
作者 ZHANG Kai ZHANG Hailong +4 位作者 TIAN Jianjin QU Jianjun ZHANG Xingxin WANG Zhenghui XIAO jianhua 《Journal of Mountain Science》 SCIE CSCD 2024年第1期113-130,共18页
Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy ... Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy areas. The wind and sand flow in the region is notably bi-directional. To shield railroads from sand, a unique sand fence made of folded linear high-density polyethylene(HDPE) is used, aligning with the principle that the dominant wind direction is perpendicular to the fence. This study employed field observations and numerical simulations to investigate the effectiveness of these HDPE sand fences in altering flow field distribution and offering protection. It also explored how these fences affect the deposition and erosion of sand particles. Findings revealed a significant reduction in wind speed near the fence corner;the minimum horizontal wind speed on the leeward side of the first sand fence(LSF) decreased dramatically from 3 m/s to 0.64 m/s. The vortex area on the LSF markedly impacted horizontal wind speeds. Within the LSF, sand deposition was a primary occurrence. As wind speeds increased, the deposition zone shrank, whereas the positive erosion zone expanded. Close to the folded corners of the HDPE sand fence, there was a notable shift from the positive erosion zone to a deposition zone. Field tests and numerical simulations confirmed the high windproof efficiency(WE) and sand resistance efficiency(SE) in the HDPE sand fence. Folded linear HDPE sheet sand fence can effectively slow down the incoming flow and reduce the sand content, thus achieving good wind and sand protection. This study provides essential theoretical guidance for the design and improvement of wind and sand protection systems in railroad engineering. 展开更多
关键词 Folded linear HDPE sheet sand fence Numerical simulation flow field characteristics Protection benefits
下载PDF
Analysis of the Flow Field and Impact Force in High-Pressure Water Descaling
9
作者 Yue Cui Liyuan Wang +2 位作者 Jian Wu Haisheng Liu Di Wu 《Fluid Dynamics & Materials Processing》 EI 2024年第1期165-177,共13页
This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by... This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by means of a fluid–structure interaction(FSI)method by which the descaling effect produced by rolling coils with different section sizes is examined.Assuming a flat fan-shaped nozzle at the entrance of the R1R2 roughing mill,the outflow field characteristics and the velocity distribution curve on the strike line(at a target distance of 30–120 mm)are determined.It is found that the velocity in the center region of the water jet with different target distances is higher than that in the boundary region.As the target distance increases,the velocity of the water jet in the central region decreases.Through comparison with experimental results,it is shown that the simulation model can accurately predict the impact position of the high-pressure water on the impact plate,thereby providing a computational scheme that can be used to optimize the nozzle space layout and improve the slabs’descent effect for different rolling specifications. 展开更多
关键词 High pressure water descaling flow field analysis FSI target distance strike range
下载PDF
Investigation on influencing factors of wheel polygonization of a plateau high-speed EMU train
10
作者 Wei Li Xiaoxuan Yang +2 位作者 Peng Wang Zefeng Wen Jian Han 《Railway Sciences》 2024年第5期593-608,共16页
Purpose–This study aims to investigate the cause of high-order wheel polygonization in a plateau high-speed electric multiple unit(EMU)train.Design/methodology/approach–A series of field tests were conducted to meas... Purpose–This study aims to investigate the cause of high-order wheel polygonization in a plateau high-speed electric multiple unit(EMU)train.Design/methodology/approach–A series of field tests were conducted to measure the vibration accelerations of the axle box and bogie when the wheels of the EMU train passed through tracks with normal rail roughness after re-profiling.Additionally,the dynamic characteristics of the track,wheelset and bogie were also measured.These measurements provided insights into the mechanisms that lead to wheel polygonization.Findings–The results of the field tests indicate that wheel polygonal wear in theEMUtrain primarily exhibits 14–16 and 25–27 harmonic orders.The passing frequencies of wheel polygonization were approximately 283–323 Hz and 505–545 Hz,which closely match the dominated frequencies of axle box and bogie vibrations.These findings suggest that the fixed-frequency vibrations originate from the natural modes of the wheelset and bogie,which can be excited by wheel/rail irregularities.Originality/value–The study provides novel insights into the mechanisms of high-order wheel polygonization in plateau high-speed EMU trains.Futher,the results indicate that operating the EMU train on mixed lines at variable speeds could potentially mitigate high-order polygonal wear,providing practical value for improving the safety,performance and maintenance efficiency of high-speed EMU trains. 展开更多
关键词 Wheel polygonization high-speed EMU train Modal analysis field tests
下载PDF
Mechanism of Thermally Radiative Prandtl Nanofluids and Double-Diffusive Convection in Tapered Channel on Peristaltic Flow with Viscous Dissipation and Induced Magnetic Field
11
作者 Yasir Khan Safia Akram +3 位作者 Maria Athar Khalid Saeed Alia Razia A.Alameer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1501-1520,共20页
The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo... The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification. 展开更多
关键词 Double diffusion convection thermal radiation induced magnetic field peristaltic flow tapered asymmetric channel viscous dissipation Prandtl nanofluid
下载PDF
Impact of well placement and flow rate on production efficiency and stress field in the fractured geothermal reservoirs
12
作者 Xinghui Wu Meifeng Cai +3 位作者 Xu Wu Ketong Zhang Ziqing Yin Yu Zhu 《Deep Underground Science and Engineering》 2024年第3期358-368,共11页
Geothermal energy has gained wide attention as a renewable alternative for mitigating greenhouse gas emissions.The advancements in enhanced geothermal system technology have enabled the exploitation of previously inac... Geothermal energy has gained wide attention as a renewable alternative for mitigating greenhouse gas emissions.The advancements in enhanced geothermal system technology have enabled the exploitation of previously inaccessible geothermal resources.However,the extraction of geothermal energy from deep reservoirs poses many challenges due to high‐temperature and high‐geostress conditions.These factors can significantly impact the surrounding rock and its fracture formation.A comprehensive understanding of the thermal–hydraulic–mechanical(THM)coupling effect is crucial to the safe and efficient exploitation of geothermal resources.This study presented a THM coupling numerical model for the geothermal reservoir of the Yangbajing geothermal system.This proposed model investigated the geothermal exploitation performance and the stress distribution within the reservoir under various combinations of geothermal wells and mass flow rates.The geothermal system performance was evaluated by the criteria of outlet temperature and geothermal productivity.The results indicate that the longer distance between wells can increase the outlet temperature of production wells and improve extraction efficiency in the short term.In contrast,the shorter distance between wells can reduce the heat exchange area and thus mitigate the impact on the reservoir stress.A larger mass flow rate is conducive to the production capacity enhancement of the geothermal system and,in turn causes a wider range of stress disturbance.These findings provide valuable insights into the optimization of geothermal energy extraction while considering reservoir safety and long‐term sustainability.This study deepens the understanding of the THM coupling effects in geothermal systems and provides an efficient and environmentally friendly strategy for a geothermal energy system. 展开更多
关键词 geothermal exploitation performance geothermal reservoir mass flow rate stress field well placementa
下载PDF
PIV analysis and high-speed photographic observation of cavitating flow field behind circular multi-orifice plates 被引量:2
13
作者 Zhi-ping Guo Xi-huan Sun Zhi-yong Dong 《Water Science and Engineering》 EI CAS CSCD 2020年第2期145-153,共9页
Based on a self-developed hydrodynamic cavitation device with different geometric parameters for circular multi-orifice plates,turbulence characteristics of cavitating flow behind multi-orifice plates,including the ef... Based on a self-developed hydrodynamic cavitation device with different geometric parameters for circular multi-orifice plates,turbulence characteristics of cavitating flow behind multi-orifice plates,including the effects of orifice number and orifice layout on longitudinal velocity,turbulence intensity,and Reynolds stress,were measured with the particle image velocimetry(PIV)technique.Flow regimes of the cavitating flow were also observed with high-speed photography.The experimental results showed the following:(1)high-velocity multiple cavitating jets occurred behind the multi-orifice plates,and the cavitating flow fields were characterized by topological structures;(2)the longitudinal velocity at each cross-section exhibited a sawtooth-like distribution close to the multi-orifice plate,and each sawtooth indicated one jet issuing from one orifice;(3)there were similar magnitudes and forms for the longitudinal and vertical turbulence intensities at the same cross-section;(4)the variation in amplitude of Reynolds stress increased with an increase in orifice number;and(5)the cavitation clouds in the flow fields became denser with the increase in orifice number,and the clouds generated by the staggered layout of orifices were greater in number than those generated by the checkerboard-type one for the same orifice number.The experimental results can be used to analyze the mechanism of killing pathogenic microorganisms through hydrodynamic cavitation. 展开更多
关键词 Cavitating flow Circular multi-orifice plate PIV technique high-speed photography Turbulence characteristics
下载PDF
Pressure Distribution Characters of Flow Field around High-Speed Train
14
作者 李人宪 刘应清 《Journal of Modern Transportation》 2000年第2期114-122,共9页
Based on incompressible viscous fluid Navier-stokes equation and k-ε 2-equations turbulent model, an investigation on 3D turbulent flow field around four kinds of train models has been made by finite element method. ... Based on incompressible viscous fluid Navier-stokes equation and k-ε 2-equations turbulent model, an investigation on 3D turbulent flow field around four kinds of train models has been made by finite element method. From the calculation, the pressure distribution characters of now field around high-speed trains have been obtained. It is significant for strength design of the high-speed train body, for resisting wind design of the facilities beside the high-speed railways and for determining the aerodynamic force of induced air to the human body near the railways. 展开更多
关键词 high-speed train flow field pressure distribut|
下载PDF
FLOW STRESS MODELING FOR AERONAUTICAL ALUMINUM ALLOY 7050-T7451 IN HIGH-SPEED CUTTING 被引量:15
15
作者 付秀丽 艾兴 +1 位作者 万熠 张松 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第2期139-144,共6页
The high temperature split Hopkinson pressure bar (SHPB) compression experiment is conducted to obtain the data relationship among strain, strain rate and flow stress from room temperature to 550 C for aeronautical ... The high temperature split Hopkinson pressure bar (SHPB) compression experiment is conducted to obtain the data relationship among strain, strain rate and flow stress from room temperature to 550 C for aeronautical aluminum alloy 7050-T7451. Combined high-speed orthogonal cutting experiments with the cutting process simulations, the data relationship of high temperature, high strain rate and large strain in high-speed cutting is modified. The Johnson-Cook empirical model considering the effects of strain hardening, strain rate hardening and thermal softening is selected to describe the data relationship in high-speed cutting, and the material constants of flow stress constitutive model for aluminum alloy 7050-T7451 are determined. Finally, the constitutive model of aluminum alloy 7050-T7451 is established through experiment and simulation verification in high-speed cutting. The model is proved to be reasonable by matching the measured values of the cutting force with the estimated results from FEM simulations. 展开更多
关键词 high-speed cutting flow stress models SHPB compression experiment FEM simulation
下载PDF
基于Flow Simulation的某发动机涡轮压气机流场与效率分析
16
作者 邹春龙 饶纪元 +1 位作者 邓小雯 孙海明 《内燃机与配件》 2024年第11期13-15,共3页
涡轮机内部流场对涡轮增压器的性能和效率有着重要影响,采用SolidWorks Flow Simulation模块对某发动机涡轮压气机侧流场和压气效率分析。在六种不同空气体积流量工况下,体积流量为0.29时,压气机效率最高,达到80%左右。模型的建模和流... 涡轮机内部流场对涡轮增压器的性能和效率有着重要影响,采用SolidWorks Flow Simulation模块对某发动机涡轮压气机侧流场和压气效率分析。在六种不同空气体积流量工况下,体积流量为0.29时,压气机效率最高,达到80%左右。模型的建模和流体分析均在SolidWorks环境下,分析效率高,为涡轮增压器设计和优化提供了支撑。 展开更多
关键词 涡轮压气机 流场 效率
下载PDF
Influence of underground space development mode on the groundwater flow field in Xiong’an new area 被引量:3
17
作者 Yi-hang Gao Jun-hui Shen +4 位作者 Lin Chen Xiao Li Shuang Jin Zhen Ma Qing-hua Meng 《Journal of Groundwater Science and Engineering》 2023年第1期68-80,共13页
The degree and scale of underground space development are growing with the continuous advancement of urbanization in China.The lack of research on the change of the groundwater flow field before and after the developm... The degree and scale of underground space development are growing with the continuous advancement of urbanization in China.The lack of research on the change of the groundwater flow field before and after the development of underground space has led to various problems in the process of underground space development and operation.This paper took the key development zone of the Xiong’an New Area as the study area,and used the Groundwater modeling system software(GMS)to analyse the influence on the groundwater flow field under the point,line,and surface development modes.The main results showed that the underground space development would lead to the expansion and deepening of the cone of depression in the aquifer.The groundwater level on the upstream face of the underground structure would rise,while the water level on the downstream face would drop.The“line”concurrent development has the least impact on the groundwater flow field,and the maximum rise of water level on the upstream side of the underground structure is expected to be approximately 3.05 m.The“surface”development has the greatest impact on the groundwater flow field,and the maximum rise of water level is expected to be 7.17 m. 展开更多
关键词 Xiong’an new area Groundwater flow field Underground space GMS
下载PDF
Analysis of periodic pulsating nanofluid flow and heat transfer through a parallel-plate channel in the presence of magnetic field 被引量:1
18
作者 Qingkai ZHAO Longbin TAO Hang XU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第11期1957-1972,共16页
In this paper,we focus on the two-dimensional pulsating nanofluid flow through a parallel-plate channel in the presence of a magnetic field.The pulsating flow is produced by an applied pressure gradient that fluctuate... In this paper,we focus on the two-dimensional pulsating nanofluid flow through a parallel-plate channel in the presence of a magnetic field.The pulsating flow is produced by an applied pressure gradient that fluctuates with a small amplitude.A kind of proper transformation is used so that the governing equations describing the momentum and thermal energy are reduced to a set of non-dimensional equations.The analytical expressions of the pulsating velocity,temperature,and Nusselt number of nanofluids are obtained by the perturbation technique.In the present study,the effects of the Cu-H2O and Al_(2)O_(3)-H2O nanofluids on the flow and heat transfer in pulsating flow are compared and analyzed.The results show that the convective heat transfer effect of Cu-H2O nanofluids is better than that of Al_(2)O_(3)-H2O nanofluids.Also,the effects of the Hartmann number and pulsation amplitude on the velocity,temperature,and Nusselt number are examined and discussed in detail.The present work indicates that increasing the Hartmann number and pulsation amplitude can enhance the heat transfer of the pulsating flow.In addition,selecting an optimal pulsation frequency can maximize the convective heat transfer of the pulsating flow.Therefore,improved understanding of these fundamental mechanisms is conducive to the optimal design of thermal systems. 展开更多
关键词 NANOFLUID pulsating flow heat transfer applied magnetic field
下载PDF
Flow structure around high-speed train in open air 被引量:8
19
作者 田红旗 黄莎 杨明智 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期747-752,共6页
According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was ... According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was studied and eight types of flow regions were proposed. They are high pressure with air stagnant region, pressure decreasing with air accelerating region, low pressure with high air flow velocity region I, turbulent region, steady flow region, low pressure with high air flow velocity region II,pressure increasing with air decelerating region and wake region. The analysis of the vortex structure around the train shows that the vortex is mainly induced by structures with complex mutation and large curvature change. The head and rear of train, the underbody structure, the carriage connection section and the wake region are the main vortex generating sources while the train body with even cross-section has rare vortexes. The wake structure development law studied lays foundation for the train drag reduction. 展开更多
关键词 flow around high-speed train turbulence intensity flow region vortex structure wake region
下载PDF
Numerical calculation on solar temperature field of a cable-stayed bridge with U-shaped section on high-speed railway 被引量:3
20
作者 刘文硕 戴公连 饶少臣 《Journal of Central South University》 SCIE EI CAS 2014年第8期3345-3352,共8页
Based on transient temperature field theory of heat conduction, the solar temperature field calculation model of U-shape sectioned high-speed railway cable-stayed bridge under actions of concrete beams and ballast was... Based on transient temperature field theory of heat conduction, the solar temperature field calculation model of U-shape sectioned high-speed railway cable-stayed bridge under actions of concrete beams and ballast was established. Using parametric programming language, finite element calculation modules considering climate conditions, bridge site, structure dimension and material thermophysical properties were compiled. Six standard day cycles with the strongest yearly radiation among the bridge sites were selected for sectional solar temperature field calculation and temperature distributions under different temperature-sensitive parameters were compared. The results show that under the influence of sunshine, U-shape section of the beam shows obvious nonlinear distribution characteristics and the maximum cross-section temperature difference is more than 21℃; the ballast significantly reduces sunshine temperature difference of the beam and temperature peak of the bottom margin lags with the increase of ballast thickness; the maximum cross-section vertical temperature gradient appears in summer while large transverse temperature difference appears in winter. 展开更多
关键词 high-speed railway cable-stayed bridge U-shaped section solar temperature field thermal analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部