In this work,the flow surrounding the train was obtained using a detached eddy simulation(DES)for slipstream analysis.Two different streamlined nose lengths were investigated:a short nose(4 m)and a long nose(9 m).The ...In this work,the flow surrounding the train was obtained using a detached eddy simulation(DES)for slipstream analysis.Two different streamlined nose lengths were investigated:a short nose(4 m)and a long nose(9 m).The time-average slipstream velocity and the time-average slipstream pressure along the car bodies were compared and explained in detail.In addition to the time-averaged values,the _(max)imum velocities and the pressure peak-to-peak values around the two trains were analyzed.The result showed that the nose length affected the slipstream velocity along the entire train length at the lower and upper regions of the side of the train.However,no significant effect was recognized at the middle height of the train along its length,except in the nose region.Moreover,within the train’s side regions(y=2.0-2.5 m and z=2-4 m)and(y=2.5-3.5 m and z=0.2-0.7 m),the ratio of slipstream velocity U_(max) between the short and long nose trains was notably higher.This occurrence also manifested at the train’s upper section,specifically where y=0-2.5 m and z=4.2-5.0 m.Similarly,regarding the ratio of _(max)imum pressure peak-to-peak values Cp-p_(max),significant regions were observed at the train’s side(y=1.8-2.6 m and z=1-4 m)and above the train(y=0-2 m and z=3.9-4.8 m).展开更多
The transient pressures induced by trains passing through a tunnel and their impact on the structural safety of the tunnel lining were numerically analyzed.The results show that the pressure change increases rapidly a...The transient pressures induced by trains passing through a tunnel and their impact on the structural safety of the tunnel lining were numerically analyzed.The results show that the pressure change increases rapidly along the tunnel length,and the maximum value is observed at around 200 m from the entrance,while the maximum pressure amplitude is detected at 250 m from the entrance when two trains meeting in a double-track tunnel.The maximum peak pressure on the tunnel induced by a train passing through a 70 m^(2) single-track tunnel,100 m^(2) double-track tunnel and two trains meeting in the 100 m^(2) double-track tunnel at 350 km/h,are−4544 Pa,−3137 Pa and−5909 Pa,respectively.The aerodynamic pressure induced axial forces acting on the tunnel lining are only 8%,5%and 9%,respectively,of those generated by the earth pressure.It seems that the aerodynamic loads exert little underlying influence on the static strength safety of the tunnel lining providing that the existing cracks and defects are not considered.展开更多
Prediction on the coupled thermal-hydraulic fields of embankment and cutting slopes is essential to the assessment on evolution of melting zone and natural permafrost table, which is usually a key factor for permafros...Prediction on the coupled thermal-hydraulic fields of embankment and cutting slopes is essential to the assessment on evolution of melting zone and natural permafrost table, which is usually a key factor for permafrost embankment design in frozen ground regions. The prediction may be further complicated due to the inherent uncertainties of material properties. Hence, stochastic analyses should be conducted. Firstly, Karhunen-Loeve expansion is applied to attain the random fields for hydraulic and thermal conductions. Next, the mixed-form modified Richards equation for mass transfer (i.e., mass equation) and the heat transport equation for heat transient flow in a variably saturated frozen soil are combined into one equation with temperature unknown. Furthermore, the finite element formulation for the coupled thermal-hydraulic fields is derived. Based on the random fields, the stochastic finite element analyses on stability of embankment are carried out. Numerical results show that stochastic analyses of embankment stability may provide a more rational picture for the distribution of factors of safety (FOS), which is definitely useful for embankment design in frozen ground regions.展开更多
The aim of this study is to investigate CO2 two-phase nozzle flow in terms of both experimental and analytical aspects for the optimum design of two-phase flow nozzle of CO2 two-phase flow ejector. In the experiment, ...The aim of this study is to investigate CO2 two-phase nozzle flow in terms of both experimental and analytical aspects for the optimum design of two-phase flow nozzle of CO2 two-phase flow ejector. In the experiment, it is measured that the temperature profile in the stream-wise direction of a divergent-convergent nozzle through which CO2 in the supercritical pressure condition is blown down into the atmosphere. In the analysis, a one-dimensional model which assumes steady, adiabatic, frictionless, and equilibrium is proposed. In the convergent part of the nozzle the flow is treated as single-phase flow of liquid, whereas in the divergent part the flow is treated as separated two-phase flow with saturated condition. The analytical results indicate that the temperature and the pressure decrease rapidly in the divergent part, and the void fraction increases immediately near the throat. Although this analysis is quite simple, the analytical results can follow the experimental results well within this study.展开更多
As China celebrates 40 years of reform and opening up,it shares mutual development with Africa The default impression of China for many foreigners three or four decades ago was kungfu movies.However,things have change...As China celebrates 40 years of reform and opening up,it shares mutual development with Africa The default impression of China for many foreigners three or four decades ago was kungfu movies.However,things have changed and the country has transformed into a land of highspeed展开更多
基金Project(52202426)supported by the National Natural Science Foundation of ChinaProjects(15205723,15226424)supported by the Research Grants Council of the Hong Kong Special Administrative Region(SAR),China+1 种基金Project(K2021J041)supported by the Technology Research and Development Program of China RailwayProject(1-BD23)supported by The Hong Kong Polytechnic University,China。
文摘In this work,the flow surrounding the train was obtained using a detached eddy simulation(DES)for slipstream analysis.Two different streamlined nose lengths were investigated:a short nose(4 m)and a long nose(9 m).The time-average slipstream velocity and the time-average slipstream pressure along the car bodies were compared and explained in detail.In addition to the time-averaged values,the _(max)imum velocities and the pressure peak-to-peak values around the two trains were analyzed.The result showed that the nose length affected the slipstream velocity along the entire train length at the lower and upper regions of the side of the train.However,no significant effect was recognized at the middle height of the train along its length,except in the nose region.Moreover,within the train’s side regions(y=2.0-2.5 m and z=2-4 m)and(y=2.5-3.5 m and z=0.2-0.7 m),the ratio of slipstream velocity U_(max) between the short and long nose trains was notably higher.This occurrence also manifested at the train’s upper section,specifically where y=0-2.5 m and z=4.2-5.0 m.Similarly,regarding the ratio of _(max)imum pressure peak-to-peak values Cp-p_(max),significant regions were observed at the train’s side(y=1.8-2.6 m and z=1-4 m)and above the train(y=0-2 m and z=3.9-4.8 m).
基金Project(51975591)supported by the National Natural Science Foundation of ChinaProject(P2018J003)supported by the Technology Research and Development Program of China Railway。
文摘The transient pressures induced by trains passing through a tunnel and their impact on the structural safety of the tunnel lining were numerically analyzed.The results show that the pressure change increases rapidly along the tunnel length,and the maximum value is observed at around 200 m from the entrance,while the maximum pressure amplitude is detected at 250 m from the entrance when two trains meeting in a double-track tunnel.The maximum peak pressure on the tunnel induced by a train passing through a 70 m^(2) single-track tunnel,100 m^(2) double-track tunnel and two trains meeting in the 100 m^(2) double-track tunnel at 350 km/h,are−4544 Pa,−3137 Pa and−5909 Pa,respectively.The aerodynamic pressure induced axial forces acting on the tunnel lining are only 8%,5%and 9%,respectively,of those generated by the earth pressure.It seems that the aerodynamic loads exert little underlying influence on the static strength safety of the tunnel lining providing that the existing cracks and defects are not considered.
基金supported by the National 973 Project of China (No. 2012CB026104)the National Natural Science Foundation of China (No. 51378057)
文摘Prediction on the coupled thermal-hydraulic fields of embankment and cutting slopes is essential to the assessment on evolution of melting zone and natural permafrost table, which is usually a key factor for permafrost embankment design in frozen ground regions. The prediction may be further complicated due to the inherent uncertainties of material properties. Hence, stochastic analyses should be conducted. Firstly, Karhunen-Loeve expansion is applied to attain the random fields for hydraulic and thermal conductions. Next, the mixed-form modified Richards equation for mass transfer (i.e., mass equation) and the heat transport equation for heat transient flow in a variably saturated frozen soil are combined into one equation with temperature unknown. Furthermore, the finite element formulation for the coupled thermal-hydraulic fields is derived. Based on the random fields, the stochastic finite element analyses on stability of embankment are carried out. Numerical results show that stochastic analyses of embankment stability may provide a more rational picture for the distribution of factors of safety (FOS), which is definitely useful for embankment design in frozen ground regions.
文摘The aim of this study is to investigate CO2 two-phase nozzle flow in terms of both experimental and analytical aspects for the optimum design of two-phase flow nozzle of CO2 two-phase flow ejector. In the experiment, it is measured that the temperature profile in the stream-wise direction of a divergent-convergent nozzle through which CO2 in the supercritical pressure condition is blown down into the atmosphere. In the analysis, a one-dimensional model which assumes steady, adiabatic, frictionless, and equilibrium is proposed. In the convergent part of the nozzle the flow is treated as single-phase flow of liquid, whereas in the divergent part the flow is treated as separated two-phase flow with saturated condition. The analytical results indicate that the temperature and the pressure decrease rapidly in the divergent part, and the void fraction increases immediately near the throat. Although this analysis is quite simple, the analytical results can follow the experimental results well within this study.
文摘As China celebrates 40 years of reform and opening up,it shares mutual development with Africa The default impression of China for many foreigners three or four decades ago was kungfu movies.However,things have changed and the country has transformed into a land of highspeed