Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experi...Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experiment trial,a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics,from both the thermodynamic and kinetic perspectives.The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified.Then,the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated,and the corrosion exchange current density is further calculated by a hydrogen evolution reaction(HER)kinetic model.Several intermetallics,e.g.Y_(3)Mg,Y_(2)Mg and La_(5)Mg,are identified to be promising intermetallics which might effectively hinder the cathodic HER.Furthermore,machine learning(ML)models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function(W_(f))and weighted first ionization energy(WFIE).The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error(RMSE)of 0.11 eV.This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion,but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy,which can be extended to ternary Mg alloys or other alloy systems.展开更多
Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have rev...Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI.展开更多
Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicato...Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicators of natural disaster risk monitoring are complex.How to achieve intelligent perception and monitoring of natural disaster risk for immovable cultural relics has always been a focus and a challenge for researchers.Based on the analysis of the concepts and issues related to the natural disaster risk of immovable cultural relics,this paper proposes a framework for natural disaster risk monitoring for immovable cultural relics based on the digital twin.This framework focuses on risk monitoring,including the physical entities of natural disaster risk for immovable cultural relics,monitoring indicators,and virtual entity construction.A platform for monitoring the natural disaster risk of immovable cultural relics is proposed.Using the Puzhou Ancient City Site as a test bed,the proposed concept can be used for monitoring the natural disaster risk of immovable cultural relics at different scales.展开更多
Cultural relics line graphic serves as a crucial form of traditional artifact information documentation,which is a simple and intuitive product with low cost of displaying compared with 3D models.Dimensionality reduct...Cultural relics line graphic serves as a crucial form of traditional artifact information documentation,which is a simple and intuitive product with low cost of displaying compared with 3D models.Dimensionality reduction is undoubtedly necessary for line drawings.However,most existing methods for artifact drawing rely on the principles of orthographic projection that always cannot avoid angle occlusion and data overlapping while the surface of cultural relics is complex.Therefore,conformal mapping was introduced as a dimensionality reduction way to compensate for the limitation of orthographic projection.Based on the given criteria for assessing surface complexity,this paper proposed a three-dimensional feature guideline extraction method for complex cultural relic surfaces.A 2D and 3D combined factor that measured the importance of points on describing surface features,vertex weight,was designed.Then the selection threshold for feature guideline extraction was determined based on the differences between vertex weight and shape index distributions.The feasibility and stability were verified through experiments conducted on real cultural relic surface data.Results demonstrated the ability of the method to address the challenges associated with the automatic generation of line drawings for complex surfaces.The extraction method and the obtained results will be useful for line graphic drawing,displaying and propaganda of cultural relics.展开更多
The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,an...The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.展开更多
Photocatalysis,a critical strategy for harvesting sunlight to address energy demand and environmental concerns,is underpinned by the discovery of high-performance photocatalysts,thereby how to design photocatalysts is...Photocatalysis,a critical strategy for harvesting sunlight to address energy demand and environmental concerns,is underpinned by the discovery of high-performance photocatalysts,thereby how to design photocatalysts is now generating widespread interest in boosting the conversion effi-ciency of solar energy.In the past decade,computational technologies and theoretical simulations have led to a major leap in the development of high-throughput computational screening strategies for novel high-efficiency photocatalysts.In this viewpoint,we started with introducing the challenges of photocatalysis from the view of experimental practice,especially the inefficiency of the traditional“trial and error”method.Sub-sequently,a cross-sectional comparison between experimental and high-throughput computational screening for photocatalysis is presented and discussed in detail.On the basis of the current experimental progress in photocatalysis,we also exemplified the various challenges associated with high-throughput computational screening strategies.Finally,we offered a preferred high-throughput computational screening procedure for pho-tocatalysts from an experimental practice perspective(model construction and screening,standardized experiments,assessment and revision),with the aim of a better correlation of high-throughput simulations and experimental practices,motivating to search for better descriptors.展开更多
Objective Viral encephalitis is an infectious disease severely affecting human health.It is caused by a wide variety of viral pathogens,including herpes viruses,flaviviruses,enteroviruses,and other viruses.The laborat...Objective Viral encephalitis is an infectious disease severely affecting human health.It is caused by a wide variety of viral pathogens,including herpes viruses,flaviviruses,enteroviruses,and other viruses.The laboratory diagnosis of viral encephalitis is a worldwide challenge.Recently,high-throughput sequencing technology has provided new tools for diagnosing central nervous system infections.Thus,In this study,we established a multipathogen detection platform for viral encephalitis based on amplicon sequencing.Methods We designed nine pairs of specific polymerase chain reaction(PCR)primers for the 12 viruses by reviewing the relevant literature.The detection ability of the primers was verified by software simulation and the detection of known positive samples.Amplicon sequencing was used to validate the samples,and consistency was compared with Sanger sequencing.Results The results showed that the target sequences of various pathogens were obtained at a coverage depth level greater than 20×,and the sequence lengths were consistent with the sizes of the predicted amplicons.The sequences were verified using the National Center for Biotechnology Information BLAST,and all results were consistent with the results of Sanger sequencing.Conclusion Amplicon-based high-throughput sequencing technology is feasible as a supplementary method for the pathogenic detection of viral encephalitis.It is also a useful tool for the high-volume screening of clinical samples.展开更多
Mainstream media play a crucial role in constructing the cultural memory of a city.This study used 319 short videos released by“Hi Chengdu,”a new media product of Chengdu Radio and Television,as samples.Based on the...Mainstream media play a crucial role in constructing the cultural memory of a city.This study used 319 short videos released by“Hi Chengdu,”a new media product of Chengdu Radio and Television,as samples.Based on the grounded theory,a research framework encompassing“content,technology,and discourse”was established to explore the paths through which mainstream media construct the cultural memory.Regarding content,this paper emphasized temporal and spatial contexts and urban spaces,delving deep into the themes of the cultural memory and vehicles for it.In terms of technology,this paper discussed the practice of leveraging audio/visual-mode discourse to stitch together the impressions of a city and evoke emotional resonance to create a“flow”of memory.As for discourse,this paper looked at the performance of a communication ritual to frame concepts and shape urban identity.It is essential to break free from conventional thinking and leverage local culture as the primary driving force to further boost a city’s productivity,in order to excel in cultural communication.展开更多
In the last three decades,carbon dioxide(CO_(2)) emissions have shown a significant increase from various sources.To address this pressing issue,the importance of reducing CO_(2) emissions has grown,leading to increas...In the last three decades,carbon dioxide(CO_(2)) emissions have shown a significant increase from various sources.To address this pressing issue,the importance of reducing CO_(2) emissions has grown,leading to increased attention toward carbon capture,utilization,and storage strategies.Among these strategies,monodisperse microcapsules,produced by using droplet microfluidics,have emerged as promising tools for carbon capture,offering a potential solution to mitigate CO_(2) emissions.However,the limited yield of microcapsules due to the inherent low flow rate in droplet microfluidics remains a challenge.In this comprehensive review,the high-throughput production of carbon capture microcapsules using droplet microfluidics is focused on.Specifically,the detailed insights into microfluidic chip fabrication technologies,the microfluidic generation of emulsion droplets,along with the associated hydrodynamic considerations,and the generation of carbon capture microcapsules through droplet microfluidics are provided.This review highlights the substantial potential of droplet microfluidics as a promising technique for large-scale carbon capture microcapsule production,which could play a significant role in achieving carbon neutralization and emission reduction goals.展开更多
Tissue culture techniques were used to produce large amounts of bioactive compounds with medicinal potential, overcoming space and time constraints for cancer prevention. Rice callus suspension cultures(RCSC) and seed...Tissue culture techniques were used to produce large amounts of bioactive compounds with medicinal potential, overcoming space and time constraints for cancer prevention. Rice callus suspension cultures(RCSC) and seed extracts prepared from aromatic rice varieties were used to evaluate the cytotoxic impact on human colon and lung cancer cell lines, as well as a normal control cell line, using Taxol as a positive control. RCSC and seed extracts from two Indian aromatic rice varieties were applied at different concentrations to treat the cancer cell lines and normal lung fibroblasts over varying time intervals. Apoptosis was assessed in 1:5 dilutions of the A549 and HT-29 cell lines treated with RCSC for 72 h, using propidium iodide staining and flow cytometry. RCSC showed a more potent cytotoxic effect than seed extracts with minimal effect on the normal cell line, in contrast to Taxol. Confocal microscopy and flow cytometry further confirmed the apoptotic effect of RCSC. Gas chromatography-mass spectrometry-based metabolic profiling identified metabolites involved in cytotoxicity and highlighted altered pathways. RCSC is proposed as an alternative source for the development of novel anticancer drugs with reduced side effects.展开更多
Understanding the correlation between the fundamental descriptors and catalytic performance is meaningful to guide the design of high-performance electrochemical catalysts.However,exploring key factors that affect cat...Understanding the correlation between the fundamental descriptors and catalytic performance is meaningful to guide the design of high-performance electrochemical catalysts.However,exploring key factors that affect catalytic performance in the vast catalyst space remains challenging for people.Herein,to accurately identify the factors that affect the performance of N2 reduction,we apply interpretable machine learning(ML)to analyze high-throughput screening results,which is also suited to other surface reactions in catalysis.To expound on the paradigm,33 promising catalysts are screened from 168 carbon-supported candidates,specifically single-atom catalysts(SACs)supported by a BC_(3)monolayer(TM@V_(B/C)-N_(n)=_(0-3)-BC_(3))via high-throughput screening.Subsequently,the hybrid sampling method and XGBoost model are selected to classify eligible and non-eligible catalysts.Through feature interpretation using Shapley Additive Explanations(SHAP)analysis,two crucial features,that is,the number of valence electrons(N_(v))and nitrogen substitution(N_(n)),are screened out.Combining SHAP analysis and electronic structure calculations,the synergistic effect between an active center with low valence electron numbers and reasonable C-N coordination(a medium fraction of nitrogen substitution)can exhibit high catalytic performance.Finally,six superior catalysts with a limiting potential lower than-0.4 V are predicted.Our workflow offers a rational approach to obtaining key information on catalytic performance from high-throughput screening results to design efficient catalysts that can be applied to other materials and reactions.展开更多
Background: Over the past 20 years, cultured meat has drawn a lot of public attention as a potential solution to issues with animal husbandry, including inadequate use of natural sources, improper animal welfare pract...Background: Over the past 20 years, cultured meat has drawn a lot of public attention as a potential solution to issues with animal husbandry, including inadequate use of natural sources, improper animal welfare practices, and possible risks to public health and safety. The novel method of producing meat through culture reduces the need for animals to produce muscle fiber, thereby obviating the necessity for animal slaughter. Apart from its ethical advantages, cultured meat presents a possible way to fulfill the expanding need for food among growing populations. The purpose of this research was to find out whether Turkish students would be willing to pay for and accept cultured meat. Technique: Method: 371 university students who willingly consented to fill out a questionnaire and provide demographic data make up the research sample. Questions from previous studies on the acceptability of cultured meat were compiled to create the survey. The research’s data collection took place in March and April of 2022. The research was completed in June 2022 after the data had been processed and analyzed. Results: The results showed that the majority of participants were female and had omnivorous eating habits. Based on the results of the Bonferroni correction test, students with a higher intention to purchase and consume cultured meat were those who received economics and business education. Students with two years of university education had a higher overall survey score than those with four years of education (p < 0.05). Furthermore, it is discovered that there is a negative correlation between the participants’ ages and their Factor 2 (using cultured meat as an alternative to industrial meat) and Factor 3 (consuming and purchasing it) section points (r = -109, p = 0.036) (r = -0.121, p = 0.019). In conclusion, university students generally have a negative outlook on health-related issues, such as eating cultured meat as an alternative.展开更多
Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheet...Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheets(SFe-DMNs)were prepared based on the high-throughput density functional theory(DFT)calculation screening.Due to the synergistic effect between Fe atom and MoS_(2)and optimized intermediate binding energy,the SFe-DMNs could deliver outstanding activity for both HER and OER.When assembled into a two-electrode electrolytic cell,the SFe-DMNs could achieve the current density of 50 mA cm^(-2)at a low cell voltage of 1.55 V under neutral condition.These results not only confirmed the effectiveness of high-throughput screening,but also revealed the excellent activity and thus the potential applications in fuel cells of SFe-DMNs.展开更多
Gastric cancers are caused primarily due to the activation and amplification of the EGFR or HER2 kinases resulting in cell proliferation,adhesion,angiogenesis,and metastasis.Conventional therapies are ineffective due ...Gastric cancers are caused primarily due to the activation and amplification of the EGFR or HER2 kinases resulting in cell proliferation,adhesion,angiogenesis,and metastasis.Conventional therapies are ineffective due to the intra-tumoral heterogeneity and concomitant genetic mutations.Hence,dual inhibition strategies are recommended to increase potency and reduce cytotoxicity.In this study,we have conducted computational high-throughput screening of the ChemBridge library followed by in vitro assays and identified novel selective inhibitors that have a dual impediment of EGFR/HER2 kinase activities.Diversity-based High-throughput Virtual Screening(D-HTVS)was used to screen the whole ChemBridge small molecular library against EGFR and HER2.The atomistic molecular dynamic simulation was conducted to understand the dynamics and stability of the protein-ligand complexes.EGFR/HER2 kinase enzymes,KATOIII,and Snu-5 cells were used for in vitro validations.The atomistic Molecular Dynamics simulations followed by solvent-based Gibbs binding free energy calculation of top molecules,identified compound C3(5-(4-oxo-4H-3,1-benzoxazin-2-yl)-2-[3-(4-oxo-4H-3,1-benzoxazin-2-yl)phenyl]-1H-isoindole-1,3(2H)-dione)to have a good affinity for both EGFR and HER2.The predicted compound,C3,was promising with better binding energy,good binding pose,and optimum interactions with the EGFR and HER2 residues.C3 inhibited EGFR and HER2 kinases with IC50 values of 37.24 and 45.83 nM,respectively.The GI50 values of C3 to inhibit KATOIII and Snu-5 cells were 84.76 and 48.26 nM,respectively.Based on these findings,we conclude that the identified compound C3 showed a conceivable dual inhibitory activity on EGFR/HER2 kinase,and therefore can be considered as a plausible lead-like molecule for treating gastric cancers with minimal side effects,though testing in higher models with pharmacokinetic approach is required.展开更多
Pre-modern Chinese crafts,such as iron smelting,cookery,medicine,and the production of vehicles,bows,and arrows indicate the traditional Chinese view of technology as being organic,holistic,and comprehensive.This view...Pre-modern Chinese crafts,such as iron smelting,cookery,medicine,and the production of vehicles,bows,and arrows indicate the traditional Chinese view of technology as being organic,holistic,and comprehensive.This view of technology is guided by the concept of he(和)and employs the means and methods of he,thus achieving the purport of he.In Chinese,the character he(和)possesses positive connotations.It originated from the meaning of"to season;to add flavoring to"(调和)and that of flavors being"perfectly harmonious"(和美).From this sensory experience,he gradually extended to the abstract levels of materiality,humanity,sociality,"order"(wei位),and "power,situation,force"(shi势).Finally,he was elevated to the supreme level of"qi of great harmony"(taihe zhi qi太和之气),which is comparable to the concept of dao(道).The philosophy of he has exerted wide impact on such areas as technology,art,national character,cultural psychology,and behavior patterns,and has become an integral part of China's inherent culture.The paradoxes and deviations of he hold their own profound philosophical implications that merit further exploration.As humanity confronts significant challenges,such as how we can coexist with others,with technology,and with nature,the ancient Eastern wisdom embodied in he continues to possess practical characteristics and value.展开更多
The internal microbial diversity and small molecular metabolites of Nuodeng ham in different processing years(the first,second and third year sample)were analyzed by high-throughput sequencing technology and gas chrom...The internal microbial diversity and small molecular metabolites of Nuodeng ham in different processing years(the first,second and third year sample)were analyzed by high-throughput sequencing technology and gas chromatography-time of flight mass spectrography(GC-TOF-MS)to study the effects of microorganisms and small molecular metabolites on the quality of ham in different processing years.The results showed that the dominant bacteria phyla of Nuodeng ham in different processing years were Proteobacteria and Firmicutes,the dominant fungi phyla were Ascomycota and Basidiomycota,while Staphylococcus and Aspergillus were the dominant bacteria and fungi of Nuodeng ham,respectively.Totally,252 kinds of small molecular metabolites were identified from Nuodeng ham in different processing years,and 12 different metabolites were screened through multivariate statistical analysis.Further metabolic pathway analysis showed that 23 metabolic pathways were related to ham fermentation,of which 8 metabolic pathways had significant effects on ham fermentation(Impact>0.01,P<0.05).The content of L-proline,phenyllactic acid,L-lysine,carnosine,taurine,D-proline,betaine and creatine were significantly positively correlated with the relative abundance of Staphylococcus and Serratia,but negatively correlated with the relative abundance of Halomonas,Aspergillus and Yamadazyma.展开更多
As a renewable marine inorganic material,Coscinodiscus sp.has significant potential in the field of rapid hemostasis.However,the low yield of Coscinodiscus sp.seriously limits the application.In this study,two new cul...As a renewable marine inorganic material,Coscinodiscus sp.has significant potential in the field of rapid hemostasis.However,the low yield of Coscinodiscus sp.seriously limits the application.In this study,two new culture modes were adopted to increase the production of Coscinodiscus sp.,the effect of changes in culture conditions and growth status on the hemostatic activity of diatoms was detected.To prevent Coscinodiscus sp.from sinking in culture,the suspension culture mode was realized by adding0.5%agar.The semi-continuous high nutrient concentration culture mode increased the cell density of Coscinodiscus sp.to 11000cells mL^(-1)and shorten the culture cycle to 5 d.In terms of coagulation activity,the addition of frustules reduced the in vitro coagulation time by half and the activation time of coagulation by 70%.The hemolysis rate and cytotoxicity of frustules harvested in the two culture modes did not change significantly.The results showed that suspension culture mode and high nutrient concentration culture mode only changed the growth state of Coscinodiscus sp.,while the hemostatic performance remained stable.展开更多
In an era of scene-based consumption,the essence of operating a bookstore lies in accepting and enabling the bookstore to play its role as a cultural medium for browsing and appreciating books,which in turn fosters th...In an era of scene-based consumption,the essence of operating a bookstore lies in accepting and enabling the bookstore to play its role as a cultural medium for browsing and appreciating books,which in turn fosters the development of a distinctive bookstore culture.This new type of consumption context has led to an evolution in the book-reading culture in physical bookstores that is characterized by a shift from a paradigm of passive reading to one where the emphasis is on interactive viewing.This transition has laid the foundation for the creation of cultural atmospheres in bookstores,and it highlights the visual interactions that now exist between readers and books as well as with other related cultural industries.The dominant and fundamental logic behind this process is symbiosis,experience,aesthetics,immersion,and creativity.However,when a form of culture that focuses on consumption-oriented browsing begins to overshadow knowledge acquisition during the process of book reading,the cultural essence of bookstores is likely to be diminished.Therefore,the cultural essence within the scene-based consumption context should be enhanced by creating innovative viewing activities that showcase the cultural and emotional implications inherent in the scene itself,and thus help to align the identity of the bookstore with its in-situ cultural space.展开更多
The positioning of teeth is of significant importance,both in terms of function and aesthetics.Aesthetics is a subjective matter,and there is often a discrepancy between the perceptions of patients and those of medica...The positioning of teeth is of significant importance,both in terms of function and aesthetics.Aesthetics is a subjective matter,and there is often a discrepancy between the perceptions of patients and those of medical professionals.The act of wearing a mask has been demonstrated to impair the ability to evaluate facial attractiveness,thereby reaffirming the visual importance of the oral cavity in the context of facial aesthetics.The notion that a face perceived as beautiful is inherently exceptional is a fallacy.An average face is defined as one that exhibits characteristics that are common to the group.However,cultural mutations occur at a faster rate than genetic mutations.With regard to changes in facial aesthetics,cultural differences have a more immediate effect than genetic mutations.The advent of the internet meme may herald the advent of an era in which the average face that defines a beautiful face is determined by the internet.展开更多
Cellular agriculture is an innovative technology for manufacturing sustainable agricultural products as an alternative to traditional agriculture.While most cellular agriculture is predominantly centered on the produc...Cellular agriculture is an innovative technology for manufacturing sustainable agricultural products as an alternative to traditional agriculture.While most cellular agriculture is predominantly centered on the production of cultured meat,there is a growing demand for an understanding of the production techniques involved in dairy products within cellular agriculture.This review focuses on the current status of cellular agriculture in the dairy sector and technical challenges for cell-cultured milk production.Cellular agriculture technology in the dairy sector has been classified into fermentation-based and animal cell culture-based cellular agriculture.Currently,various companies synthesize milk components through precision fermentation technology.Nevertheless,several startup companies are pursuing animal cell-based technology,driven by public concerns regarding genetically modified organisms in precision fermentation technology.Hence,this review offers an up-to-date exploration of animal cell-based cellular agriculture to produce milk components,specifically emphasizing the structural,functional,and productive aspects of mammary epithelial cells,providing new information for industry and academia.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0701202,No.2017YFB0701500 and No.2020YFB1505901)National Natural Science Foundation of China(General Program No.51474149,52072240)+3 种基金Shanghai Science and Technology Committee(No.18511109300)Science and Technology Commission of the CMC(2019JCJQZD27300)financial support from the University of Michigan and Shanghai Jiao Tong University joint funding,China(AE604401)Science and Technology Commission of Shanghai Municipality(No.18511109302).
文摘Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experiment trial,a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics,from both the thermodynamic and kinetic perspectives.The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified.Then,the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated,and the corrosion exchange current density is further calculated by a hydrogen evolution reaction(HER)kinetic model.Several intermetallics,e.g.Y_(3)Mg,Y_(2)Mg and La_(5)Mg,are identified to be promising intermetallics which might effectively hinder the cathodic HER.Furthermore,machine learning(ML)models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function(W_(f))and weighted first ionization energy(WFIE).The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error(RMSE)of 0.11 eV.This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion,but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy,which can be extended to ternary Mg alloys or other alloy systems.
基金supported by a grant from the Standardization and Integration of Resources Information for Seed-cluster in Hub-Spoke Material Bank Program,Rural Development Administration,Republic of Korea(PJ01587004).
文摘Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI.
基金National Natural Science Foundation of China(Nos.42171444,42301516)Beijing Natural Science Foundation Project-Municipal Education Commission Joint Fund Project(No.KZ202110016021)Beijing Municipal Education Commission Scientific Research Project-Science and Technology Plan General Project(No.KM202110016005).
文摘Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicators of natural disaster risk monitoring are complex.How to achieve intelligent perception and monitoring of natural disaster risk for immovable cultural relics has always been a focus and a challenge for researchers.Based on the analysis of the concepts and issues related to the natural disaster risk of immovable cultural relics,this paper proposes a framework for natural disaster risk monitoring for immovable cultural relics based on the digital twin.This framework focuses on risk monitoring,including the physical entities of natural disaster risk for immovable cultural relics,monitoring indicators,and virtual entity construction.A platform for monitoring the natural disaster risk of immovable cultural relics is proposed.Using the Puzhou Ancient City Site as a test bed,the proposed concept can be used for monitoring the natural disaster risk of immovable cultural relics at different scales.
基金National Natural Science Foundation of China(Nos.42071444,42101444)。
文摘Cultural relics line graphic serves as a crucial form of traditional artifact information documentation,which is a simple and intuitive product with low cost of displaying compared with 3D models.Dimensionality reduction is undoubtedly necessary for line drawings.However,most existing methods for artifact drawing rely on the principles of orthographic projection that always cannot avoid angle occlusion and data overlapping while the surface of cultural relics is complex.Therefore,conformal mapping was introduced as a dimensionality reduction way to compensate for the limitation of orthographic projection.Based on the given criteria for assessing surface complexity,this paper proposed a three-dimensional feature guideline extraction method for complex cultural relic surfaces.A 2D and 3D combined factor that measured the importance of points on describing surface features,vertex weight,was designed.Then the selection threshold for feature guideline extraction was determined based on the differences between vertex weight and shape index distributions.The feasibility and stability were verified through experiments conducted on real cultural relic surface data.Results demonstrated the ability of the method to address the challenges associated with the automatic generation of line drawings for complex surfaces.The extraction method and the obtained results will be useful for line graphic drawing,displaying and propaganda of cultural relics.
基金supported by the National Key Research and Development Program of China(2021YFD2100902-3)the National Natural Science Foundation of China(32072258)+5 种基金Major Science and Technology Program of Heilongjiang(2020ZX08B02)Harbin University of Commerce“Young Innovative Talents”Support Program(2019CX062020CX262020CX27)the Central Financial Support for the Development of Local Colleges and Universities,Graduate Innovation Research Project of Harbin University of Commerce(YJSCX2021-698HSD)Training plan of Young Innovative Talents in Universities of Heilongjiang(UNPYSCT-2020218).
文摘The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.
基金The authors are grateful for financial support from the National Key Projects for Fundamental Research and Development of China(2021YFA1500803)the National Natural Science Foundation of China(51825205,52120105002,22102202,22088102,U22A20391)+1 种基金the DNL Cooperation Fund,CAS(DNL202016)the CAS Project for Young Scientists in Basic Research(YSBR-004).
文摘Photocatalysis,a critical strategy for harvesting sunlight to address energy demand and environmental concerns,is underpinned by the discovery of high-performance photocatalysts,thereby how to design photocatalysts is now generating widespread interest in boosting the conversion effi-ciency of solar energy.In the past decade,computational technologies and theoretical simulations have led to a major leap in the development of high-throughput computational screening strategies for novel high-efficiency photocatalysts.In this viewpoint,we started with introducing the challenges of photocatalysis from the view of experimental practice,especially the inefficiency of the traditional“trial and error”method.Sub-sequently,a cross-sectional comparison between experimental and high-throughput computational screening for photocatalysis is presented and discussed in detail.On the basis of the current experimental progress in photocatalysis,we also exemplified the various challenges associated with high-throughput computational screening strategies.Finally,we offered a preferred high-throughput computational screening procedure for pho-tocatalysts from an experimental practice perspective(model construction and screening,standardized experiments,assessment and revision),with the aim of a better correlation of high-throughput simulations and experimental practices,motivating to search for better descriptors.
基金supported by the National Key Research and Development Program(grant number:2022YFC2305304).
文摘Objective Viral encephalitis is an infectious disease severely affecting human health.It is caused by a wide variety of viral pathogens,including herpes viruses,flaviviruses,enteroviruses,and other viruses.The laboratory diagnosis of viral encephalitis is a worldwide challenge.Recently,high-throughput sequencing technology has provided new tools for diagnosing central nervous system infections.Thus,In this study,we established a multipathogen detection platform for viral encephalitis based on amplicon sequencing.Methods We designed nine pairs of specific polymerase chain reaction(PCR)primers for the 12 viruses by reviewing the relevant literature.The detection ability of the primers was verified by software simulation and the detection of known positive samples.Amplicon sequencing was used to validate the samples,and consistency was compared with Sanger sequencing.Results The results showed that the target sequences of various pathogens were obtained at a coverage depth level greater than 20×,and the sequence lengths were consistent with the sizes of the predicted amplicons.The sequences were verified using the National Center for Biotechnology Information BLAST,and all results were consistent with the results of Sanger sequencing.Conclusion Amplicon-based high-throughput sequencing technology is feasible as a supplementary method for the pathogenic detection of viral encephalitis.It is also a useful tool for the high-volume screening of clinical samples.
文摘Mainstream media play a crucial role in constructing the cultural memory of a city.This study used 319 short videos released by“Hi Chengdu,”a new media product of Chengdu Radio and Television,as samples.Based on the grounded theory,a research framework encompassing“content,technology,and discourse”was established to explore the paths through which mainstream media construct the cultural memory.Regarding content,this paper emphasized temporal and spatial contexts and urban spaces,delving deep into the themes of the cultural memory and vehicles for it.In terms of technology,this paper discussed the practice of leveraging audio/visual-mode discourse to stitch together the impressions of a city and evoke emotional resonance to create a“flow”of memory.As for discourse,this paper looked at the performance of a communication ritual to frame concepts and shape urban identity.It is essential to break free from conventional thinking and leverage local culture as the primary driving force to further boost a city’s productivity,in order to excel in cultural communication.
基金supported by the National Natural Science Foundation of China (No.52036006)。
文摘In the last three decades,carbon dioxide(CO_(2)) emissions have shown a significant increase from various sources.To address this pressing issue,the importance of reducing CO_(2) emissions has grown,leading to increased attention toward carbon capture,utilization,and storage strategies.Among these strategies,monodisperse microcapsules,produced by using droplet microfluidics,have emerged as promising tools for carbon capture,offering a potential solution to mitigate CO_(2) emissions.However,the limited yield of microcapsules due to the inherent low flow rate in droplet microfluidics remains a challenge.In this comprehensive review,the high-throughput production of carbon capture microcapsules using droplet microfluidics is focused on.Specifically,the detailed insights into microfluidic chip fabrication technologies,the microfluidic generation of emulsion droplets,along with the associated hydrodynamic considerations,and the generation of carbon capture microcapsules through droplet microfluidics are provided.This review highlights the substantial potential of droplet microfluidics as a promising technique for large-scale carbon capture microcapsule production,which could play a significant role in achieving carbon neutralization and emission reduction goals.
基金partly funded by the Department of Science and Technology Fund for Improvement of S&T Infrastructure (Grant No. SR/FST/LS-I/2018/125)。
文摘Tissue culture techniques were used to produce large amounts of bioactive compounds with medicinal potential, overcoming space and time constraints for cancer prevention. Rice callus suspension cultures(RCSC) and seed extracts prepared from aromatic rice varieties were used to evaluate the cytotoxic impact on human colon and lung cancer cell lines, as well as a normal control cell line, using Taxol as a positive control. RCSC and seed extracts from two Indian aromatic rice varieties were applied at different concentrations to treat the cancer cell lines and normal lung fibroblasts over varying time intervals. Apoptosis was assessed in 1:5 dilutions of the A549 and HT-29 cell lines treated with RCSC for 72 h, using propidium iodide staining and flow cytometry. RCSC showed a more potent cytotoxic effect than seed extracts with minimal effect on the normal cell line, in contrast to Taxol. Confocal microscopy and flow cytometry further confirmed the apoptotic effect of RCSC. Gas chromatography-mass spectrometry-based metabolic profiling identified metabolites involved in cytotoxicity and highlighted altered pathways. RCSC is proposed as an alternative source for the development of novel anticancer drugs with reduced side effects.
基金supported by the National Key R&D Program of China(2022YFA1503103)the National Natural Science Foundation of China(22033002,92261112,22203046)+2 种基金the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant No.NY221128)the Six Talent Peaks Project in Jiangsu Province(XCL-104)the open research fund of Key Laboratory of Quantum Materials and Devices(Southeast University)
文摘Understanding the correlation between the fundamental descriptors and catalytic performance is meaningful to guide the design of high-performance electrochemical catalysts.However,exploring key factors that affect catalytic performance in the vast catalyst space remains challenging for people.Herein,to accurately identify the factors that affect the performance of N2 reduction,we apply interpretable machine learning(ML)to analyze high-throughput screening results,which is also suited to other surface reactions in catalysis.To expound on the paradigm,33 promising catalysts are screened from 168 carbon-supported candidates,specifically single-atom catalysts(SACs)supported by a BC_(3)monolayer(TM@V_(B/C)-N_(n)=_(0-3)-BC_(3))via high-throughput screening.Subsequently,the hybrid sampling method and XGBoost model are selected to classify eligible and non-eligible catalysts.Through feature interpretation using Shapley Additive Explanations(SHAP)analysis,two crucial features,that is,the number of valence electrons(N_(v))and nitrogen substitution(N_(n)),are screened out.Combining SHAP analysis and electronic structure calculations,the synergistic effect between an active center with low valence electron numbers and reasonable C-N coordination(a medium fraction of nitrogen substitution)can exhibit high catalytic performance.Finally,six superior catalysts with a limiting potential lower than-0.4 V are predicted.Our workflow offers a rational approach to obtaining key information on catalytic performance from high-throughput screening results to design efficient catalysts that can be applied to other materials and reactions.
文摘Background: Over the past 20 years, cultured meat has drawn a lot of public attention as a potential solution to issues with animal husbandry, including inadequate use of natural sources, improper animal welfare practices, and possible risks to public health and safety. The novel method of producing meat through culture reduces the need for animals to produce muscle fiber, thereby obviating the necessity for animal slaughter. Apart from its ethical advantages, cultured meat presents a possible way to fulfill the expanding need for food among growing populations. The purpose of this research was to find out whether Turkish students would be willing to pay for and accept cultured meat. Technique: Method: 371 university students who willingly consented to fill out a questionnaire and provide demographic data make up the research sample. Questions from previous studies on the acceptability of cultured meat were compiled to create the survey. The research’s data collection took place in March and April of 2022. The research was completed in June 2022 after the data had been processed and analyzed. Results: The results showed that the majority of participants were female and had omnivorous eating habits. Based on the results of the Bonferroni correction test, students with a higher intention to purchase and consume cultured meat were those who received economics and business education. Students with two years of university education had a higher overall survey score than those with four years of education (p < 0.05). Furthermore, it is discovered that there is a negative correlation between the participants’ ages and their Factor 2 (using cultured meat as an alternative to industrial meat) and Factor 3 (consuming and purchasing it) section points (r = -109, p = 0.036) (r = -0.121, p = 0.019). In conclusion, university students generally have a negative outlook on health-related issues, such as eating cultured meat as an alternative.
基金supported by the Research Funds of Institute of Zhejiang University-Quzhou(IZQ2023RCZX032)the Natural Science Foundation of Guangdong Province(2022A1515010185)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-20-005A3)partially supported by the Special Funds for Postdoctoral Research at Tsinghua University(100415017)。
文摘Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheets(SFe-DMNs)were prepared based on the high-throughput density functional theory(DFT)calculation screening.Due to the synergistic effect between Fe atom and MoS_(2)and optimized intermediate binding energy,the SFe-DMNs could deliver outstanding activity for both HER and OER.When assembled into a two-electrode electrolytic cell,the SFe-DMNs could achieve the current density of 50 mA cm^(-2)at a low cell voltage of 1.55 V under neutral condition.These results not only confirmed the effectiveness of high-throughput screening,but also revealed the excellent activity and thus the potential applications in fuel cells of SFe-DMNs.
文摘Gastric cancers are caused primarily due to the activation and amplification of the EGFR or HER2 kinases resulting in cell proliferation,adhesion,angiogenesis,and metastasis.Conventional therapies are ineffective due to the intra-tumoral heterogeneity and concomitant genetic mutations.Hence,dual inhibition strategies are recommended to increase potency and reduce cytotoxicity.In this study,we have conducted computational high-throughput screening of the ChemBridge library followed by in vitro assays and identified novel selective inhibitors that have a dual impediment of EGFR/HER2 kinase activities.Diversity-based High-throughput Virtual Screening(D-HTVS)was used to screen the whole ChemBridge small molecular library against EGFR and HER2.The atomistic molecular dynamic simulation was conducted to understand the dynamics and stability of the protein-ligand complexes.EGFR/HER2 kinase enzymes,KATOIII,and Snu-5 cells were used for in vitro validations.The atomistic Molecular Dynamics simulations followed by solvent-based Gibbs binding free energy calculation of top molecules,identified compound C3(5-(4-oxo-4H-3,1-benzoxazin-2-yl)-2-[3-(4-oxo-4H-3,1-benzoxazin-2-yl)phenyl]-1H-isoindole-1,3(2H)-dione)to have a good affinity for both EGFR and HER2.The predicted compound,C3,was promising with better binding energy,good binding pose,and optimum interactions with the EGFR and HER2 residues.C3 inhibited EGFR and HER2 kinases with IC50 values of 37.24 and 45.83 nM,respectively.The GI50 values of C3 to inhibit KATOIII and Snu-5 cells were 84.76 and 48.26 nM,respectively.Based on these findings,we conclude that the identified compound C3 showed a conceivable dual inhibitory activity on EGFR/HER2 kinase,and therefore can be considered as a plausible lead-like molecule for treating gastric cancers with minimal side effects,though testing in higher models with pharmacokinetic approach is required.
基金the support of the Center for Cultural Studies on Science and Technology in China at Technische Universitat Berlin。
文摘Pre-modern Chinese crafts,such as iron smelting,cookery,medicine,and the production of vehicles,bows,and arrows indicate the traditional Chinese view of technology as being organic,holistic,and comprehensive.This view of technology is guided by the concept of he(和)and employs the means and methods of he,thus achieving the purport of he.In Chinese,the character he(和)possesses positive connotations.It originated from the meaning of"to season;to add flavoring to"(调和)and that of flavors being"perfectly harmonious"(和美).From this sensory experience,he gradually extended to the abstract levels of materiality,humanity,sociality,"order"(wei位),and "power,situation,force"(shi势).Finally,he was elevated to the supreme level of"qi of great harmony"(taihe zhi qi太和之气),which is comparable to the concept of dao(道).The philosophy of he has exerted wide impact on such areas as technology,art,national character,cultural psychology,and behavior patterns,and has become an integral part of China's inherent culture.The paradoxes and deviations of he hold their own profound philosophical implications that merit further exploration.As humanity confronts significant challenges,such as how we can coexist with others,with technology,and with nature,the ancient Eastern wisdom embodied in he continues to possess practical characteristics and value.
基金supported by Major Science and Technology Projects of Yunnan Science and Technology Plan(2019ZG003)Yunnan Young and Middle-aged Academic and Technical Leader Reserve Talent Project(202105AC160068)。
文摘The internal microbial diversity and small molecular metabolites of Nuodeng ham in different processing years(the first,second and third year sample)were analyzed by high-throughput sequencing technology and gas chromatography-time of flight mass spectrography(GC-TOF-MS)to study the effects of microorganisms and small molecular metabolites on the quality of ham in different processing years.The results showed that the dominant bacteria phyla of Nuodeng ham in different processing years were Proteobacteria and Firmicutes,the dominant fungi phyla were Ascomycota and Basidiomycota,while Staphylococcus and Aspergillus were the dominant bacteria and fungi of Nuodeng ham,respectively.Totally,252 kinds of small molecular metabolites were identified from Nuodeng ham in different processing years,and 12 different metabolites were screened through multivariate statistical analysis.Further metabolic pathway analysis showed that 23 metabolic pathways were related to ham fermentation,of which 8 metabolic pathways had significant effects on ham fermentation(Impact>0.01,P<0.05).The content of L-proline,phenyllactic acid,L-lysine,carnosine,taurine,D-proline,betaine and creatine were significantly positively correlated with the relative abundance of Staphylococcus and Serratia,but negatively correlated with the relative abundance of Halomonas,Aspergillus and Yamadazyma.
基金supported by the National Natural Science Foundation of China (No.U22A20588)the Sanya Science and Technology Project (No.2022KJCX57)+1 种基金the Qingdao National Laboratory for Marine Science and Technology (No.12-04)the Project supported by the Education Department of Hainan Province (No.Hnjg2024276)。
文摘As a renewable marine inorganic material,Coscinodiscus sp.has significant potential in the field of rapid hemostasis.However,the low yield of Coscinodiscus sp.seriously limits the application.In this study,two new culture modes were adopted to increase the production of Coscinodiscus sp.,the effect of changes in culture conditions and growth status on the hemostatic activity of diatoms was detected.To prevent Coscinodiscus sp.from sinking in culture,the suspension culture mode was realized by adding0.5%agar.The semi-continuous high nutrient concentration culture mode increased the cell density of Coscinodiscus sp.to 11000cells mL^(-1)and shorten the culture cycle to 5 d.In terms of coagulation activity,the addition of frustules reduced the in vitro coagulation time by half and the activation time of coagulation by 70%.The hemolysis rate and cytotoxicity of frustules harvested in the two culture modes did not change significantly.The results showed that suspension culture mode and high nutrient concentration culture mode only changed the growth state of Coscinodiscus sp.,while the hemostatic performance remained stable.
基金supported by the Zhijiang Youth Special Project entitled“Cross-Cultural Examination of National Identity and Discourse Formation in Chinese Short Video Content” (Project No.:24ZJQN026Y)a philosophy and social sciences project funded by Zhejiang province。
文摘In an era of scene-based consumption,the essence of operating a bookstore lies in accepting and enabling the bookstore to play its role as a cultural medium for browsing and appreciating books,which in turn fosters the development of a distinctive bookstore culture.This new type of consumption context has led to an evolution in the book-reading culture in physical bookstores that is characterized by a shift from a paradigm of passive reading to one where the emphasis is on interactive viewing.This transition has laid the foundation for the creation of cultural atmospheres in bookstores,and it highlights the visual interactions that now exist between readers and books as well as with other related cultural industries.The dominant and fundamental logic behind this process is symbiosis,experience,aesthetics,immersion,and creativity.However,when a form of culture that focuses on consumption-oriented browsing begins to overshadow knowledge acquisition during the process of book reading,the cultural essence of bookstores is likely to be diminished.Therefore,the cultural essence within the scene-based consumption context should be enhanced by creating innovative viewing activities that showcase the cultural and emotional implications inherent in the scene itself,and thus help to align the identity of the bookstore with its in-situ cultural space.
文摘The positioning of teeth is of significant importance,both in terms of function and aesthetics.Aesthetics is a subjective matter,and there is often a discrepancy between the perceptions of patients and those of medical professionals.The act of wearing a mask has been demonstrated to impair the ability to evaluate facial attractiveness,thereby reaffirming the visual importance of the oral cavity in the context of facial aesthetics.The notion that a face perceived as beautiful is inherently exceptional is a fallacy.An average face is defined as one that exhibits characteristics that are common to the group.However,cultural mutations occur at a faster rate than genetic mutations.With regard to changes in facial aesthetics,cultural differences have a more immediate effect than genetic mutations.The advent of the internet meme may herald the advent of an era in which the average face that defines a beautiful face is determined by the internet.
基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2022R1A2C1008327)。
文摘Cellular agriculture is an innovative technology for manufacturing sustainable agricultural products as an alternative to traditional agriculture.While most cellular agriculture is predominantly centered on the production of cultured meat,there is a growing demand for an understanding of the production techniques involved in dairy products within cellular agriculture.This review focuses on the current status of cellular agriculture in the dairy sector and technical challenges for cell-cultured milk production.Cellular agriculture technology in the dairy sector has been classified into fermentation-based and animal cell culture-based cellular agriculture.Currently,various companies synthesize milk components through precision fermentation technology.Nevertheless,several startup companies are pursuing animal cell-based technology,driven by public concerns regarding genetically modified organisms in precision fermentation technology.Hence,this review offers an up-to-date exploration of animal cell-based cellular agriculture to produce milk components,specifically emphasizing the structural,functional,and productive aspects of mammary epithelial cells,providing new information for industry and academia.