Surface acoustic wave (SAW) technology has been extensively explored for wireless communication, sensors, microfluidics, photonics, and quantum information processing. However, due to fabrication issues, the frequenci...Surface acoustic wave (SAW) technology has been extensively explored for wireless communication, sensors, microfluidics, photonics, and quantum information processing. However, due to fabrication issues, the frequencies of SAW devices are typically limited to within a few gigahertz, which severely restricts their applications in 5G communication, precision sensing, photonics, and quantum control. To solve this critical problem, we propose a hybrid strategy that integrates a nanomanufacturing process (i.e., nanolithography) with a LiNbO_(3)/SiO_(2)/SiC heterostructure and successfully achieve a record-breaking frequency of about 44 GHz for SAW devices, in addition to large electromechanical coupling coefficients of up to 15.7%. We perform a theoretical analysis and identify the guided higher order wave modes generated on these slow-on-fast SAW platforms. To demonstrate the superior sensing performance of the proposed ultra-high-frequency SAW platforms, we perform micro-mass sensing and obtain an extremely high sensitivity of approximately 33151.9 MHz·mm2·μg−1, which is about 1011 times higher than that of a conventional quartz crystal microbalance (QCM) and about 4000 times higher than that of a conventional SAW device with a frequency of 978 MHz.展开更多
Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor...Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor(SCWR)is a fourth-generation conceptual reactor.In an SCWR,the non-linear dynamics of the reactor require a controller capable of control-ling the nonlinearities.In this study,a pressure-tube-type SCWR was controlled during reactor power maneuvering with a higher order sliding mode,and the reactor outgoing steam temperature and pressure were controlled simultaneously.In an SCWR,the temperature,pressure,and power must be maintained at a setpoint(desired value)during power maneuvering.Reactor point kinetics equations with three groups of delayed neutrons were used in the simulation.Higher-order and classic sliding mode controllers were separately manufactured to control the plant and were compared with the PI controllers speci-fied in previous studies.The controlled parameters were reactor power,steam temperature,and pressure.Notably,for these parameters,the PI controller had certain instabilities in the presence of disturbances.The classic sliding mode controller had a higher accuracy and stability;however its main drawback was the chattering phenomenon.HOSMC was highly accurate and stable and had a small computational cost.In reality,it followed the desired values without oscillations and chattering.展开更多
Dispersion compensation with few-mode fibers is emerging as a promising technique that can provide full dispersion and dispersion-slope compensation. The inherent modal path diversity of these fibers allows implementa...Dispersion compensation with few-mode fibers is emerging as a promising technique that can provide full dispersion and dispersion-slope compensation. The inherent modal path diversity of these fibers allows implementation of static as well as tunable dispersion management schemes. In addition, the low non-linearity of this technology can improve system OSNR, leading to enhancements in transmission distances.展开更多
This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher...This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher order sliding mode observer has been proposed to estimate the velocity as well as unmeasured disturbances from the noisy position measurements.A differentiator structure containing the Lipschitz constant and Lebesgue measurable control input, is utilized for obtaining the estimates. Adaptive tuning algorithms are derived based on Lyapunov stability theory, for updating the observer gains,which will give enough flexibility in the choice of initial estimates.Moreover, it may help to cope with unexpected state jerks. The trajectory tracking problem is formulated as a finite horizon optimal control problem, which is solved online. The control constraints are incorporated by using a nonquadratic performance functional. An adaptive update law has been derived for tuning the step size in the optimization algorithm, which may help to improve the convergence speed. Moreover, it is an attractive alternative to the heuristic choice of step size for diverse operating conditions. The disturbance as well as state estimates from the higher order sliding mode observer are utilized by the plant output prediction model, which will improve the overall performance of the controller. The nonlinear dynamics defined in leader fixed Euler-Hill frame has been considered for the present work and the reference trajectories are generated using Hill-Clohessy-Wiltshire equations of unperturbed motion. The simulation results based on rigorous perturbation analysis are presented to confirm the robustness of the proposed approach.展开更多
The higher order displacement discontinuity method(HODDM) utilizing special crack tip elements has been used in the solution of linear elastic fracture mechanics(LEFM) problems. The paper has selected several example ...The higher order displacement discontinuity method(HODDM) utilizing special crack tip elements has been used in the solution of linear elastic fracture mechanics(LEFM) problems. The paper has selected several example problems from the fracture mechanics literature(with available analytical solutions) including center slant crack in an infinite and finite body, single and double edge cracks, cracks emanating from a circular hole. The numerical values of Mode Ⅰ and Mode Ⅱ SIFs for these problems using HODDM are in excellent agreement with analytical results(reaching up to 0.001% deviation from their analytical results). The HODDM is also compared with the XFEM and a modified XFEM results. The results show that the HODDM needs a considerably lower computational effort(with less than 400 nodes) than the XFEM and the modified XFEM(which needs more than 10000 nodes) to reach a much higher accuracy. The proposed HODDM offers higher accuracy and lower computation effort for a wide range of problems in LEFM.展开更多
This paper proposes an nth order (where n = 2,3, ,n) voltage mode active-C filter using n number of current controlled current conveyors (CCCIIs) and n number of equal valued grounded capacitors. The proposed topology...This paper proposes an nth order (where n = 2,3, ,n) voltage mode active-C filter using n number of current controlled current conveyors (CCCIIs) and n number of equal valued grounded capacitors. The proposed topology can implement both band pass and low pass responses without alteration of any components. The filters offer the following important features: use of minimum number of current controlled current conveyors (CCCIIs) and passive components, no matching constraint, use of all grounded capacitors and absence of external resistor suitable for integration, cut off frequency can easily be electronically adjusted using AMS 0.35 μm CMOS technology. PSPICE simulation results of third order band pass and low pass responses are provided. The results are found to agree well with the theory.展开更多
This paper presents a design of continuous-time sliding mode control for the higher order systems via reduced order model. It is shown that a continuous-time sliding mode control designed for the reduced order model g...This paper presents a design of continuous-time sliding mode control for the higher order systems via reduced order model. It is shown that a continuous-time sliding mode control designed for the reduced order model gives similar performance for thc higher order system. The method is illustrated by numerical examples. The paper also introduces a technique for design of a sliding surface such that the system satisfies a cost-optimality condition when on the sliding surface.展开更多
TEn mode (whose electric field is zero in the normal direction of the boundaries between layers) and TMn mode (whose magnetic field is zero in the normal direction of the boundaries between layers) are defined. Then c...TEn mode (whose electric field is zero in the normal direction of the boundaries between layers) and TMn mode (whose magnetic field is zero in the normal direction of the boundaries between layers) are defined. Then conditions under which pure TEn (TMn) modes may exist in multilayer waveguide structure with discontinuities are presented. E (H) step wavguides, ridged wavguides, microstrip lines and fin lines all satisfy the conditions, and hold for TEn (TMn) mode. The conventional conclusion that ridged waveguides with inhomogeneous dielectric-slab loading, microstrip lines and fin lines only hold for hybrid modes is revised. Compared with hybrid modes, the number of unknown variations and matching equations is reduced by half for pure TEn (TMn) modes, and the computation cost is decreased dramatically.展开更多
The left-hand superluminous electromagnetic waves, L-O mode and L-X mode, can be excited and observed in the auroral cavity of the Earth during the magnetic storms. The two modes can propagate into outer radiation zon...The left-hand superluminous electromagnetic waves, L-O mode and L-X mode, can be excited and observed in the auroral cavity of the Earth during the magnetic storms. The two modes can propagate into outer radiation zone and encounter enhanced resonant interactions with the trapped energetic electrons over a wide range of magnetosphere. A current first-order resonant model is extended to evaluate the stochastic acceleration of electrons by the L-O mode and L-X mode at the higher-order resonance. Similar to the first-order resonance, L-O mode can produce significant acceleration of electrons at the higher harmonic resonances over a wide range of wave normal angles and spatial regions. However, the higher harmonic resonance's contribution for significant electron acceleration by L-X mode is less than that of the first order resonance, with the requirement of higher minimum energies, e.g., -1 MeV in the outer radiation belt. This indicates that L-O mode may be one of the efficient mechanisms for the stochastic acceleration of electrons within the outer radiation zone.展开更多
基金supported by the National Science Foundation of China(NSFC)(52075162)the Program of New and High-Tech Industry of Hunan Province(2020GK2015 and 2021GK4014)+5 种基金the Excellent Youth Fund of Hunan Province(2021JJ20018)the Key Program of Guangdong(2020B0101040002)the Joint Fund of the Ministry of Education(Young Talents)the Natural Science Foundation of Changsha(kq2007026)the Tianjin Enterprise Science and Technology Commissioner Project(19JCTPJC56200)the Engineering Physics and Science Research Council of the United Kingdom(EPSRC EP/P018998/1).
文摘Surface acoustic wave (SAW) technology has been extensively explored for wireless communication, sensors, microfluidics, photonics, and quantum information processing. However, due to fabrication issues, the frequencies of SAW devices are typically limited to within a few gigahertz, which severely restricts their applications in 5G communication, precision sensing, photonics, and quantum control. To solve this critical problem, we propose a hybrid strategy that integrates a nanomanufacturing process (i.e., nanolithography) with a LiNbO_(3)/SiO_(2)/SiC heterostructure and successfully achieve a record-breaking frequency of about 44 GHz for SAW devices, in addition to large electromechanical coupling coefficients of up to 15.7%. We perform a theoretical analysis and identify the guided higher order wave modes generated on these slow-on-fast SAW platforms. To demonstrate the superior sensing performance of the proposed ultra-high-frequency SAW platforms, we perform micro-mass sensing and obtain an extremely high sensitivity of approximately 33151.9 MHz·mm2·μg−1, which is about 1011 times higher than that of a conventional quartz crystal microbalance (QCM) and about 4000 times higher than that of a conventional SAW device with a frequency of 978 MHz.
文摘Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor(SCWR)is a fourth-generation conceptual reactor.In an SCWR,the non-linear dynamics of the reactor require a controller capable of control-ling the nonlinearities.In this study,a pressure-tube-type SCWR was controlled during reactor power maneuvering with a higher order sliding mode,and the reactor outgoing steam temperature and pressure were controlled simultaneously.In an SCWR,the temperature,pressure,and power must be maintained at a setpoint(desired value)during power maneuvering.Reactor point kinetics equations with three groups of delayed neutrons were used in the simulation.Higher-order and classic sliding mode controllers were separately manufactured to control the plant and were compared with the PI controllers speci-fied in previous studies.The controlled parameters were reactor power,steam temperature,and pressure.Notably,for these parameters,the PI controller had certain instabilities in the presence of disturbances.The classic sliding mode controller had a higher accuracy and stability;however its main drawback was the chattering phenomenon.HOSMC was highly accurate and stable and had a small computational cost.In reality,it followed the desired values without oscillations and chattering.
文摘Dispersion compensation with few-mode fibers is emerging as a promising technique that can provide full dispersion and dispersion-slope compensation. The inherent modal path diversity of these fibers allows implementation of static as well as tunable dispersion management schemes. In addition, the low non-linearity of this technology can improve system OSNR, leading to enhancements in transmission distances.
文摘This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher order sliding mode observer has been proposed to estimate the velocity as well as unmeasured disturbances from the noisy position measurements.A differentiator structure containing the Lipschitz constant and Lebesgue measurable control input, is utilized for obtaining the estimates. Adaptive tuning algorithms are derived based on Lyapunov stability theory, for updating the observer gains,which will give enough flexibility in the choice of initial estimates.Moreover, it may help to cope with unexpected state jerks. The trajectory tracking problem is formulated as a finite horizon optimal control problem, which is solved online. The control constraints are incorporated by using a nonquadratic performance functional. An adaptive update law has been derived for tuning the step size in the optimization algorithm, which may help to improve the convergence speed. Moreover, it is an attractive alternative to the heuristic choice of step size for diverse operating conditions. The disturbance as well as state estimates from the higher order sliding mode observer are utilized by the plant output prediction model, which will improve the overall performance of the controller. The nonlinear dynamics defined in leader fixed Euler-Hill frame has been considered for the present work and the reference trajectories are generated using Hill-Clohessy-Wiltshire equations of unperturbed motion. The simulation results based on rigorous perturbation analysis are presented to confirm the robustness of the proposed approach.
文摘The higher order displacement discontinuity method(HODDM) utilizing special crack tip elements has been used in the solution of linear elastic fracture mechanics(LEFM) problems. The paper has selected several example problems from the fracture mechanics literature(with available analytical solutions) including center slant crack in an infinite and finite body, single and double edge cracks, cracks emanating from a circular hole. The numerical values of Mode Ⅰ and Mode Ⅱ SIFs for these problems using HODDM are in excellent agreement with analytical results(reaching up to 0.001% deviation from their analytical results). The HODDM is also compared with the XFEM and a modified XFEM results. The results show that the HODDM needs a considerably lower computational effort(with less than 400 nodes) than the XFEM and the modified XFEM(which needs more than 10000 nodes) to reach a much higher accuracy. The proposed HODDM offers higher accuracy and lower computation effort for a wide range of problems in LEFM.
文摘This paper proposes an nth order (where n = 2,3, ,n) voltage mode active-C filter using n number of current controlled current conveyors (CCCIIs) and n number of equal valued grounded capacitors. The proposed topology can implement both band pass and low pass responses without alteration of any components. The filters offer the following important features: use of minimum number of current controlled current conveyors (CCCIIs) and passive components, no matching constraint, use of all grounded capacitors and absence of external resistor suitable for integration, cut off frequency can easily be electronically adjusted using AMS 0.35 μm CMOS technology. PSPICE simulation results of third order band pass and low pass responses are provided. The results are found to agree well with the theory.
文摘This paper presents a design of continuous-time sliding mode control for the higher order systems via reduced order model. It is shown that a continuous-time sliding mode control designed for the reduced order model gives similar performance for thc higher order system. The method is illustrated by numerical examples. The paper also introduces a technique for design of a sliding surface such that the system satisfies a cost-optimality condition when on the sliding surface.
基金Supported by the National Natural Science Foundation of China under grant No.698710121 and 699301030
文摘TEn mode (whose electric field is zero in the normal direction of the boundaries between layers) and TMn mode (whose magnetic field is zero in the normal direction of the boundaries between layers) are defined. Then conditions under which pure TEn (TMn) modes may exist in multilayer waveguide structure with discontinuities are presented. E (H) step wavguides, ridged wavguides, microstrip lines and fin lines all satisfy the conditions, and hold for TEn (TMn) mode. The conventional conclusion that ridged waveguides with inhomogeneous dielectric-slab loading, microstrip lines and fin lines only hold for hybrid modes is revised. Compared with hybrid modes, the number of unknown variations and matching equations is reduced by half for pure TEn (TMn) modes, and the computation cost is decreased dramatically.
基金The project supported by National Natural Science Foundation of China (Nos. 40336052, 40274050, and 40474064)Outstanding Youth Foundation of Education Bureau of Hunan Province (No. 04B003)
文摘The left-hand superluminous electromagnetic waves, L-O mode and L-X mode, can be excited and observed in the auroral cavity of the Earth during the magnetic storms. The two modes can propagate into outer radiation zone and encounter enhanced resonant interactions with the trapped energetic electrons over a wide range of magnetosphere. A current first-order resonant model is extended to evaluate the stochastic acceleration of electrons by the L-O mode and L-X mode at the higher-order resonance. Similar to the first-order resonance, L-O mode can produce significant acceleration of electrons at the higher harmonic resonances over a wide range of wave normal angles and spatial regions. However, the higher harmonic resonance's contribution for significant electron acceleration by L-X mode is less than that of the first order resonance, with the requirement of higher minimum energies, e.g., -1 MeV in the outer radiation belt. This indicates that L-O mode may be one of the efficient mechanisms for the stochastic acceleration of electrons within the outer radiation zone.