In this paper, we extensively study the higher-order harmonic generation of the general limited diffraction m-th- order Bessel beam. The analysis is based on successive approximations of the Khokhlov-Zabolotskaya-Kuzn...In this paper, we extensively study the higher-order harmonic generation of the general limited diffraction m-th- order Bessel beam. The analysis is based on successive approximations of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. Asymptotic expansions are presented for higher-order harmonic Bessel beams in near and far fields. The validity of asymptotic approximation is also analyzed. The higher-order harmonic of the Bessel beam with the lowest zero-order is taken as a special example.展开更多
We experimentally study the generation of a partially coherent non-diffractive beam by focusing a partially coherent vortex beam with an axieon. The investigation results show that when the partially coherent vortex b...We experimentally study the generation of a partially coherent non-diffractive beam by focusing a partially coherent vortex beam with an axieon. The investigation results show that when the partially coherent vortex beam is focused by the axicon, the beam is transferred into a partially coherent higher-order non-diffractive beam. In the non-diffractive zone, the transverse intensity distribution of the partially coherent higher-order non-diffractive beam is invariant during propagation. In addition, the range of the non-diffractive zone is related to the coherence of the partially coherent vortex beam. The poorer the coherence of the partially coherent vortex beam, the shorter the range of the non-diffractive zone.展开更多
A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces...A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces. The global displacement components are of the Reddy theory and local components are of the internal first to third-order terms in each layer. A two-node beam element based on this theory is proposed. The solutions are compared with 3D-elasticity solutions. Numerical results show that present beam element has higher computational efficiency and higher accuracy.展开更多
Orbital angular momentum(OAM), as a new degree of freedom, has recently been applied in holography technology.Due to the infinite helical mode index of OAM mode, a large number of holographic images can be reconstruct...Orbital angular momentum(OAM), as a new degree of freedom, has recently been applied in holography technology.Due to the infinite helical mode index of OAM mode, a large number of holographic images can be reconstructed from an OAM-multiplexing hologram. However, the traditional design of an OAM hologram is constrained by the helical mode index of the selected OAM mode, for a larger helical mode index OAM mode has a bigger sampling distance, and the crosstalk is produced for different sampling distances for different OAM modes. In this paper, we present the design of the OAM hologram based on a Bessel–Gaussian beam, which is non-diffractive and has a self-healing property during its propagation. The Fourier transform of the Bessel–Gaussian beam is the perfect vortex mode that has the fixed ring radius for different OAM modes. The results of simulation and experiment have demonstrated the feasibility of the generation of the OAM hologram with the Bessel–Gaussian beam. The quality of the reconstructed holographic image is increased, and the security is enhanced. Additionally, the anti-interference property is improved owing to its self-healing property of the Bessel-OAM holography.展开更多
The Bessel beam,characterized by its unique non-diffracting properties,holds promising applications.In this paper,we provide a detailed introduction and investigation into the theory and research of the Bessel beam,wi...The Bessel beam,characterized by its unique non-diffracting properties,holds promising applications.In this paper,we provide a detailed introduction and investigation into the theory and research of the Bessel beam,with a special focus on its generation and applications in the near-field region.We provide an introduction to the concepts,properties,and foundational theories of the Bessel beam.Additionally,the current study on generating Bessel beams and their applications is categorized and discussed,and potential research challenges are proposed in this paper.This review serves as a solid foundation for researchers to understand the concept of the Bessel beam and explore its potential applications.展开更多
A generalized type of spiral Bessel beam has been demonstrated by using a spatially displaced helical axicon (HA). The topological charge of the spiraling Bessel beams is determined by the order of the input Laguerr...A generalized type of spiral Bessel beam has been demonstrated by using a spatially displaced helical axicon (HA). The topological charge of the spiraling Bessel beams is determined by the order of the input Laguerre Gaussian (LG) beam and the topological charge of the HA. The obtained spiraling Bessel beams have an LG type of modulation along their propagation direction and exhibit annihilation-reconstruction properties. Theoretical analysis is presented, including that of the stability, propagation distance, topological charge, and spiraling dynamic characteristics. The mathematical and numerical results show that the propagation distance and helical revolution of the spiraling Bessel beams can be controlled through choosing appropriate radius of the HA.展开更多
Stimulated Raman scattering(SRS)microscopy has the ability of noninvasive imaging of specific chemical bonds and been increasingly used in biomedicine in recent years.Two pulsed Gaussian beams are used in traditional ...Stimulated Raman scattering(SRS)microscopy has the ability of noninvasive imaging of specific chemical bonds and been increasingly used in biomedicine in recent years.Two pulsed Gaussian beams are used in traditional SRS microscopes,providing with high lateral and axial spatial resolution.Because of the tight focus of the Gaussian beam,such an SRS microscopy is difficult to be used for imaging deep targets in scattering tissues.The SRS microscopy based on Bessel beams can solve the imaging problem to a certain extent.Here,we establish a theoretical model to calculate the SRS signal excited by two Bessel beams by integrating the SRS signal generation theory with the fractal propagation method.The fractal model of refractive index turbulence is employed to generate the scattering tissues where the light transport is modeled by the beam propagation method.We model the scattering tissues containing chemicals,calculate the SRS signals stimulated by two Bessel beams,discuss the influence of the fractal model parameters on signal generation,and compare them with those generated by the Gaussian beams.The results show that,even though the modeling parameters have great influence on SRS signal generation,the Bessel beams-based SRS can generate signals in deeper scattering tissues.展开更多
This paper studies the propagation properties of Gauss-Bessel beams in a turbulent atmosphere. Based on the extended Huygens-Fresnel principle, it derives the intensity distribution expression for such beams propagati...This paper studies the propagation properties of Gauss-Bessel beams in a turbulent atmosphere. Based on the extended Huygens-Fresnel principle, it derives the intensity distribution expression for such beams propagating in a turbulent atmosphere. Then the influence of turbulence and source beam parameters on the beam propagation is studied in great detail. It finds that the intensity distribution of Gauss-Bessel beams will change into Gaussian profile in a turbulent atmosphere, and that stronger turbulence and smaller topological charges will lead to a faster changing.展开更多
A comparison of differently polarized Bessel vortex beams propagating through a uniaxial anisotropic slab is discussed in terms of the vector wave function expansions.The magnitude profiles of electric field component...A comparison of differently polarized Bessel vortex beams propagating through a uniaxial anisotropic slab is discussed in terms of the vector wave function expansions.The magnitude profiles of electric field components, the transformation of polarization modes, and the distributions of orbital angular momentum(OAM) states of the reflected and transmitted beams for different incident angles are numerically simulated.The results indicate that the magnitude profiles of electric field components for different polarization modes are distinct from each other and have a great dependence on the incident angle,thus the transformation of polarization modes which reflects the change of energy can be affected largely.As compared to the x and circular polarization incidences, the reflected and transmitted beams for the radial polarization incidence suffer the fewest transformation of polarization modes, showing a better energy invariance.The distributions of OAM states of the reflected and transmitted beams for different polarization modes are diverse as well, and the derived OAM states of the transmitted beam for radial polarization present a focusing effect, concentrating on the state between two predominant OAM states.展开更多
The concept of partially coherent nonparaxial modified Bessel Gauss (MBG) beams is proposed. Based on the generalized Rayleigh-Sommerfeld diffraction integral, the analytical propagation equations of nonparaxial MBG...The concept of partially coherent nonparaxial modified Bessel Gauss (MBG) beams is proposed. Based on the generalized Rayleigh-Sommerfeld diffraction integral, the analytical propagation equations of nonparaxial MBG beams in free space are derived and analysed, and some special cases are discussed. In particular, under the paraxial approximation our results reduce to the corresponding paraxial ones. Numerical calculation examples are given to illustrate the dependence of intensity and spectral degree of coherence on the beam order m, ζ and f parameters, and to compare the difference between the paraxial and nonparaxial results.展开更多
We analytically and numerically study the local dynamical characteristics of the Bessel beams reflected from an airglass interface near the Brewster angle.A Taylor series expansion based on the angular spectrum compon...We analytically and numerically study the local dynamical characteristics of the Bessel beams reflected from an airglass interface near the Brewster angle.A Taylor series expansion based on the angular spectrum component is applied to correct the reflection coefficients near the Brewster angle.Using a hybrid angular spectrum representation and vector potential method,the explicit expressions for the electric and magnetic field components of the reflected Bessel beams are derived analytically under paraxial approximation.The local energy,momentum,spin,and orbital angular momentum of the Bessel beams upon reflection near the Brewster angle are examined numerically by utilizing a canonical approach.Numerical simulation results show that the properties of these dynamical quantities for the Bessel beams near Brewster angle incidence change abruptly,and are significantly affected by their topological charge,half-cone angle,and polarization state.The present study has its importance in understanding the dynamical aspects of optical beams with vortex structure and diffraction-free nature during the reflection process.展开更多
We report on a method to achieve multiple microscopic particles being trapped and manipulated transversely by using a size-tunable Bessel beam generated by cross-phase modulation(XPM)based on the thermal nonlinear opt...We report on a method to achieve multiple microscopic particles being trapped and manipulated transversely by using a size-tunable Bessel beam generated by cross-phase modulation(XPM)based on the thermal nonlinear optical effect.The results demonstrate that multiple polystyrene particles can be stably trapped simultaneously,and the number of the trapped particles can be controlled by varying the trapping beam power.In addition,the trapped particles can be manipulated laterally with micron-level precision by changing the size of J_(0)Bessel beam.This work provides a simple but efficient way to trap and manipulate multiple particles simultaneously,which would have potential applications in many fields such as cell sorting and transportation.展开更多
The transmission of terahertz(THz)Bessel vortex beams through a multi-layered anisotropic magnetized plasma slab is investigated by using a hybrid method of cylindrical vector wave functions(CVWFs)and Fourier transfor...The transmission of terahertz(THz)Bessel vortex beams through a multi-layered anisotropic magnetized plasma slab is investigated by using a hybrid method of cylindrical vector wave functions(CVWFs)and Fourier transform.On the basis of the electromagnetic boundary conditions on each interface,a cascade form of expansion coefficients of the reflected and transmitted fields is obtained.Taking a double Gaussian distribution of the plasma density as an example,the influences of the applied magnetic field,the incident angle and polarization mode of the incident beams on the magnitude,OAM mode and polarization of the transmitted beams are analyzed in detail.The results indicate that the applied magnetic field has a major effect upon the polarization state of the transmitted fields but not upon the transmitted OAM spectrum.The incident angle has a powerful influence upon both the amplitude profile and the OAM spectrum of the transmitted beam.Furthermore,for multiple coaxial vortex beams,an increase of the maximum value of the plasma density causes more remarkable distortion of both the profile and OAM spectrum of the transmitted beam.This research makes a stable foundation for the THz OAM multiplexing/demultiplexing technology in a magnetized plasma environment.展开更多
The scattering of an electromagnetic high-order Bessel trigonometric beam by several typical homogeneous dielec- tric particles is investigated. The incident beam is represented by the vector expressions in Cartesian ...The scattering of an electromagnetic high-order Bessel trigonometric beam by several typical homogeneous dielec- tric particles is investigated. The incident beam is represented by the vector expressions in Cartesian coordinates. The scattering problems involving homogeneous dielectric particles are formulated with the surface integral equation method. As an example, the effects of the beam's parameters on the differential scattering cross section for a sphere are analyzed in detail. Then the numerical results for the scattering of a high-order Bessel trigonometric beam by three typical nonspherieal particles, including a spheroid, a cylinder, and a cube, are presented.展开更多
<div style="text-align:justify;"> We developed a Bessel-beam photoacoustic microscopical simulation platform by using the k-Wave: MATLAB toolbox. The simulation platform uses the ring slit method to ge...<div style="text-align:justify;"> We developed a Bessel-beam photoacoustic microscopical simulation platform by using the k-Wave: MATLAB toolbox. The simulation platform uses the ring slit method to generate Bessel beam. By controlling the inner and outer radius of the ring slit, the depth-of-field (DoF) of Bessel beam can be controlled. And the large volumetric image is obtained by point scanning. The simulation experiments on blood vessels were carried out to demonstrate the feasibility of the simulation platform. This simulation work can be used as an auxiliary tool for the research of Bessel-beam photoacoustic microscopy. </div>展开更多
We report the realization of broadband reflected acoustic focusing lenses based on thermoacoustic phased arrays of Bessel-like beams, in which the units of phase manipulation are composed of three rigid insulated boun...We report the realization of broadband reflected acoustic focusing lenses based on thermoacoustic phased arrays of Bessel-like beams, in which the units of phase manipulation are composed of three rigid insulated boundaries and a thermal insulation film in air with different temperatures. Based on these units, we realize a reflected focusing lens which can focus reflected acoustic energy on a line, and its fractional bandwidth can reach about 0.29. In addition, we discuss the influences of the base angle of Bessel-like beam, the number of basic unit, and the variation of unit temperature on focusing performances in details. Furthermore, the reflected focusing lens for the cylindrical acoustic wave based on the Bessel-like beam is also demonstrated. The proposed focusing lens has the advantages of a broad working bandwidth, large focus size,and high robustness, which may provide possibilities for the design and application of acoustic lenses.展开更多
This paper reports the theoretical study of combining Z-scan technique with Gauss-Bessel (GB) beams beside a phase object (PO) to measure the third-order nonlinear susceptibility components. By using this method, ...This paper reports the theoretical study of combining Z-scan technique with Gauss-Bessel (GB) beams beside a phase object (PO) to measure the third-order nonlinear susceptibility components. By using this method, the sign of refractive index which depends on the shape of the close aperture Z-scan curve can be easily determined. Meanwhile, the magnitude of nonlinear coefficients can also be deduced by theoretical fit. The proposed method is advantageous for high sensitivity and imposes a lower stress in the cases of fragile materials, since small pulse energy is enough for the measurement of nonlinear coefficients. Predictions of the models are compared with Gaussian Z-scan measurement and GB Z-scan measurement. By using GB beams with a PO, the sensitivity of Z-scan measurements is found to be a factor of over 60 times greater than for Gaussian beams and 2 times greater than for Gaussian-Bessel beams.展开更多
We propose a new approach for generating a multiple focal spot segment of subwavelength size, by tight focusing of a phase modulated radially polarized Laguerre Bessel Gaussian beam. The focusing properties are invest...We propose a new approach for generating a multiple focal spot segment of subwavelength size, by tight focusing of a phase modulated radially polarized Laguerre Bessel Gaussian beam. The focusing properties are investigated theoretically by .vector diffraction theory. We observe that the focal segment with multiple focal structures is separated with different axial distances and a super long dark channel can be generated by properly tuning the phase of the incident radially polarized Laguerre Bessel Gaussian beam. We presume that such multiple focal patterns and high intense beam may find applications in atom optics, optical manipulations and multiple optical trapping.展开更多
The direct acceleration of electrons by using two linearly polarized crossed Bessel-Gaussian (BG) beams with equal frequency and amplitude in vacuum is proposed and studied. It is shown that two linearly polarized B...The direct acceleration of electrons by using two linearly polarized crossed Bessel-Gaussian (BG) beams with equal frequency and amplitude in vacuum is proposed and studied. It is shown that two linearly polarized BG beams of the same order (0 or 1) with a π-rad phase difference have a resultant non-zero longitudinal electric field on the z-axis and can be used, in principle, to accelerate electrons.展开更多
Based on the integral representation of the Bessel functions and the generating function of the Tricomi function, an analytical expression of the Wigner distribution function (WDF) for a coherent or partially cohere...Based on the integral representation of the Bessel functions and the generating function of the Tricomi function, an analytical expression of the Wigner distribution function (WDF) for a coherent or partially coherent Bessel Gaussian beam is presented. The reduced two-dimensional WDFs are also demonstrated graphically, which reveals the dependence of the reduced WDFs on the beam parameters.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11074038 and 11374051)
文摘In this paper, we extensively study the higher-order harmonic generation of the general limited diffraction m-th- order Bessel beam. The analysis is based on successive approximations of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. Asymptotic expansions are presented for higher-order harmonic Bessel beams in near and far fields. The validity of asymptotic approximation is also analyzed. The higher-order harmonic of the Bessel beam with the lowest zero-order is taken as a special example.
基金Project supported by the National Natural Science Foundation of China (Grant No.60977068)the Foundations of the State Key Laboratory for Transient Optical and Photonic Technology of Chinese Academy of Sciences (Grant No.SKL ST200912)
文摘We experimentally study the generation of a partially coherent non-diffractive beam by focusing a partially coherent vortex beam with an axieon. The investigation results show that when the partially coherent vortex beam is focused by the axicon, the beam is transferred into a partially coherent higher-order non-diffractive beam. In the non-diffractive zone, the transverse intensity distribution of the partially coherent higher-order non-diffractive beam is invariant during propagation. In addition, the range of the non-diffractive zone is related to the coherence of the partially coherent vortex beam. The poorer the coherence of the partially coherent vortex beam, the shorter the range of the non-diffractive zone.
基金The project supported by the National Natural Science Foundation of China(10172023)
文摘A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces. The global displacement components are of the Reddy theory and local components are of the internal first to third-order terms in each layer. A two-node beam element based on this theory is proposed. The solutions are compared with 3D-elasticity solutions. Numerical results show that present beam element has higher computational efficiency and higher accuracy.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62375140 and 62001249)the Open Research Fund of the National Laboratory of Solid State Microstructures (Grant No.M36055)。
文摘Orbital angular momentum(OAM), as a new degree of freedom, has recently been applied in holography technology.Due to the infinite helical mode index of OAM mode, a large number of holographic images can be reconstructed from an OAM-multiplexing hologram. However, the traditional design of an OAM hologram is constrained by the helical mode index of the selected OAM mode, for a larger helical mode index OAM mode has a bigger sampling distance, and the crosstalk is produced for different sampling distances for different OAM modes. In this paper, we present the design of the OAM hologram based on a Bessel–Gaussian beam, which is non-diffractive and has a self-healing property during its propagation. The Fourier transform of the Bessel–Gaussian beam is the perfect vortex mode that has the fixed ring radius for different OAM modes. The results of simulation and experiment have demonstrated the feasibility of the generation of the OAM hologram with the Bessel–Gaussian beam. The quality of the reconstructed holographic image is increased, and the security is enhanced. Additionally, the anti-interference property is improved owing to its self-healing property of the Bessel-OAM holography.
文摘The Bessel beam,characterized by its unique non-diffracting properties,holds promising applications.In this paper,we provide a detailed introduction and investigation into the theory and research of the Bessel beam,with a special focus on its generation and applications in the near-field region.We provide an introduction to the concepts,properties,and foundational theories of the Bessel beam.Additionally,the current study on generating Bessel beams and their applications is categorized and discussed,and potential research challenges are proposed in this paper.This review serves as a solid foundation for researchers to understand the concept of the Bessel beam and explore its potential applications.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB301801)the National Natural Science Foundation of China(Grant Nos.10974039,11047153,10904027,61008039,and 11104049)+1 种基金the Doctoral Program of Higher Education of China(Grant No.20102302120009)the Fundamental Research Funds for the Central Universities of China(Grant No.2009038)
文摘A generalized type of spiral Bessel beam has been demonstrated by using a spatially displaced helical axicon (HA). The topological charge of the spiraling Bessel beams is determined by the order of the input Laguerre Gaussian (LG) beam and the topological charge of the HA. The obtained spiraling Bessel beams have an LG type of modulation along their propagation direction and exhibit annihilation-reconstruction properties. Theoretical analysis is presented, including that of the stability, propagation distance, topological charge, and spiraling dynamic characteristics. The mathematical and numerical results show that the propagation distance and helical revolution of the spiraling Bessel beams can be controlled through choosing appropriate radius of the HA.
基金This work was supported in part by the National Key R&D Program of China under Grant No.2018YFC0910600the National Natural Science Foundation of China under Grant Nos.81871397,81627807,11727813,91859109+2 种基金the Shaanxi Science Fund for Distinguished Young Scholars under Grant No.2020JC-27the Shaanxi Young Top-notch Talent of"Special Support Program"the Best Funded Projects for the Scientific and Technological Activities for Excellent Overseas Researchers in Shaanxi Province(2017017)..
文摘Stimulated Raman scattering(SRS)microscopy has the ability of noninvasive imaging of specific chemical bonds and been increasingly used in biomedicine in recent years.Two pulsed Gaussian beams are used in traditional SRS microscopes,providing with high lateral and axial spatial resolution.Because of the tight focus of the Gaussian beam,such an SRS microscopy is difficult to be used for imaging deep targets in scattering tissues.The SRS microscopy based on Bessel beams can solve the imaging problem to a certain extent.Here,we establish a theoretical model to calculate the SRS signal excited by two Bessel beams by integrating the SRS signal generation theory with the fractal propagation method.The fractal model of refractive index turbulence is employed to generate the scattering tissues where the light transport is modeled by the beam propagation method.We model the scattering tissues containing chemicals,calculate the SRS signals stimulated by two Bessel beams,discuss the influence of the fractal model parameters on signal generation,and compare them with those generated by the Gaussian beams.The results show that,even though the modeling parameters have great influence on SRS signal generation,the Bessel beams-based SRS can generate signals in deeper scattering tissues.
基金supported by National Natural Science Foundation of China (Grant No 60477041)Key Project of Science and Technology of Fujian Province of China (Grant No 2007H0027)
文摘This paper studies the propagation properties of Gauss-Bessel beams in a turbulent atmosphere. Based on the extended Huygens-Fresnel principle, it derives the intensity distribution expression for such beams propagating in a turbulent atmosphere. Then the influence of turbulence and source beam parameters on the beam propagation is studied in great detail. It finds that the intensity distribution of Gauss-Bessel beams will change into Gaussian profile in a turbulent atmosphere, and that stronger turbulence and smaller topological charges will lead to a faster changing.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61801349,61875156,and 61571355)the 111 Project,China(Grant No.B17035)
文摘A comparison of differently polarized Bessel vortex beams propagating through a uniaxial anisotropic slab is discussed in terms of the vector wave function expansions.The magnitude profiles of electric field components, the transformation of polarization modes, and the distributions of orbital angular momentum(OAM) states of the reflected and transmitted beams for different incident angles are numerically simulated.The results indicate that the magnitude profiles of electric field components for different polarization modes are distinct from each other and have a great dependence on the incident angle,thus the transformation of polarization modes which reflects the change of energy can be affected largely.As compared to the x and circular polarization incidences, the reflected and transmitted beams for the radial polarization incidence suffer the fewest transformation of polarization modes, showing a better energy invariance.The distributions of OAM states of the reflected and transmitted beams for different polarization modes are diverse as well, and the derived OAM states of the transmitted beam for radial polarization present a focusing effect, concentrating on the state between two predominant OAM states.
基金Project supported by the National High Technology Development Program of China (Grant No 823070) and the National Natural Science Foundation of China (Grant No 10574097).
文摘The concept of partially coherent nonparaxial modified Bessel Gauss (MBG) beams is proposed. Based on the generalized Rayleigh-Sommerfeld diffraction integral, the analytical propagation equations of nonparaxial MBG beams in free space are derived and analysed, and some special cases are discussed. In particular, under the paraxial approximation our results reduce to the corresponding paraxial ones. Numerical calculation examples are given to illustrate the dependence of intensity and spectral degree of coherence on the beam order m, ζ and f parameters, and to compare the difference between the paraxial and nonparaxial results.
基金Project supported by the Natural Science Foundation of Shaanxi Province,China(Grant No.2020JM-210)the National Natural Science Foundation of China(Grant No.61675159).
文摘We analytically and numerically study the local dynamical characteristics of the Bessel beams reflected from an airglass interface near the Brewster angle.A Taylor series expansion based on the angular spectrum component is applied to correct the reflection coefficients near the Brewster angle.Using a hybrid angular spectrum representation and vector potential method,the explicit expressions for the electric and magnetic field components of the reflected Bessel beams are derived analytically under paraxial approximation.The local energy,momentum,spin,and orbital angular momentum of the Bessel beams upon reflection near the Brewster angle are examined numerically by utilizing a canonical approach.Numerical simulation results show that the properties of these dynamical quantities for the Bessel beams near Brewster angle incidence change abruptly,and are significantly affected by their topological charge,half-cone angle,and polarization state.The present study has its importance in understanding the dynamical aspects of optical beams with vortex structure and diffraction-free nature during the reflection process.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61805200,51927804,and12104365)the Natural Science Foundation of Shaanxi Province,China(Grant No.2020JM-432)+1 种基金the Fund for Young Star in Science and Technology of Shaanxi Province,China(Grant No.2021KJXX-27)the Fund from the Education Department of Shaanxi Province,China(Grant No.21JK0915)。
文摘We report on a method to achieve multiple microscopic particles being trapped and manipulated transversely by using a size-tunable Bessel beam generated by cross-phase modulation(XPM)based on the thermal nonlinear optical effect.The results demonstrate that multiple polystyrene particles can be stably trapped simultaneously,and the number of the trapped particles can be controlled by varying the trapping beam power.In addition,the trapped particles can be manipulated laterally with micron-level precision by changing the size of J_(0)Bessel beam.This work provides a simple but efficient way to trap and manipulate multiple particles simultaneously,which would have potential applications in many fields such as cell sorting and transportation.
基金supported by National Natural Science Foundation of China(Nos.62171355,61801349,and 61875156)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2020JM-192)+1 种基金the Stable Support Project of Basic Scientific Research Institutes(Nos.A131901W14,A132001W12)the Science and Technology Foundation of State Key Laboratory of Electromagnetic Environment,and the 111 Project(No.B17035)。
文摘The transmission of terahertz(THz)Bessel vortex beams through a multi-layered anisotropic magnetized plasma slab is investigated by using a hybrid method of cylindrical vector wave functions(CVWFs)and Fourier transform.On the basis of the electromagnetic boundary conditions on each interface,a cascade form of expansion coefficients of the reflected and transmitted fields is obtained.Taking a double Gaussian distribution of the plasma density as an example,the influences of the applied magnetic field,the incident angle and polarization mode of the incident beams on the magnitude,OAM mode and polarization of the transmitted beams are analyzed in detail.The results indicate that the applied magnetic field has a major effect upon the polarization state of the transmitted fields but not upon the transmitted OAM spectrum.The incident angle has a powerful influence upon both the amplitude profile and the OAM spectrum of the transmitted beam.Furthermore,for multiple coaxial vortex beams,an increase of the maximum value of the plasma density causes more remarkable distortion of both the profile and OAM spectrum of the transmitted beam.This research makes a stable foundation for the THz OAM multiplexing/demultiplexing technology in a magnetized plasma environment.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61308026 and 61431010the Fundamental Research Funds for the Central Universities of China under Grant No K5051307003
文摘The scattering of an electromagnetic high-order Bessel trigonometric beam by several typical homogeneous dielec- tric particles is investigated. The incident beam is represented by the vector expressions in Cartesian coordinates. The scattering problems involving homogeneous dielectric particles are formulated with the surface integral equation method. As an example, the effects of the beam's parameters on the differential scattering cross section for a sphere are analyzed in detail. Then the numerical results for the scattering of a high-order Bessel trigonometric beam by three typical nonspherieal particles, including a spheroid, a cylinder, and a cube, are presented.
文摘<div style="text-align:justify;"> We developed a Bessel-beam photoacoustic microscopical simulation platform by using the k-Wave: MATLAB toolbox. The simulation platform uses the ring slit method to generate Bessel beam. By controlling the inner and outer radius of the ring slit, the depth-of-field (DoF) of Bessel beam can be controlled. And the large volumetric image is obtained by point scanning. The simulation experiments on blood vessels were carried out to demonstrate the feasibility of the simulation platform. This simulation work can be used as an auxiliary tool for the research of Bessel-beam photoacoustic microscopy. </div>
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774137 and 51779107)the Six-Talent Peaks Project in Jiangsu Province,China(Grant No.GDZB-019)+2 种基金the China Postdoctoral Science Foundation(Grant No.2017M621643)the Natural Science Foundation of Jiangsu Higher Educational Institutions of China(Grant No.18KJB140003)the Practice Innovation Training Program Projects for Jiangsu University(Grant No.201710299023Z)and for the Industrial Center of Jiangsu University
文摘We report the realization of broadband reflected acoustic focusing lenses based on thermoacoustic phased arrays of Bessel-like beams, in which the units of phase manipulation are composed of three rigid insulated boundaries and a thermal insulation film in air with different temperatures. Based on these units, we realize a reflected focusing lens which can focus reflected acoustic energy on a line, and its fractional bandwidth can reach about 0.29. In addition, we discuss the influences of the base angle of Bessel-like beam, the number of basic unit, and the variation of unit temperature on focusing performances in details. Furthermore, the reflected focusing lens for the cylindrical acoustic wave based on the Bessel-like beam is also demonstrated. The proposed focusing lens has the advantages of a broad working bandwidth, large focus size,and high robustness, which may provide possibilities for the design and application of acoustic lenses.
基金supported by the National Natural Science Fundation of China (Grant No. 90922007)
文摘This paper reports the theoretical study of combining Z-scan technique with Gauss-Bessel (GB) beams beside a phase object (PO) to measure the third-order nonlinear susceptibility components. By using this method, the sign of refractive index which depends on the shape of the close aperture Z-scan curve can be easily determined. Meanwhile, the magnitude of nonlinear coefficients can also be deduced by theoretical fit. The proposed method is advantageous for high sensitivity and imposes a lower stress in the cases of fragile materials, since small pulse energy is enough for the measurement of nonlinear coefficients. Predictions of the models are compared with Gaussian Z-scan measurement and GB Z-scan measurement. By using GB beams with a PO, the sensitivity of Z-scan measurements is found to be a factor of over 60 times greater than for Gaussian beams and 2 times greater than for Gaussian-Bessel beams.
文摘We propose a new approach for generating a multiple focal spot segment of subwavelength size, by tight focusing of a phase modulated radially polarized Laguerre Bessel Gaussian beam. The focusing properties are investigated theoretically by .vector diffraction theory. We observe that the focal segment with multiple focal structures is separated with different axial distances and a super long dark channel can be generated by properly tuning the phase of the incident radially polarized Laguerre Bessel Gaussian beam. We presume that such multiple focal patterns and high intense beam may find applications in atom optics, optical manipulations and multiple optical trapping.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574097).
文摘The direct acceleration of electrons by using two linearly polarized crossed Bessel-Gaussian (BG) beams with equal frequency and amplitude in vacuum is proposed and studied. It is shown that two linearly polarized BG beams of the same order (0 or 1) with a π-rad phase difference have a resultant non-zero longitudinal electric field on the z-axis and can be used, in principle, to accelerate electrons.
文摘Based on the integral representation of the Bessel functions and the generating function of the Tricomi function, an analytical expression of the Wigner distribution function (WDF) for a coherent or partially coherent Bessel Gaussian beam is presented. The reduced two-dimensional WDFs are also demonstrated graphically, which reveals the dependence of the reduced WDFs on the beam parameters.