A simple electrochemical method for the in situ preparation of homogeneously dispersed gold-polyaniline core/shell nanocomposite particles with controlled size on the highly oriented pyrolytic graphite(HOPG)was demons...A simple electrochemical method for the in situ preparation of homogeneously dispersed gold-polyaniline core/shell nanocomposite particles with controlled size on the highly oriented pyrolytic graphite(HOPG)was demonstrated.The HOPG surface was modified preferentially by covalent bonding of a two-dimensional 4-aminophenyl monolayer employing diazonium chemistry.AuCl4 -ions were attached to the Ar-NH2 termination and reduced electrochemically.This results in the formation of Au nuclei that could be further grown into gold nanoparticles.The formation of polyaniline as the shell wrap of Au nanoparticle was established by localized electro-polymerization.These core-shell nanocomposites prepared were characterized by AFM and cyclic voltammetry.The results show that the gold-polyaniline core-shell composites on HOPG have a mean particle size of 100 nm in diameter and the polyaniline shell thickness is about 15 nm.展开更多
Superperiodic feature was observed by scanning tunneling microscopy (STM) on the surface of highly oriented pyrolytic graphite (HOPG) on which silicon was sputtered. The superlattice was analyzed by the moire pattern ...Superperiodic feature was observed by scanning tunneling microscopy (STM) on the surface of highly oriented pyrolytic graphite (HOPG) on which silicon was sputtered. The superlattice was analyzed by the moire pattern hypothesis, and the lattice constant is 7.03 nm. For the superlattice, the observed boundaries between the superlattice and the normal graphite areas were zigzag, which was in good agreement with the result predicted theoretically. In addition, the observed lattice constants varied slightly in the superperiodic feature area. This implies the role of intralayer strain in the formation of the observed superlattice on the graphite surface.展开更多
Electron microscope and electron diffraction have been used to study epitaxial crystallization of poly(ε-caprolactone)(PCL).on highly oriented film of isotactic polypropylene(iPP).The results obtained from bright fie...Electron microscope and electron diffraction have been used to study epitaxial crystallization of poly(ε-caprolactone)(PCL).on highly oriented film of isotactic polypropylene(iPP).The results obtained from bright field(BF)electron micrograph and electron diffraction indicate that the PCL can epitaxially grow on iPP substrate and form cross-hatched lamellar texture.The c axes of PCL are ±500 apart from the c axes of iPP. The contact planes of the two kinds of crystals are(010)of iPP and(100) of PCL,respectively.展开更多
Highly oriented pyrolytic graphite (HOPG) is the substrate often used in scanningtunneling Ancroscopy (STM). It is well known that STM images of the basal plane of HOPG showsome unusual structUral patterns. In this le...Highly oriented pyrolytic graphite (HOPG) is the substrate often used in scanningtunneling Ancroscopy (STM). It is well known that STM images of the basal plane of HOPG showsome unusual structUral patterns. In this letter, we present in situ STM images of some unusualfeatures on HOPG in solutions, including normal or abnormal chain-like featUres and hexagonal oroblique superPeriodic structures. These features emerge both next to and apart from the step ofHOPG.展开更多
Highly oriented graphite-based composites have attracted great attention because of their high thermal conductivity(TC),but the low mechanical properties caused by the inhomogeneous distribution and discontinuity of r...Highly oriented graphite-based composites have attracted great attention because of their high thermal conductivity(TC),but the low mechanical properties caused by the inhomogeneous distribution and discontinuity of reinforcements restrict the wide applications.Herein,continuous SiC ceramic skeleton reinforced highly oriented graphite flake(SiC/GF)composites were successfully prepared by combining vacuum filtration and spark plasma sintering.The effect of SiC concentration on the microstructure,flexural strength,and thermophysical properties of the composites was investigated.The GF grains in the composites exhibited high orientation with a Lotgering factor of>88%when the SiC concentration was≤30 wt%,and the SiC skeleton became continuous with the SiC concentration reaching 20 wt%.The formation of continuous SiC skeleton improved the flexural strength of the composites effectively while keeping the TC in a high level.Especially,the composites with 30 wt%SiC exhibited the flexural strength up to 105 MPa,and the specific TC reaching 0.118 W·m^(2)·K^(−1)·kg-1.The composites with excellent flexural strength and thermophysical properties showed significant promise for thermal management applications.展开更多
Oriented aggregation of nanoparticles has been accomplished by means of solid state reac- tion. Non-crystallized and crystallized ZnO nanoparticles/clusters could be accommodated in the lamellar spacing of inorganic-o...Oriented aggregation of nanoparticles has been accomplished by means of solid state reac- tion. Non-crystallized and crystallized ZnO nanoparticles/clusters could be accommodated in the lamellar spacing of inorganic-organic composite, which were prepared by thermolysis of layered solid zinc-oleate complex at 260 and 300 ℃ in air, respectively. High-resolution transmission electron microscopy and selected area electron diffraction patterns indicate that aggregates are single crystals with various defects. The photoluminescence excitation spectra of both samples show two bands at 272 and 366 nm. The former may originate from electron transfer from valence band to conduction band in ZnO clusters composed of less than 200 ZnO molecules (2R〈2 nm).展开更多
Electromagnetic cooperative strategy has been presented as a mainstream approach that can effectively optimize the matching thickness of dielectric loss dominant system.However,it is still challenging for dielectric–...Electromagnetic cooperative strategy has been presented as a mainstream approach that can effectively optimize the matching thickness of dielectric loss dominant system.However,it is still challenging for dielectric–magnetic loss coexisting-type absorber to develop electromagnetic wave(EMW)performance with ultra-low matching thickness(≤1 mm).Breaking the limitation of traditional electromagnetic response at microscopic/mesoscopic scale,a ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering.The highly oriented Ni chains with unique macroscopic morphology(~1 cm in length)were achieved via a special magnetic field-induced growth.Strong magnetic coupling was observed in the Ni chains confirmed by the micromagnetic simulation.The deductive calculation validates that maintaining high value of electromagnetic parameters at high frequencies is the prerequisites of ultrathin absorber.The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton,resulting in the impressive permittivity even at high frequencies.Consequently,the aerogel exhibits a remarkable EMW performance at an ultrathin thickness of 1 mm.Thus,based on the modulation of electromagnetic parameters,this work proposed a macroscopic ordered structure with the electromagnetic cooperative effect useful to develop a suitable strategy for achieving ultrathin EMW absorbers.展开更多
Highly oriented pyrolytic graphites are irradiated with 40.5-Me V and 67.7-Me V ^112Sn-ions in a wide range of fluences: 1×10^11 ions/cm^2–1×10^14ions/cm^2. Raman spectra in the region between 1200 cm^-1 a...Highly oriented pyrolytic graphites are irradiated with 40.5-Me V and 67.7-Me V ^112Sn-ions in a wide range of fluences: 1×10^11 ions/cm^2–1×10^14ions/cm^2. Raman spectra in the region between 1200 cm^-1 and 3500cm^-1 show that the disorder induced by Sn-ions increases with ion fluence increasing. However, for the same fluence, the amount of disorder is greater for 40.5-Me V Sn-ions than that observed for 67.7-Me V Sn-ions, even though the latter has a slightly higher value for electronic energy loss. This is explained by the ion velocity effect. Importantly, ~ 3-cm^-1frequency shift toward lower wavenumber for the D band and ~ 6-cm^-1 shift toward lower wavenumber for the 2D band are observed at a fluence of 1×10^14 ions/cm^2, which is consistent with the scenario of radiation-induced strain. The strain formation is interpreted in the context of inelastic thermal spike model, and the change of the 2D band shape at high ion fluence is explained by the accumulation of stacking faults of the graphene layers activated by radiation-induced strain around ion tracks. Moreover,the hexagonal structure around the ion tracks is observed by scanning tunneling microscopy, which confirms that the strains near the ion tracks locally cause electronic decoupling of neighboring graphene layers.展开更多
Highly oriented pyrolitic graphite (HOPG) has high X-ray diffraction efficiency due to its unique mosaic crystal structure, and thus is very suitable for its application to X-ray Thomson scattering measurement of so...Highly oriented pyrolitic graphite (HOPG) has high X-ray diffraction efficiency due to its unique mosaic crystal structure, and thus is very suitable for its application to X-ray Thomson scattering measurement of solid-density plasmas. In this article, by using the K-shell X-ray source from laser-produced Ti plasma, the properties of the HOPG spectrometer are characterized and compared with those of the flat Pentaerythritol (PET) spectrometer. The results show that the diffraction efficiency of the HOPG spectrometer under focusing condition is an order higher than that of the PET spectrometer, while the spectral resolution of the HOPG is about 320, high enough to be used in the measurement of X-ray Thomson scattering spectra.展开更多
Polycrystalline PZT,PLT and PbTiO ferroelectric thin films,highly oriented PbTiOferroelectric thin films and epitaxial growth PZT,PLT ferroelectric thin films with per-ovskite-type structure were prepared by the sol-g...Polycrystalline PZT,PLT and PbTiO ferroelectric thin films,highly oriented PbTiOferroelectric thin films and epitaxial growth PZT,PLT ferroelectric thin films with per-ovskite-type structure were prepared by the sol-gel method.Ferroelectric properties of theceramic thin films were confirmed by P-E hysteresis loops.The pyroelectric and opticalproperties were also measured.展开更多
In comparison to inorganic counterparts,organic semiconducting(OSC)crystalline films are promising for building large-area and flexible ionizing radiation detectors for X-ray imaging or dosimetry due to their tissue e...In comparison to inorganic counterparts,organic semiconducting(OSC)crystalline films are promising for building large-area and flexible ionizing radiation detectors for X-ray imaging or dosimetry due to their tissue equivalence,simple processing and large-scale production accessibility.Fabrication processes,how-ever,hinder the ability to generate aligned and large-area films with high carrier mobility.In this work,the space-confined melt process is used to produce highly orientated 4HCB(4-hydroxycyanobenzene)OSC films with a large area of 15×18 mm^(2).The out-of-plane direction of the 4HCB film is<001>,and the benzene rings are found to be extensively overlapped inside the in-plane direction,according to the XRD patterns.The film exhibits a high resistivity up to 1012cm,and high hole mobility of 10.62 cm^(2)V^(−1)s^(−1).Furthermore,the 4HCB(80μm-thick film)based X-ray detectors can achieve a sensitivity of 93μC Gy air^(−1) cm^(−2)and on/offratio of 157.The device also shows steady flexibility,with no degradation in detecting function after 100 cycles of bending.Finally,the proposed 4HCB film detectors demonstrated a high-resolution X-ray imaging capability.The imaging of several materials with sharp edges(copper and polytetrafluoroethylene)has been obtained.This work has developed a fast but efficient approach for producing large-area,highly oriented OSC films for high-performance X-ray detectors.展开更多
We report the first atomically resolved scanning tunneling microscope (STM) imaging in a water-cooled magnet (WM), for which extremely harsh vibrations and noise have been the major challenge. This custom WM-STM f...We report the first atomically resolved scanning tunneling microscope (STM) imaging in a water-cooled magnet (WM), for which extremely harsh vibrations and noise have been the major challenge. This custom WM-STM features an ultra-rigid and compact scan head in which the coarse approach is driven by our newly designed TunaDrive piezoelectric motor. A three-level spring hanging system is used for vibration isolation. Room-temperature raw-data images of graphite with quality atomic resolution were acquired in the presence of very strong magnetic fields, with a field strength up to 27 T, in a 32-mm-diameter bore WM with a maximum field strength of 27.5 T at a power rating of 10 MW, calibrated by nuclear magnetic resonance (NMR). This record field strength of 27 T exceeds the maximal field strength achieved by the conventional supercon- ducting magnets. Besides, our WM-STM has paved the way to STM imaging using a 45 T, 32-mm-diameter bore hybrid magnet, which is the world's flagship magnet, producing the strongest steady magnetic field.展开更多
A detailed stratigraphic investigation of the intercalation mechanism when graphite electrodes are immersed inside diluted perchloric(HClO_(4))and sulfuric(H_(2)SO_(4))electrolytes is obtained by comparing results whe...A detailed stratigraphic investigation of the intercalation mechanism when graphite electrodes are immersed inside diluted perchloric(HClO_(4))and sulfuric(H_(2)SO_(4))electrolytes is obtained by comparing results when graphite crystals are simply immersed in the same acid solutions.By combining time-of-flight secondary ion mass spectrometry(ToF-SIMS)and in-situ atomic force microscopy(AFM),we provide a picture of the chemical species involved in the intercalation reaction.The depth intensity profile of the ion signals along the electrode crystal clearly shows a more complex mechanism for the intercalation process,where the local morphology of the basal plane plays a crucial role.Solvated anions are mostly located within the first tens of nanometers of graphite,but electrolytes also diffuse inside the buried layers for hundreds of nanometers,the latter process is also aided by the presence of mesoscopic crystal defects.Residual material from the electrolyte solution was found localized in well-defined circular spots,which represent preferential interaction areas.Interestingly,blister-like micro-structures similar to those observed on the highly oriented pyrolytic graphite(HOPG)surface were found in the buried layers,confirming the equivalence of the chemical condition on the graphite surface and in the underneath layers.展开更多
A comprehensive picture of the initial stages of silicene growth on graphite is drawn.Evidence is shown that quasiparticle interferences play a crucial role in the formation of the observed silicene configurations.We ...A comprehensive picture of the initial stages of silicene growth on graphite is drawn.Evidence is shown that quasiparticle interferences play a crucial role in the formation of the observed silicene configurations.We propose,on one hand,that the charge modulations caused by those quantum interferences serve as templates and guide the incoming Si atoms to self-assemble to the unique(√3 x√3)R30°honeycomb atomic arrangement.On the other hand,their limited extension limits the growth to about 150 Si atoms under our present deposition conditions.The here proposed electrostatic interaction finally explains the unexpected stability of the observed silicene islands over time and with temperature.Despite the robust guiding nature of those quantum interferences during the early growth phase,we demonstrate that the window of experimental conditions for silicene growth is quite narrow,making it an extremely challenging experimental task.Finally,it is shown that the experimentally observed threedimensional silicon clusters might very well be the simple result of the end of the silicene growth resulting from the limited extent of the quasi-particle interferences.展开更多
In the present work we develop an electrochemical assisted method to form nanopores on the surface of highly oriented pyrolytic graphite(HOPG),which was accomplished by a simple electrochemical route and a scalable na...In the present work we develop an electrochemical assisted method to form nanopores on the surface of highly oriented pyrolytic graphite(HOPG),which was accomplished by a simple electrochemical route and a scalable nanomaterial,carbon nanodots,without applying high voltages,high temperatures or toxic reagents.HOPG electrodes are in a solution of N-enrich carbon nanodots in acidic media and the potential scans applied on HOPG lead to the formation of a spatially inhomogeneous porous surface.The diameter of the resulting nanopores can be tuned by controlling the number of electrochemical reduction cycles.The resulting nanoporous surfaces are characterized by atomic force microscopy,Raman spectroscopy,scanning electrochemical microscopy,electrochemical impedance spectroscopy and electrochemistry.These nanoporous HOPG showed high capacitance.Hence the potential of these surfaces to the development of energy storage devices is demonstrated.展开更多
Automation is the utilization of control techniques together with other information technology to control industrial processes, reducing the need for human intervention. It plays a highly important role in social and ...Automation is the utilization of control techniques together with other information technology to control industrial processes, reducing the need for human intervention. It plays a highly important role in social and economy as well as in daily life. Control theory is the theory of automation, and is an interdisciplinary branch of engineering and mathematics, examining the behavior of dynamical systems. China has a long history of manufacturing automatic devices. In recent years, some rapid progresses in control theory have been made in China. Many new theories and new methodologies have been developed to meet the increasing demands in industry, agriculture, defense, and other social sectors. Contemporary sciences such as complexity, systems biology, quantum technologies, have also found their close links to control theories and technologies. On the other hand, control theory itself has many unsolved fundamental problems requiring further studies and investigation. This paper is to review the development and progress that have been made in all these aspects in China. Some remarks on the future development of control theory are also presented.展开更多
In this paper,the fabrication of a highly orientated Bi_(2)Fe_(4)O_(9)(BFO)photoelectrode in the presence of two-dimensional(2D)graphene oxide(GO)was reported.It was found that the GO can be used as a template for con...In this paper,the fabrication of a highly orientated Bi_(2)Fe_(4)O_(9)(BFO)photoelectrode in the presence of two-dimensional(2D)graphene oxide(GO)was reported.It was found that the GO can be used as a template for controlling the growth of BFO,and the nanoplate composites of BFO/reduced graphene oxide(RGO)with a high orientation can be fabricated.The thickness of the nanoplates became thinner as the ratio of GO increased.As a result,the ferroelectric spontaneous polarization unit arranges itself in the space in a periodic manner,leading to the formation of a polarization field along a special direction.Therefore,the created built-in electric field of the nanoplate composites of BFO/RGO is improved upon the increase of the amount of RGO.As expected,carrier separation is enhanced by the built-in electric field,therefore substantially enhancing the photoelectrochemical(PEC)activity of water splitting compared to pure BFO under the irradiation of visible-light.展开更多
We propose an approach for tuning the three-dimensional polarization of a focusing subwavelength spot by a high numerical aperture objective. The incident beams are composed of a radially polarized beam, an azimuthall...We propose an approach for tuning the three-dimensional polarization of a focusing subwavelength spot by a high numerical aperture objective. The incident beams are composed of a radially polarized beam, an azimuthally polarized beam, and a linearly polarized beam with three different weighting factors, respectively. A specially designed adjustable amplitude angular selector is also inserted at the back aperture of the objective for tuning the polarization azimuthally. It is shown that any desired overall polarization orientation can be obtained. We calculated the overall polarization orientation in the focal volume. It is found that the polar angle of the overall polarization orientation can be arbitrarily tuned by the combination of a radially polarized beam and a linearly polarized beam with different weighting factors, and the azimuthal angle can be tuned by rotating the orientation of the linearly polarized beam azimuthally.展开更多
基金Project(50721003)supported by the Creative Research Group of National Natural Science Foundation of ChinaProject(50825102)supported by the National Science Fund for Distinguished Young Scholars,China
文摘A simple electrochemical method for the in situ preparation of homogeneously dispersed gold-polyaniline core/shell nanocomposite particles with controlled size on the highly oriented pyrolytic graphite(HOPG)was demonstrated.The HOPG surface was modified preferentially by covalent bonding of a two-dimensional 4-aminophenyl monolayer employing diazonium chemistry.AuCl4 -ions were attached to the Ar-NH2 termination and reduced electrochemically.This results in the formation of Au nuclei that could be further grown into gold nanoparticles.The formation of polyaniline as the shell wrap of Au nanoparticle was established by localized electro-polymerization.These core-shell nanocomposites prepared were characterized by AFM and cyclic voltammetry.The results show that the gold-polyaniline core-shell composites on HOPG have a mean particle size of 100 nm in diameter and the polyaniline shell thickness is about 15 nm.
基金The authors thank the National Natural Science Foundation of China for support by two grants:No.50025204 and No.59895156.
文摘Superperiodic feature was observed by scanning tunneling microscopy (STM) on the surface of highly oriented pyrolytic graphite (HOPG) on which silicon was sputtered. The superlattice was analyzed by the moire pattern hypothesis, and the lattice constant is 7.03 nm. For the superlattice, the observed boundaries between the superlattice and the normal graphite areas were zigzag, which was in good agreement with the result predicted theoretically. In addition, the observed lattice constants varied slightly in the superperiodic feature area. This implies the role of intralayer strain in the formation of the observed superlattice on the graphite surface.
文摘Electron microscope and electron diffraction have been used to study epitaxial crystallization of poly(ε-caprolactone)(PCL).on highly oriented film of isotactic polypropylene(iPP).The results obtained from bright field(BF)electron micrograph and electron diffraction indicate that the PCL can epitaxially grow on iPP substrate and form cross-hatched lamellar texture.The c axes of PCL are ±500 apart from the c axes of iPP. The contact planes of the two kinds of crystals are(010)of iPP and(100) of PCL,respectively.
文摘Highly oriented pyrolytic graphite (HOPG) is the substrate often used in scanningtunneling Ancroscopy (STM). It is well known that STM images of the basal plane of HOPG showsome unusual structUral patterns. In this letter, we present in situ STM images of some unusualfeatures on HOPG in solutions, including normal or abnormal chain-like featUres and hexagonal oroblique superPeriodic structures. These features emerge both next to and apart from the step ofHOPG.
基金This work was supported by the National Natural Science Foundation of China(Nos.51872222 and 92163112)the National Key R&D Program of China(No.2017YFB0310400)+1 种基金the Shaanxi Innovation Capacity Support Program(No.2018TD-031)the Research on Multi-Chip Parallel Current Sharing Technology of Power Electronic Devices Based on Electric-Thermal Optimization(No.SGAH0000KJJS1900437).
文摘Highly oriented graphite-based composites have attracted great attention because of their high thermal conductivity(TC),but the low mechanical properties caused by the inhomogeneous distribution and discontinuity of reinforcements restrict the wide applications.Herein,continuous SiC ceramic skeleton reinforced highly oriented graphite flake(SiC/GF)composites were successfully prepared by combining vacuum filtration and spark plasma sintering.The effect of SiC concentration on the microstructure,flexural strength,and thermophysical properties of the composites was investigated.The GF grains in the composites exhibited high orientation with a Lotgering factor of>88%when the SiC concentration was≤30 wt%,and the SiC skeleton became continuous with the SiC concentration reaching 20 wt%.The formation of continuous SiC skeleton improved the flexural strength of the composites effectively while keeping the TC in a high level.Especially,the composites with 30 wt%SiC exhibited the flexural strength up to 105 MPa,and the specific TC reaching 0.118 W·m^(2)·K^(−1)·kg-1.The composites with excellent flexural strength and thermophysical properties showed significant promise for thermal management applications.
文摘Oriented aggregation of nanoparticles has been accomplished by means of solid state reac- tion. Non-crystallized and crystallized ZnO nanoparticles/clusters could be accommodated in the lamellar spacing of inorganic-organic composite, which were prepared by thermolysis of layered solid zinc-oleate complex at 260 and 300 ℃ in air, respectively. High-resolution transmission electron microscopy and selected area electron diffraction patterns indicate that aggregates are single crystals with various defects. The photoluminescence excitation spectra of both samples show two bands at 272 and 366 nm. The former may originate from electron transfer from valence band to conduction band in ZnO clusters composed of less than 200 ZnO molecules (2R〈2 nm).
基金supported by the National Key Research and Development Program of China (Grant No. 2019YFE0122900)the National Natural Science Foundation of China (No 51971162, U1933112, 51671146)China Postdoctoral Science Foundation (Grant No. 2020M671208)
文摘Electromagnetic cooperative strategy has been presented as a mainstream approach that can effectively optimize the matching thickness of dielectric loss dominant system.However,it is still challenging for dielectric–magnetic loss coexisting-type absorber to develop electromagnetic wave(EMW)performance with ultra-low matching thickness(≤1 mm).Breaking the limitation of traditional electromagnetic response at microscopic/mesoscopic scale,a ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering.The highly oriented Ni chains with unique macroscopic morphology(~1 cm in length)were achieved via a special magnetic field-induced growth.Strong magnetic coupling was observed in the Ni chains confirmed by the micromagnetic simulation.The deductive calculation validates that maintaining high value of electromagnetic parameters at high frequencies is the prerequisites of ultrathin absorber.The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton,resulting in the impressive permittivity even at high frequencies.Consequently,the aerogel exhibits a remarkable EMW performance at an ultrathin thickness of 1 mm.Thus,based on the modulation of electromagnetic parameters,this work proposed a macroscopic ordered structure with the electromagnetic cooperative effect useful to develop a suitable strategy for achieving ultrathin EMW absorbers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11179003,10975164,10805062,and 11005134)
文摘Highly oriented pyrolytic graphites are irradiated with 40.5-Me V and 67.7-Me V ^112Sn-ions in a wide range of fluences: 1×10^11 ions/cm^2–1×10^14ions/cm^2. Raman spectra in the region between 1200 cm^-1 and 3500cm^-1 show that the disorder induced by Sn-ions increases with ion fluence increasing. However, for the same fluence, the amount of disorder is greater for 40.5-Me V Sn-ions than that observed for 67.7-Me V Sn-ions, even though the latter has a slightly higher value for electronic energy loss. This is explained by the ion velocity effect. Importantly, ~ 3-cm^-1frequency shift toward lower wavenumber for the D band and ~ 6-cm^-1 shift toward lower wavenumber for the 2D band are observed at a fluence of 1×10^14 ions/cm^2, which is consistent with the scenario of radiation-induced strain. The strain formation is interpreted in the context of inelastic thermal spike model, and the change of the 2D band shape at high ion fluence is explained by the accumulation of stacking faults of the graphene layers activated by radiation-induced strain around ion tracks. Moreover,the hexagonal structure around the ion tracks is observed by scanning tunneling microscopy, which confirms that the strains near the ion tracks locally cause electronic decoupling of neighboring graphene layers.
基金supported by National Natural Science Foundation of China(Nos.11175197)CAS Innovative Project of China(KJCX2-YW-N36)Ministry of Education of China(IRT1190)
文摘Highly oriented pyrolitic graphite (HOPG) has high X-ray diffraction efficiency due to its unique mosaic crystal structure, and thus is very suitable for its application to X-ray Thomson scattering measurement of solid-density plasmas. In this article, by using the K-shell X-ray source from laser-produced Ti plasma, the properties of the HOPG spectrometer are characterized and compared with those of the flat Pentaerythritol (PET) spectrometer. The results show that the diffraction efficiency of the HOPG spectrometer under focusing condition is an order higher than that of the PET spectrometer, while the spectral resolution of the HOPG is about 320, high enough to be used in the measurement of X-ray Thomson scattering spectra.
基金the High Technology Research and Development Programme of China.
文摘Polycrystalline PZT,PLT and PbTiO ferroelectric thin films,highly oriented PbTiOferroelectric thin films and epitaxial growth PZT,PLT ferroelectric thin films with per-ovskite-type structure were prepared by the sol-gel method.Ferroelectric properties of theceramic thin films were confirmed by P-E hysteresis loops.The pyroelectric and opticalproperties were also measured.
基金This work was supported by the National Natural Science Foundations of China(Nos.U2032170,51872228,62104194 and 51802262)The project was also supported by the Fundamental Research Funds for the Central University(3102020QD0408 and D5000210906)+1 种基金the Natural Science Foundation of Shaanxi Province(2020JC-12)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(No.2022-TS-07).
文摘In comparison to inorganic counterparts,organic semiconducting(OSC)crystalline films are promising for building large-area and flexible ionizing radiation detectors for X-ray imaging or dosimetry due to their tissue equivalence,simple processing and large-scale production accessibility.Fabrication processes,how-ever,hinder the ability to generate aligned and large-area films with high carrier mobility.In this work,the space-confined melt process is used to produce highly orientated 4HCB(4-hydroxycyanobenzene)OSC films with a large area of 15×18 mm^(2).The out-of-plane direction of the 4HCB film is<001>,and the benzene rings are found to be extensively overlapped inside the in-plane direction,according to the XRD patterns.The film exhibits a high resistivity up to 1012cm,and high hole mobility of 10.62 cm^(2)V^(−1)s^(−1).Furthermore,the 4HCB(80μm-thick film)based X-ray detectors can achieve a sensitivity of 93μC Gy air^(−1) cm^(−2)and on/offratio of 157.The device also shows steady flexibility,with no degradation in detecting function after 100 cycles of bending.Finally,the proposed 4HCB film detectors demonstrated a high-resolution X-ray imaging capability.The imaging of several materials with sharp edges(copper and polytetrafluoroethylene)has been obtained.This work has developed a fast but efficient approach for producing large-area,highly oriented OSC films for high-performance X-ray detectors.
基金supported by the National Natural Science Foundation of China(52125201 and 21975141)the National Key Basic Research and Development Program of China(2020YFA0210702)。
文摘We report the first atomically resolved scanning tunneling microscope (STM) imaging in a water-cooled magnet (WM), for which extremely harsh vibrations and noise have been the major challenge. This custom WM-STM features an ultra-rigid and compact scan head in which the coarse approach is driven by our newly designed TunaDrive piezoelectric motor. A three-level spring hanging system is used for vibration isolation. Room-temperature raw-data images of graphite with quality atomic resolution were acquired in the presence of very strong magnetic fields, with a field strength up to 27 T, in a 32-mm-diameter bore WM with a maximum field strength of 27.5 T at a power rating of 10 MW, calibrated by nuclear magnetic resonance (NMR). This record field strength of 27 T exceeds the maximal field strength achieved by the conventional supercon- ducting magnets. Besides, our WM-STM has paved the way to STM imaging using a 45 T, 32-mm-diameter bore hybrid magnet, which is the world's flagship magnet, producing the strongest steady magnetic field.
基金the European Unions Horizon 2020 research and innovation program under Grant Agreement(No.688225)(Metro4-3D)the National Institute for Nuclear Physics in the framework of the CSN5 Call Project FIRE(Flexible Ionizing Organic Radiation Detectors)LASR3 Surface Analysis Laboratory Roma Tre gratefully acknowledges financial support from uFondazione Roma5(No.5229441F37).
文摘A detailed stratigraphic investigation of the intercalation mechanism when graphite electrodes are immersed inside diluted perchloric(HClO_(4))and sulfuric(H_(2)SO_(4))electrolytes is obtained by comparing results when graphite crystals are simply immersed in the same acid solutions.By combining time-of-flight secondary ion mass spectrometry(ToF-SIMS)and in-situ atomic force microscopy(AFM),we provide a picture of the chemical species involved in the intercalation reaction.The depth intensity profile of the ion signals along the electrode crystal clearly shows a more complex mechanism for the intercalation process,where the local morphology of the basal plane plays a crucial role.Solvated anions are mostly located within the first tens of nanometers of graphite,but electrolytes also diffuse inside the buried layers for hundreds of nanometers,the latter process is also aided by the presence of mesoscopic crystal defects.Residual material from the electrolyte solution was found localized in well-defined circular spots,which represent preferential interaction areas.Interestingly,blister-like micro-structures similar to those observed on the highly oriented pyrolytic graphite(HOPG)surface were found in the buried layers,confirming the equivalence of the chemical condition on the graphite surface and in the underneath layers.
文摘A comprehensive picture of the initial stages of silicene growth on graphite is drawn.Evidence is shown that quasiparticle interferences play a crucial role in the formation of the observed silicene configurations.We propose,on one hand,that the charge modulations caused by those quantum interferences serve as templates and guide the incoming Si atoms to self-assemble to the unique(√3 x√3)R30°honeycomb atomic arrangement.On the other hand,their limited extension limits the growth to about 150 Si atoms under our present deposition conditions.The here proposed electrostatic interaction finally explains the unexpected stability of the observed silicene islands over time and with temperature.Despite the robust guiding nature of those quantum interferences during the early growth phase,we demonstrate that the window of experimental conditions for silicene growth is quite narrow,making it an extremely challenging experimental task.Finally,it is shown that the experimentally observed threedimensional silicon clusters might very well be the simple result of the end of the silicene growth resulting from the limited extent of the quasi-particle interferences.
基金The authors are grateful for the financial support provided by the Ministerio de Ciencia,Innovación,Universidades of Spain(CTQ2017-84309-C2-1-R,RED2018-102412-T)Comunidad Autónoma de Madrid(TRANSNANOAVANSENS Program)+1 种基金Generalitat Valenciana(APOSTD/2017/010)C.G.-S.also acknowledges the financial support from the Comunidad Autónoma de Madrid,Atracción de Talento Program(2017-T1/BIO-5435).
文摘In the present work we develop an electrochemical assisted method to form nanopores on the surface of highly oriented pyrolytic graphite(HOPG),which was accomplished by a simple electrochemical route and a scalable nanomaterial,carbon nanodots,without applying high voltages,high temperatures or toxic reagents.HOPG electrodes are in a solution of N-enrich carbon nanodots in acidic media and the potential scans applied on HOPG lead to the formation of a spatially inhomogeneous porous surface.The diameter of the resulting nanopores can be tuned by controlling the number of electrochemical reduction cycles.The resulting nanoporous surfaces are characterized by atomic force microscopy,Raman spectroscopy,scanning electrochemical microscopy,electrochemical impedance spectroscopy and electrochemistry.These nanoporous HOPG showed high capacitance.Hence the potential of these surfaces to the development of energy storage devices is demonstrated.
基金Supported partly by the National Natural Science Foundation of China (Grant Nos. 60674022, 60736022, 60821091)
文摘Automation is the utilization of control techniques together with other information technology to control industrial processes, reducing the need for human intervention. It plays a highly important role in social and economy as well as in daily life. Control theory is the theory of automation, and is an interdisciplinary branch of engineering and mathematics, examining the behavior of dynamical systems. China has a long history of manufacturing automatic devices. In recent years, some rapid progresses in control theory have been made in China. Many new theories and new methodologies have been developed to meet the increasing demands in industry, agriculture, defense, and other social sectors. Contemporary sciences such as complexity, systems biology, quantum technologies, have also found their close links to control theories and technologies. On the other hand, control theory itself has many unsolved fundamental problems requiring further studies and investigation. This paper is to review the development and progress that have been made in all these aspects in China. Some remarks on the future development of control theory are also presented.
基金This research was financially supported by the National Natural Science Foundation of China(Grant Nos.51402314 and 41206067)the Natural Science Foundation of Shandong Province(Grant No.ZR2016BM08)+2 种基金China Postdoctoral Science Foundation(No.2014M551869)Shandong Excellent Young Scientist Research Award Fund(No.BS2015CL002)Qingdao Postdoctoral Application Research Fund.
文摘In this paper,the fabrication of a highly orientated Bi_(2)Fe_(4)O_(9)(BFO)photoelectrode in the presence of two-dimensional(2D)graphene oxide(GO)was reported.It was found that the GO can be used as a template for controlling the growth of BFO,and the nanoplate composites of BFO/reduced graphene oxide(RGO)with a high orientation can be fabricated.The thickness of the nanoplates became thinner as the ratio of GO increased.As a result,the ferroelectric spontaneous polarization unit arranges itself in the space in a periodic manner,leading to the formation of a polarization field along a special direction.Therefore,the created built-in electric field of the nanoplate composites of BFO/RGO is improved upon the increase of the amount of RGO.As expected,carrier separation is enhanced by the built-in electric field,therefore substantially enhancing the photoelectrochemical(PEC)activity of water splitting compared to pure BFO under the irradiation of visible-light.
基金supported by the National Natural Science Foundation of China(Nos.61675093 and 61775140)the Shandong Natural Science Foundation(No.ZR2017MA035)
文摘We propose an approach for tuning the three-dimensional polarization of a focusing subwavelength spot by a high numerical aperture objective. The incident beams are composed of a radially polarized beam, an azimuthally polarized beam, and a linearly polarized beam with three different weighting factors, respectively. A specially designed adjustable amplitude angular selector is also inserted at the back aperture of the objective for tuning the polarization azimuthally. It is shown that any desired overall polarization orientation can be obtained. We calculated the overall polarization orientation in the focal volume. It is found that the polar angle of the overall polarization orientation can be arbitrarily tuned by the combination of a radially polarized beam and a linearly polarized beam with different weighting factors, and the azimuthal angle can be tuned by rotating the orientation of the linearly polarized beam azimuthally.