Based on the China high resolution emission gridded data (I km spatial resolution), this article is aimed to create a Chinese city carbon dioxide (CO2) emission data set using consolidated data sources as well as ...Based on the China high resolution emission gridded data (I km spatial resolution), this article is aimed to create a Chinese city carbon dioxide (CO2) emission data set using consolidated data sources as well as normalized and standardized data processing methods. Standard methods were used to calculate city CO2 emissions, including scope I and scope 2. Cities with higher CO2 emissions are mostly in north, northeast, and eastern coastal areas. Cities with lower CO2 emissions are in the western region. Cites with higher CO2 emissions are clustered in the Jing-Jin-Ji Region (such as Beijing, Tianjin, and Tangshan), and the Yangtze River Delta region (such as Shanghai and Suzhou). The city per capita CO2 emission is larger in the north than the south. There are obvious aggregations of cities with high per capita CO2 emission in the north. Four cities among the top 10 per capita emissions (Erdos, Wuhai, Shizuishan, and Yinchuan) cluster in the main coal production areas of northern China. This indicates the significant impact of coal resources endowment on city industry and CO2 emissions. The majority (77%) of cities have annual CO2 emissions below 50 million tons. The mean annual emission, among all cities, is 37 million tons. Emissions from service-based cities, which include the smallest number of cities, are the highest. Industrial cities are the largest category and the emission distribution from these cities is close to the normal distribution. Emissions and degree of dispersion, in the other cities (excluding industrial cities and service-based cities), are in the lowest level. Per capita CO2 emissions in these cities are generally below 20 t/person (89%) with a mean value of 11 t/person. The distribution interval of per capita CO2 emission within industrial cities is the largest among the three city categories. This indicates greater differences among per capita CO2 emissions of industrial cities. The distribution interval of per capita CO2 emission of other cities is the lowest, indicating smaller differences of per capita CO2 emissions among this city category. Three policy suggestions are proposed: first, city CO2 emission inventory data in China should be increased, especially for prefecture level cities. Second, city responsibility for emission reduction, and partition- ing the national goal should be established, using a bottom-up approach based on specific CO2 emission levels and potential for emission reductions in each city. Third, comparative and bench- marking research on city CO2 emissions should be conducted, and a Top Runner system of city CO2 emission reduction should be established.展开更多
Gastroesophageal reflux disease(GERD) is a common disorder of the gastrointestinal tract. In the last few decades, new technologies have evolved and have been applied to the functional study of the esophagus, allowing...Gastroesophageal reflux disease(GERD) is a common disorder of the gastrointestinal tract. In the last few decades, new technologies have evolved and have been applied to the functional study of the esophagus, allowing for the improvement of our knowledge of the pathophysiology of GERD. High-resolution manometry(HRM) permits greater understanding of the function of the esophagogastric junction and the risks associated with hiatal hernia. Moreover, HRM has been found to be more reproducible and sensitive than conventional water-perfused manometry to detect the presence of transient lower esophageal sphincter relaxation. Esophageal 24-h p H-metry with or without combined impedance is usually performed in patients with negative endoscopy and reflux symptoms who have a poor response to anti-reflux medical therapy to assess esophageal acid exposure and symptom-reflux correlations. In particular, esophageal 24-h impedance and p H monitoring can detect acid and non-acid reflux events. Endo FLIP is a recent technique poorly applied in clinical practice, although it provides a large amount of information about the esophagogastric junction. In the coming years, laryngopharyngeal symptoms could be evaluated with up and coming non-invasive or minimally invasive techniques, such as pepsin detection in saliva or pharyngeal p H-metry. Future studies are required of these techniques to evaluate their diagnostic accuracy and usefulness, although the available data are promising.展开更多
For spaceborne synthetic aperture radar (SAR) imaging,the dispersive ionosphere has significant effects on the propagationof the low frequency (especially P-band) radar signal. Theionospheric effects can be a sign...For spaceborne synthetic aperture radar (SAR) imaging,the dispersive ionosphere has significant effects on the propagationof the low frequency (especially P-band) radar signal. Theionospheric effects can be a significant source of the phase error inthe radar signal, which causes a degeneration of the image qualityin spaceborne SAR imaging system. The background ionosphericeffects on spaceborne SAR through modeling and simulation areanalyzed, and the qualitative and quantitative analysis based onthe spatio-temporal variability of the ionosphere is given. A novelionosphere correction algorithm (ICA) is proposed to deal with theionospheric effects on the low frequency spaceborne SAR radarsignal. With the proposed algorithm, the degradation of the imagequality caused by the ionosphere is corrected. The simulation resultsshow the effectiveness of the proposed algorithm.展开更多
AI 5083//10 wt% SiCp nano composites have been synthesized by means of high energy ball milling followed by spark plasma sintering (SPS). Nano composites produced via this method exhibited near-theoretical density w...AI 5083//10 wt% SiCp nano composites have been synthesized by means of high energy ball milling followed by spark plasma sintering (SPS). Nano composites produced via this method exhibited near-theoretical density while retaining the nano-grained features. X-ray diffraction (XRD) analysis indicated that the crystalline size of the ball milled AI 5083 matrix was observed to be~25 nm and it was coarsened up to~30 nm after SPS. Nano indentation results of nano composites demonstrated a high hardness of~280 HV with an elastic modulus of 126 GPa. Wear and friction characteristics with addition of SiCp reinforcement exhibited significant improvement in terms of coefficient of friction and specific wear rate to that of nano structured AI 5083 alloy. The reduction in specific wear rate in the nanocomposite was mainly due to the change of wear mechanism from adhesive to abrasive wear with the addition of SiCp which resulted in high hardness associated with nano-grained microstructure.展开更多
INTRODUCTION Atopic dermatitis (AD) is a common chronic inflammatory skin disorder that is characterized by dry skin and disturbed skin barrier functions. Mutations in the filaggrin (FLG) gene, the gene coding pro...INTRODUCTION Atopic dermatitis (AD) is a common chronic inflammatory skin disorder that is characterized by dry skin and disturbed skin barrier functions. Mutations in the filaggrin (FLG) gene, the gene coding profilaggrin/filaggrin, have a great impact on the epidermal barrier function and are an important predisposing factor for AD. However, in both Europeans and Asians,展开更多
A key component in constructing a broad-scale,gridded population dataset is fine resolution geospatial data accurately depicting the extent of human activity.Analogous datasets are often developed using a wide range o...A key component in constructing a broad-scale,gridded population dataset is fine resolution geospatial data accurately depicting the extent of human activity.Analogous datasets are often developed using a wide range of methods and classification techniques,including the use of spatial features,spectral features,or the coupling of both to identify the presence of man-made structures from high-resolution satellite imagery.By using spatial and textural-based descriptors to generate highresolution settlement layers for two dissimilar regions at the peak of seasonal disparity,this study attempts to quantify the influence of seasonality on the accuracy of a supervised,multi-scale,feature extraction framework for automated delineation of human settlement.Results generated by numerous models are evaluated against a reference dataset allowing for assessment of seasonal and feature differences in the context of accuracy.Global or regional mapping of human settlement requires the assemblage of high-resolution satellite images with variegated acquisition characteristics(season,sun elevation,off-nadir,etc.)to produce a cloud-free composite image from which features are extracted.Results of this study suggest an emphasis on imagery criteria,in particular acquisition date,could improve classification accuracy when mapping human settlement at scale.展开更多
Synthesis of silicon carbide has been carried out using thermal plasma processing technique using SiO2 as the solid feed and CH4 as the gaseous reducing agent. Thermochemical calculations have been performed varying t...Synthesis of silicon carbide has been carried out using thermal plasma processing technique using SiO2 as the solid feed and CH4 as the gaseous reducing agent. Thermochemical calculations have been performed varying the molar ratio of silicon dioxide and methane to determine the feasibility of the reaction. Experiments using a molar ratio of SiO2:CH4 equal to 1:2 produced maximum yield of SiC of about 65 mol % at a solid feed rate of 5 g/min. Mostly spherical morphology with some nanorods has been observed. The presence of Si had been observed and was quantified using XRD, HRTEM, Raman spectroscopy and X-ray photoelectron microscopy (XPS). Si acts as a nucleating agent for SiC nanorods to grow.展开更多
基金funded by the project entitled"An Emission-Transport-Exposure Model Based Study on the Evaluation of the Environmental Impact of Carbon Market"[grant number:71673107]supported by the National Natural Science Foundation of China
文摘Based on the China high resolution emission gridded data (I km spatial resolution), this article is aimed to create a Chinese city carbon dioxide (CO2) emission data set using consolidated data sources as well as normalized and standardized data processing methods. Standard methods were used to calculate city CO2 emissions, including scope I and scope 2. Cities with higher CO2 emissions are mostly in north, northeast, and eastern coastal areas. Cities with lower CO2 emissions are in the western region. Cites with higher CO2 emissions are clustered in the Jing-Jin-Ji Region (such as Beijing, Tianjin, and Tangshan), and the Yangtze River Delta region (such as Shanghai and Suzhou). The city per capita CO2 emission is larger in the north than the south. There are obvious aggregations of cities with high per capita CO2 emission in the north. Four cities among the top 10 per capita emissions (Erdos, Wuhai, Shizuishan, and Yinchuan) cluster in the main coal production areas of northern China. This indicates the significant impact of coal resources endowment on city industry and CO2 emissions. The majority (77%) of cities have annual CO2 emissions below 50 million tons. The mean annual emission, among all cities, is 37 million tons. Emissions from service-based cities, which include the smallest number of cities, are the highest. Industrial cities are the largest category and the emission distribution from these cities is close to the normal distribution. Emissions and degree of dispersion, in the other cities (excluding industrial cities and service-based cities), are in the lowest level. Per capita CO2 emissions in these cities are generally below 20 t/person (89%) with a mean value of 11 t/person. The distribution interval of per capita CO2 emission within industrial cities is the largest among the three city categories. This indicates greater differences among per capita CO2 emissions of industrial cities. The distribution interval of per capita CO2 emission of other cities is the lowest, indicating smaller differences of per capita CO2 emissions among this city category. Three policy suggestions are proposed: first, city CO2 emission inventory data in China should be increased, especially for prefecture level cities. Second, city responsibility for emission reduction, and partition- ing the national goal should be established, using a bottom-up approach based on specific CO2 emission levels and potential for emission reductions in each city. Third, comparative and bench- marking research on city CO2 emissions should be conducted, and a Top Runner system of city CO2 emission reduction should be established.
文摘Gastroesophageal reflux disease(GERD) is a common disorder of the gastrointestinal tract. In the last few decades, new technologies have evolved and have been applied to the functional study of the esophagus, allowing for the improvement of our knowledge of the pathophysiology of GERD. High-resolution manometry(HRM) permits greater understanding of the function of the esophagogastric junction and the risks associated with hiatal hernia. Moreover, HRM has been found to be more reproducible and sensitive than conventional water-perfused manometry to detect the presence of transient lower esophageal sphincter relaxation. Esophageal 24-h p H-metry with or without combined impedance is usually performed in patients with negative endoscopy and reflux symptoms who have a poor response to anti-reflux medical therapy to assess esophageal acid exposure and symptom-reflux correlations. In particular, esophageal 24-h impedance and p H monitoring can detect acid and non-acid reflux events. Endo FLIP is a recent technique poorly applied in clinical practice, although it provides a large amount of information about the esophagogastric junction. In the coming years, laryngopharyngeal symptoms could be evaluated with up and coming non-invasive or minimally invasive techniques, such as pepsin detection in saliva or pharyngeal p H-metry. Future studies are required of these techniques to evaluate their diagnostic accuracy and usefulness, although the available data are promising.
基金supported by the National Natural Science Foundation of China(61222108)the Research Fund for the Doctoral Program of Higher Education of China(20120203130001)+1 种基金the Fundamental Research Funds for the Central Universities(2015HGBZ01062015HGQC0005)
文摘For spaceborne synthetic aperture radar (SAR) imaging,the dispersive ionosphere has significant effects on the propagationof the low frequency (especially P-band) radar signal. Theionospheric effects can be a significant source of the phase error inthe radar signal, which causes a degeneration of the image qualityin spaceborne SAR imaging system. The background ionosphericeffects on spaceborne SAR through modeling and simulation areanalyzed, and the qualitative and quantitative analysis based onthe spatio-temporal variability of the ionosphere is given. A novelionosphere correction algorithm (ICA) is proposed to deal with theionospheric effects on the low frequency spaceborne SAR radarsignal. With the proposed algorithm, the degradation of the imagequality caused by the ionosphere is corrected. The simulation resultsshow the effectiveness of the proposed algorithm.
基金supported by Council of Scientific and Industrial Research(CSIR)under its network project(CSIR-NWP-51)entitled"Nanostructured Advanced Materials(NAM)"
文摘AI 5083//10 wt% SiCp nano composites have been synthesized by means of high energy ball milling followed by spark plasma sintering (SPS). Nano composites produced via this method exhibited near-theoretical density while retaining the nano-grained features. X-ray diffraction (XRD) analysis indicated that the crystalline size of the ball milled AI 5083 matrix was observed to be~25 nm and it was coarsened up to~30 nm after SPS. Nano indentation results of nano composites demonstrated a high hardness of~280 HV with an elastic modulus of 126 GPa. Wear and friction characteristics with addition of SiCp reinforcement exhibited significant improvement in terms of coefficient of friction and specific wear rate to that of nano structured AI 5083 alloy. The reduction in specific wear rate in the nanocomposite was mainly due to the change of wear mechanism from adhesive to abrasive wear with the addition of SiCp which resulted in high hardness associated with nano-grained microstructure.
文摘INTRODUCTION Atopic dermatitis (AD) is a common chronic inflammatory skin disorder that is characterized by dry skin and disturbed skin barrier functions. Mutations in the filaggrin (FLG) gene, the gene coding profilaggrin/filaggrin, have a great impact on the epidermal barrier function and are an important predisposing factor for AD. However, in both Europeans and Asians,
文摘A key component in constructing a broad-scale,gridded population dataset is fine resolution geospatial data accurately depicting the extent of human activity.Analogous datasets are often developed using a wide range of methods and classification techniques,including the use of spatial features,spectral features,or the coupling of both to identify the presence of man-made structures from high-resolution satellite imagery.By using spatial and textural-based descriptors to generate highresolution settlement layers for two dissimilar regions at the peak of seasonal disparity,this study attempts to quantify the influence of seasonality on the accuracy of a supervised,multi-scale,feature extraction framework for automated delineation of human settlement.Results generated by numerous models are evaluated against a reference dataset allowing for assessment of seasonal and feature differences in the context of accuracy.Global or regional mapping of human settlement requires the assemblage of high-resolution satellite images with variegated acquisition characteristics(season,sun elevation,off-nadir,etc.)to produce a cloud-free composite image from which features are extracted.Results of this study suggest an emphasis on imagery criteria,in particular acquisition date,could improve classification accuracy when mapping human settlement at scale.
文摘Synthesis of silicon carbide has been carried out using thermal plasma processing technique using SiO2 as the solid feed and CH4 as the gaseous reducing agent. Thermochemical calculations have been performed varying the molar ratio of silicon dioxide and methane to determine the feasibility of the reaction. Experiments using a molar ratio of SiO2:CH4 equal to 1:2 produced maximum yield of SiC of about 65 mol % at a solid feed rate of 5 g/min. Mostly spherical morphology with some nanorods has been observed. The presence of Si had been observed and was quantified using XRD, HRTEM, Raman spectroscopy and X-ray photoelectron microscopy (XPS). Si acts as a nucleating agent for SiC nanorods to grow.