In seismic data processing, random noise seriously affects the seismic data quality and subsequently the interpretation. This study aims to increase the signal-to-noise ratio by suppressing random noise and improve th...In seismic data processing, random noise seriously affects the seismic data quality and subsequently the interpretation. This study aims to increase the signal-to-noise ratio by suppressing random noise and improve the accuracy of seismic data interpretation without losing useful information. Hence, we propose a structure-oriented polynomial fitting filter. At the core of structure-oriented filtering is the characterization of the structural trend and the realization of nonstationary filtering. First, we analyze the relation of the frequency response between two-dimensional(2D) derivatives and the 2D Hilbert transform. Then, we derive the noniterative seismic local dip operator using the 2D Hilbert transform to obtain the structural trend. Second, we select polynomial fitting as the nonstationary filtering method and expand the application range of the nonstationary polynomial fitting. Finally, we apply variableamplitude polynomial fitting along the direction of the dip to improve the adaptive structureoriented filtering. Model and field seismic data show that the proposed method suppresses the seismic noise while protecting structural information.展开更多
Hilbert transformation and improved ellipse localization method is applied in ultrasonic transducer array tomography to detect defect of metal plate.By combining the improved ellipse localization method and time-rever...Hilbert transformation and improved ellipse localization method is applied in ultrasonic transducer array tomography to detect defect of metal plate.By combining the improved ellipse localization method and time-reversal method,the new ultrasonic tomography algorithm employs smooth Hilbert envelope instead of discrete amplitude to reconstruct defect image.An ultrasonic tomography system with six transducers is built to evaluate the effectiveness of the new ultrasonic tomography algorithm.The S0 mode Lamb wave is excited on special condition,and the mode of received signal is identified by Vigner-Wille distribution.The gray value of image area is defined by envelope of the reflected S0 mode Lamb wave signal from defect boundary.Defect image can be reconstructed by summing gray value of all pixels in the image area.The experimentally reconstructed defect image shows that the new tomography algorithm based on Hilbert transformation is efficient for defect detection in metal plate.展开更多
We show that the technique of integration within an ordered product of operators can be extended to Hilbert transform. In so doing we derive normally ordered expansion of Coulomb potential-type operators directly by u...We show that the technique of integration within an ordered product of operators can be extended to Hilbert transform. In so doing we derive normally ordered expansion of Coulomb potential-type operators directly by using the mathematical Hilbert transform formula.展开更多
This study is concerned with the diagnosis of discrepancies in a steel truss bridge by identifying dynamic properties from the vibration response signals of the bridges.The vibration response signals collected at brid...This study is concerned with the diagnosis of discrepancies in a steel truss bridge by identifying dynamic properties from the vibration response signals of the bridges.The vibration response signals collected at bridges under three different vehicular speeds of 10 km/hr,20 km/hr,and 30 km/hr are analyzed using statistical features such as kurtosis,magnitude of peak-to-peak,root mean square,crest factor as well as impulse factor in time domain,and Stockwell transform in the time-frequency domain.The considered statistical features except for kurtosis show uncertain behavior.The Stockwell transform showed low-resolution outcomes when the presence of noise in the recorded vibration responses.The elimination of noise and extraction of meaningful dynamic properties from the vibration responses is done by applying a new method which comes from the fusion of Hilbert transform with Spectral kurtosis and bandpass filtering.The outcomes obtained from Hilbert transform processed residual signals which are further filtered using bandpass filter show more robustness and accuracy in characterizing bridge modal frequencies from the noisy vibration responses.The proposed method produces a high-resolution frequency response which can unveil the joint discrepancy in the bridge structure.展开更多
Noise is the biggest obstacle that makes the incipient fault diagnosis results of roller bearings uncorrected; a new method for diagnosing incipient fault of roller bearings based on the Wavelet Transform Correlation ...Noise is the biggest obstacle that makes the incipient fault diagnosis results of roller bearings uncorrected; a new method for diagnosing incipient fault of roller bearings based on the Wavelet Transform Correlation Filter and Hilbert Transform was proposed. First, the weak fault information features are picked up from the roller bearings fault vibration signals by use of a de-noising characteristic of the Wavelet Transform Correlation Filter as the preprocessing of the Hilbert Envelope Analysis. Then, in order to get fault features frequency, de-noised wavelet coefficients of high scales which represent high frequency signal were analyzed by Hilbert Envelope Spectrum Analysis. The simulation signals and diagnosing examples analysis results reveal that the proposed method is more effective than the method of direct wavelet coefficients-Hilbert Transform in de-noising and clarifying roller bearing incipient fault.展开更多
Nonlinear response is an important factor affecting the accuracy of three-dimensional image measurement based on the fringe structured light method.A phase compensation algorithm combined with a Hilbert transform is p...Nonlinear response is an important factor affecting the accuracy of three-dimensional image measurement based on the fringe structured light method.A phase compensation algorithm combined with a Hilbert transform is proposed to reduce the phase error caused by the nonlinear response of a digital projector in the three-dimensional measurement system of fringe structured light.According to the analysis of the influence of Gamma distortion on the phase calculation,the algorithm establishes the relationship model between phase error and harmonic coefficient,introduces phase shift to the signal,and keeps the signal amplitude constant while filtering out the DC component.The phase error is converted to the transform domain,and compared with the numeric value in the space domain.The algorithm is combined with a spiral phase function to optimize the Hilbert transform,so as to eliminate external noise,enhance the image quality,and get an accurate phase value.Experimental results show that the proposed method can effectively improve the accuracy and speed of phase measurement.By performing phase error compensation for free-form surface objects,the phase error is reduced by about 26%,and about 27%of the image reconstruction time is saved,which further demonstrates the feasibility and effectiveness of the method.展开更多
In the paper, the author generalized the Hardy and Littlewood's theorem toBa space, i.e. for all Pm satisfying 1 < α = infpm≤ β≤ suppm < ∞, m = 1, 2,..., and the following inequalityholds if and on1y if.
The hyper Hilbert transform Tnf(x) =∫-1^1 f(x - Γ(t))e^-i|t|-β|t|^-1-αdt along an appropriate curve Γ(t) on R^n is investigated,where β 〉 α 〉 0.An L^p boundedness theorem of T4 is obtained,which i...The hyper Hilbert transform Tnf(x) =∫-1^1 f(x - Γ(t))e^-i|t|-β|t|^-1-αdt along an appropriate curve Γ(t) on R^n is investigated,where β 〉 α 〉 0.An L^p boundedness theorem of T4 is obtained,which is an extension of some earlier results of n = 2 and n = 3.展开更多
This work presents an advanced mathematical tool applicable to the recognition and classification of power system transients and disturbances. Disturbances without a periodic pattern or with a non-linear pattern requi...This work presents an advanced mathematical tool applicable to the recognition and classification of power system transients and disturbances. Disturbances without a periodic pattern or with a non-linear pattern require a more suitable tool than the Fourier series (Fast Fourier or Windowed Fourier Transforms). To overcome these drawbacks, other tools have been broadly used, such as the wavelet transform. However, the wavelet transform also has some drawbacks such as the lack of adaptivity or interpretation of nonlinear phenomena that the Hilbert and Hilbert Huang Transform techniques could mitigate. The Hilbert techniques transform a time domain function into a space representation both in time and frequency. In the paper, the technique is applied to analyse several short-term and steady events, like a short circuit, a capacitor-switching transient, or a line energisation, showing the abilities of the Hilbert-based transforms.展开更多
A measurement model based on torsion pendulum was established,in which nonlinear damping and nonlinear restoring force were considered.The calculation method of the moment of inertia was based on Hilbert transform.The...A measurement model based on torsion pendulum was established,in which nonlinear damping and nonlinear restoring force were considered.The calculation method of the moment of inertia was based on Hilbert transform.The motion of torsion pendulum showed the time-frequency characteristics due to the nonlinear factors,which were validated by the experimental data.The analytical signal was formed by Hilbert transform of the angular displacement signal of the test object.The moment of inertia can be computed by the instantaneous undamped natural frequency with Hilbert transform.Prior to the implementation of Hilbert transform,the empirical mode decomposition was used to filter the experimental signal.The moment of inertia of the test object was measured by the torsion pendulum system.The experimental results show that the relative measurement error of the moment of inertia was within 0.7%,which indicated the validity of the measurement method.展开更多
An iterative algorithm is developed for the Hilbert transform based on FFT using the phase in-formation of modulated signal.The feature of this iterative algorithm is frequency shifting on apart of non-integral freque...An iterative algorithm is developed for the Hilbert transform based on FFT using the phase in-formation of modulated signal.The feature of this iterative algorithm is frequency shifting on apart of non-integral frequency in a modulated signal,and the final result of the orthogonal signalwith less pollution caused by the leakage phenomenon is obtained.The algorithm has been appliedto estimate envelope,center frequency and initial phase,including simulation and engineering ex-amples.展开更多
An application of the sinc sum function in Hilbert transformer (HT) is studied. The expression of the frequency re- sponse of HT is expressed with sinc sum functions. Some properties of sub-amplitude response of HT ar...An application of the sinc sum function in Hilbert transformer (HT) is studied. The expression of the frequency re- sponse of HT is expressed with sinc sum functions. Some properties of sub-amplitude response of HT are proved by using the properties of the sinc sum function. A general HT formula is obtained theoretically and it contains a general window function. As an example three new window functions are obtained. Different from the existing window func- tions obtained from lowpass filters, these window functions are obtained directly from HT. Comparisons show that new windows are better than the Hanning, Hamming, Blackman and Kaiser windows in terms of HT performances.展开更多
Hilbert transform is a basic tool in constructing analytical signals for a various applications such as amplitude modulation, envelope and instantaneous frequency analysis, quadrature decoding, shift-invariant multi-r...Hilbert transform is a basic tool in constructing analytical signals for a various applications such as amplitude modulation, envelope and instantaneous frequency analysis, quadrature decoding, shift-invariant multi-rate signal processing and Hilbert-Huang decomposition. This work introduces a complex Hilbert transform (CHT) filter, where the real and imaginary parts are a Hilbert transform pair. The CHT filtered signal is analytic, i.e. its Fourier transform is zero in negative frequency range. The CHT filter is constructed by half-sample delay operators based on the B-spline transform interpolation and decimation procedure. The CHT filter has an ideal phase response and the magnitude response is maximally flat in the frequency range 0 ≤ ω ≤ π. The CHT filter has integer coefficients and the implementation in VLSI requires only summations and register shifts. We demonstrate the feasibility of the CHT filter in reconstruction of the sign modulated CMOS logic pulses in a fibre optic link.展开更多
Hilbert transform (HT) is an important tool in constructing analytic signals for various purposes, such as envelope and instantaneous frequency analysis, amplitude modulation, shift invariant wavelet analysis and Hilb...Hilbert transform (HT) is an important tool in constructing analytic signals for various purposes, such as envelope and instantaneous frequency analysis, amplitude modulation, shift invariant wavelet analysis and Hilbert-Huang decomposition. In this work we introduce a method for computation of HT based on the discrete cosine transform (DCT). We show that the Hilbert transformed signal can be obtained by replacing the cosine kernel in inverse DCT by the sine kernel. We describe a FFT-based method for the computation of HT and the analytic signal. We show the usefulness of the proposed method in mechanical vibration and ultrasonic echo and transmission measurements.展开更多
The observations of in-situ spacecraft mission in the magnetosheath and a region of thermalized subsonic plasma behind the bow shock reveal a non-linear behaviour of plasma waves. The study of waves and optics in Phys...The observations of in-situ spacecraft mission in the magnetosheath and a region of thermalized subsonic plasma behind the bow shock reveal a non-linear behaviour of plasma waves. The study of waves and optics in Physics has given the understanding of the effect of many waves coming together to form a wave field or wave packet. The common aspect of such study shows that two or more waves can superimpose constructively or destructively. The sudden high magnetic field data in the magnetosheath displays such possibility of superposition of waves. In this paper, we use the empirical mode decomposition (EMD) and Hilbert transform (HT) techniques to determine the instantaneous frequencies of low frequency plasma waves in the magnetosheath. Our analysis has shown that the turbulent behavior of magnetic field in the magnetosheath within the selected period is due to superposition of waves.展开更多
The self-mixing interferometry(SMI)technique is an emerging sensing technology in microscale particle classification.However,due to the nature of the SMI effect raised by a microscattering particle,the signal analysis...The self-mixing interferometry(SMI)technique is an emerging sensing technology in microscale particle classification.However,due to the nature of the SMI effect raised by a microscattering particle,the signal analysis suffers from many problems compared with a macro target,such as lower signal-to-noise ratio(SNR),short transit time,and time-varying modulation strength.Therefore,the particle sizing measurement resolution is much lower than the one in typical displacement measurements.To solve these problems,in this paper,first,a theoretical model of the phase variation of a singleparticle SMI signal burst is demonstrated in detail.The relationship between the phase variation and the particle size is investigated,which predicts that phase observation could be another alternative for particle detection.Second,combined with continuous wavelet transform and Hilbert transform,a novel phase-unwrapping algorithm is proposed.This algorithm can implement not only efficient individual burst extraction from the noisy raw signal,but also precise phase calculation for particle sizing.The measurement shows good accuracy over a range from 100 nm to 6μm with our algorithm,proving that our algorithm enables a simple and reliable quantitative particle characteristics retrieval and analysis methodology for microscale particle detection in biomedical or laser manufacturing fields.展开更多
基金Research supported by the 863 Program of China(No.2012AA09A20103)the National Natural Science Foundation of China(No.41274119,No.41174080,and No.41004041)
文摘In seismic data processing, random noise seriously affects the seismic data quality and subsequently the interpretation. This study aims to increase the signal-to-noise ratio by suppressing random noise and improve the accuracy of seismic data interpretation without losing useful information. Hence, we propose a structure-oriented polynomial fitting filter. At the core of structure-oriented filtering is the characterization of the structural trend and the realization of nonstationary filtering. First, we analyze the relation of the frequency response between two-dimensional(2D) derivatives and the 2D Hilbert transform. Then, we derive the noniterative seismic local dip operator using the 2D Hilbert transform to obtain the structural trend. Second, we select polynomial fitting as the nonstationary filtering method and expand the application range of the nonstationary polynomial fitting. Finally, we apply variableamplitude polynomial fitting along the direction of the dip to improve the adaptive structureoriented filtering. Model and field seismic data show that the proposed method suppresses the seismic noise while protecting structural information.
基金Supported by the National Natural Science Foundation of China(50975028)"111"Project of China(B08043)
文摘Hilbert transformation and improved ellipse localization method is applied in ultrasonic transducer array tomography to detect defect of metal plate.By combining the improved ellipse localization method and time-reversal method,the new ultrasonic tomography algorithm employs smooth Hilbert envelope instead of discrete amplitude to reconstruct defect image.An ultrasonic tomography system with six transducers is built to evaluate the effectiveness of the new ultrasonic tomography algorithm.The S0 mode Lamb wave is excited on special condition,and the mode of received signal is identified by Vigner-Wille distribution.The gray value of image area is defined by envelope of the reflected S0 mode Lamb wave signal from defect boundary.Defect image can be reconstructed by summing gray value of all pixels in the image area.The experimentally reconstructed defect image shows that the new tomography algorithm based on Hilbert transformation is efficient for defect detection in metal plate.
基金The project supported by the President Foundation of the Chinese Academy of Sciences and National Natural Science Foundation of China under Grant No. 10475056.
文摘We show that the technique of integration within an ordered product of operators can be extended to Hilbert transform. In so doing we derive normally ordered expansion of Coulomb potential-type operators directly by using the mathematical Hilbert transform formula.
文摘This study is concerned with the diagnosis of discrepancies in a steel truss bridge by identifying dynamic properties from the vibration response signals of the bridges.The vibration response signals collected at bridges under three different vehicular speeds of 10 km/hr,20 km/hr,and 30 km/hr are analyzed using statistical features such as kurtosis,magnitude of peak-to-peak,root mean square,crest factor as well as impulse factor in time domain,and Stockwell transform in the time-frequency domain.The considered statistical features except for kurtosis show uncertain behavior.The Stockwell transform showed low-resolution outcomes when the presence of noise in the recorded vibration responses.The elimination of noise and extraction of meaningful dynamic properties from the vibration responses is done by applying a new method which comes from the fusion of Hilbert transform with Spectral kurtosis and bandpass filtering.The outcomes obtained from Hilbert transform processed residual signals which are further filtered using bandpass filter show more robustness and accuracy in characterizing bridge modal frequencies from the noisy vibration responses.The proposed method produces a high-resolution frequency response which can unveil the joint discrepancy in the bridge structure.
文摘Noise is the biggest obstacle that makes the incipient fault diagnosis results of roller bearings uncorrected; a new method for diagnosing incipient fault of roller bearings based on the Wavelet Transform Correlation Filter and Hilbert Transform was proposed. First, the weak fault information features are picked up from the roller bearings fault vibration signals by use of a de-noising characteristic of the Wavelet Transform Correlation Filter as the preprocessing of the Hilbert Envelope Analysis. Then, in order to get fault features frequency, de-noised wavelet coefficients of high scales which represent high frequency signal were analyzed by Hilbert Envelope Spectrum Analysis. The simulation signals and diagnosing examples analysis results reveal that the proposed method is more effective than the method of direct wavelet coefficients-Hilbert Transform in de-noising and clarifying roller bearing incipient fault.
基金This work is funded by the Scientific and Technological Projects of Henan Province under Grant 152102210115.
文摘Nonlinear response is an important factor affecting the accuracy of three-dimensional image measurement based on the fringe structured light method.A phase compensation algorithm combined with a Hilbert transform is proposed to reduce the phase error caused by the nonlinear response of a digital projector in the three-dimensional measurement system of fringe structured light.According to the analysis of the influence of Gamma distortion on the phase calculation,the algorithm establishes the relationship model between phase error and harmonic coefficient,introduces phase shift to the signal,and keeps the signal amplitude constant while filtering out the DC component.The phase error is converted to the transform domain,and compared with the numeric value in the space domain.The algorithm is combined with a spiral phase function to optimize the Hilbert transform,so as to eliminate external noise,enhance the image quality,and get an accurate phase value.Experimental results show that the proposed method can effectively improve the accuracy and speed of phase measurement.By performing phase error compensation for free-form surface objects,the phase error is reduced by about 26%,and about 27%of the image reconstruction time is saved,which further demonstrates the feasibility and effectiveness of the method.
文摘In the paper, the author generalized the Hardy and Littlewood's theorem toBa space, i.e. for all Pm satisfying 1 < α = infpm≤ β≤ suppm < ∞, m = 1, 2,..., and the following inequalityholds if and on1y if.
基金Supported by the National Natural Science Foundation of China (1057115610701064)+1 种基金ZJNSF (RC97017)the Zijin Project of Zhejiang University
文摘The hyper Hilbert transform Tnf(x) =∫-1^1 f(x - Γ(t))e^-i|t|-β|t|^-1-αdt along an appropriate curve Γ(t) on R^n is investigated,where β 〉 α 〉 0.An L^p boundedness theorem of T4 is obtained,which is an extension of some earlier results of n = 2 and n = 3.
文摘This work presents an advanced mathematical tool applicable to the recognition and classification of power system transients and disturbances. Disturbances without a periodic pattern or with a non-linear pattern require a more suitable tool than the Fourier series (Fast Fourier or Windowed Fourier Transforms). To overcome these drawbacks, other tools have been broadly used, such as the wavelet transform. However, the wavelet transform also has some drawbacks such as the lack of adaptivity or interpretation of nonlinear phenomena that the Hilbert and Hilbert Huang Transform techniques could mitigate. The Hilbert techniques transform a time domain function into a space representation both in time and frequency. In the paper, the technique is applied to analyse several short-term and steady events, like a short circuit, a capacitor-switching transient, or a line energisation, showing the abilities of the Hilbert-based transforms.
文摘A measurement model based on torsion pendulum was established,in which nonlinear damping and nonlinear restoring force were considered.The calculation method of the moment of inertia was based on Hilbert transform.The motion of torsion pendulum showed the time-frequency characteristics due to the nonlinear factors,which were validated by the experimental data.The analytical signal was formed by Hilbert transform of the angular displacement signal of the test object.The moment of inertia can be computed by the instantaneous undamped natural frequency with Hilbert transform.Prior to the implementation of Hilbert transform,the empirical mode decomposition was used to filter the experimental signal.The moment of inertia of the test object was measured by the torsion pendulum system.The experimental results show that the relative measurement error of the moment of inertia was within 0.7%,which indicated the validity of the measurement method.
文摘An iterative algorithm is developed for the Hilbert transform based on FFT using the phase in-formation of modulated signal.The feature of this iterative algorithm is frequency shifting on apart of non-integral frequency in a modulated signal,and the final result of the orthogonal signalwith less pollution caused by the leakage phenomenon is obtained.The algorithm has been appliedto estimate envelope,center frequency and initial phase,including simulation and engineering ex-amples.
文摘An application of the sinc sum function in Hilbert transformer (HT) is studied. The expression of the frequency re- sponse of HT is expressed with sinc sum functions. Some properties of sub-amplitude response of HT are proved by using the properties of the sinc sum function. A general HT formula is obtained theoretically and it contains a general window function. As an example three new window functions are obtained. Different from the existing window func- tions obtained from lowpass filters, these window functions are obtained directly from HT. Comparisons show that new windows are better than the Hanning, Hamming, Blackman and Kaiser windows in terms of HT performances.
文摘Hilbert transform is a basic tool in constructing analytical signals for a various applications such as amplitude modulation, envelope and instantaneous frequency analysis, quadrature decoding, shift-invariant multi-rate signal processing and Hilbert-Huang decomposition. This work introduces a complex Hilbert transform (CHT) filter, where the real and imaginary parts are a Hilbert transform pair. The CHT filtered signal is analytic, i.e. its Fourier transform is zero in negative frequency range. The CHT filter is constructed by half-sample delay operators based on the B-spline transform interpolation and decimation procedure. The CHT filter has an ideal phase response and the magnitude response is maximally flat in the frequency range 0 ≤ ω ≤ π. The CHT filter has integer coefficients and the implementation in VLSI requires only summations and register shifts. We demonstrate the feasibility of the CHT filter in reconstruction of the sign modulated CMOS logic pulses in a fibre optic link.
文摘Hilbert transform (HT) is an important tool in constructing analytic signals for various purposes, such as envelope and instantaneous frequency analysis, amplitude modulation, shift invariant wavelet analysis and Hilbert-Huang decomposition. In this work we introduce a method for computation of HT based on the discrete cosine transform (DCT). We show that the Hilbert transformed signal can be obtained by replacing the cosine kernel in inverse DCT by the sine kernel. We describe a FFT-based method for the computation of HT and the analytic signal. We show the usefulness of the proposed method in mechanical vibration and ultrasonic echo and transmission measurements.
文摘The observations of in-situ spacecraft mission in the magnetosheath and a region of thermalized subsonic plasma behind the bow shock reveal a non-linear behaviour of plasma waves. The study of waves and optics in Physics has given the understanding of the effect of many waves coming together to form a wave field or wave packet. The common aspect of such study shows that two or more waves can superimpose constructively or destructively. The sudden high magnetic field data in the magnetosheath displays such possibility of superposition of waves. In this paper, we use the empirical mode decomposition (EMD) and Hilbert transform (HT) techniques to determine the instantaneous frequencies of low frequency plasma waves in the magnetosheath. Our analysis has shown that the turbulent behavior of magnetic field in the magnetosheath within the selected period is due to superposition of waves.
基金supported by the National Natural Science Foundation of China(Nos.61905005 and 52175375)the General Program of Science and Technology Development Project of Beijing Municipal Education Commission(No.KM202110005004)。
文摘The self-mixing interferometry(SMI)technique is an emerging sensing technology in microscale particle classification.However,due to the nature of the SMI effect raised by a microscattering particle,the signal analysis suffers from many problems compared with a macro target,such as lower signal-to-noise ratio(SNR),short transit time,and time-varying modulation strength.Therefore,the particle sizing measurement resolution is much lower than the one in typical displacement measurements.To solve these problems,in this paper,first,a theoretical model of the phase variation of a singleparticle SMI signal burst is demonstrated in detail.The relationship between the phase variation and the particle size is investigated,which predicts that phase observation could be another alternative for particle detection.Second,combined with continuous wavelet transform and Hilbert transform,a novel phase-unwrapping algorithm is proposed.This algorithm can implement not only efficient individual burst extraction from the noisy raw signal,but also precise phase calculation for particle sizing.The measurement shows good accuracy over a range from 100 nm to 6μm with our algorithm,proving that our algorithm enables a simple and reliable quantitative particle characteristics retrieval and analysis methodology for microscale particle detection in biomedical or laser manufacturing fields.