In fault diagnosis of rotating machinery, Hil- bert-Huang transform (HHT) is often used to extract the fault characteristic signal and analyze decomposition results in time-frequency domain. However, end effect occu...In fault diagnosis of rotating machinery, Hil- bert-Huang transform (HHT) is often used to extract the fault characteristic signal and analyze decomposition results in time-frequency domain. However, end effect occurs in HHT, which leads to a series of problems such as modal aliasing and false IMF (Intrinsic Mode Func- tion). To counter such problems in HHT, a new method is put forward to process signal by combining the general- ized regression neural network (GRNN) with the bound- ary local characteristic-scale continuation (BLCC). Firstly, the improved EMD (Empirical Mode Decompo- sition) method is used to inhibit the end effect problem that appeared in conventional EMD. Secondly, the gen- erated IMF components are used in HHT. Simulation and measurement experiment for the cases of time domain, frequency domain and related parameters of Hilbert- Huang spectrum show that the method described here can restrain the end effect compared with the results obtained through mirror continuation, as the absolute percentage of the maximum mean of the beginning end point offset and the terminal point offset are reduced from 30.113% and 27.603% to 0.510% and 6.039% respectively, thus reducing the modal aliasing, and eliminating the false IMF components of HHT. The proposed method caneffectively inhibit end effect, reduce modal aliasing and false IMF components, and show the real structure of signal components accuratelX.展开更多
The flow of supersonic plasma is accompanied by a highly thermalized region called the Magnetoshealth found after the bow shock. Enclosed within this region are different wave modes associated with classes of boundari...The flow of supersonic plasma is accompanied by a highly thermalized region called the Magnetoshealth found after the bow shock. Enclosed within this region are different wave modes associated with classes of boundaries which have been determined by different methods. The efficacy of Hilbert-Huang transform (HHT) is based on the conditionality of allowing for the local analysis of frequencies, which presents the physical meaning of the original signal at that instant. The observed data have been taken from Cluster II Fluxgate Magnetometer (FGM) instrument that provides advantage for the analysis in three dimensions. The result compares favourably with instantaneous frequencies computed using simple Hilbert transform (SHT) with electric field measurements of Cluster II mission already carried out in literatures. The result of this study has shown that HHT provides the best applicability in the magnetosheath data analysis than the wavelet and Fast Fourier Transform (FFT). The application of HHT based on its advantages over other methods is viewed to be very critical in the analysis of multi-frequency signals where different frequencies could be determined distinctively at a point.展开更多
The flow of supersonic plasma is accompanied by a highly thermalized region called the Magnetoshealth found after the bow shock. Enclosed within this region are different wave modes associated with classes of boundari...The flow of supersonic plasma is accompanied by a highly thermalized region called the Magnetoshealth found after the bow shock. Enclosed within this region are different wave modes associated with classes of boundaries which have been determined by different methods. The efficacy of Hilbert-Huang transform (HHT) is based on the conditionality of allowing for the local analysis of frequencies, which presents the physical meaning of the original signal at that instant. The observed data have been taken from Cluster II Fluxgate Magnetometer (FGM) instrument that provides advantage for the analysis in three dimensions. The result compares favourably with instantaneous frequencies computed using simple Hilbert transform (SHT) with electric field measurements of Cluster II mission already carried out in literatures. The result of this study has shown that HHT provides the best applicability in the magnetosheath data analysis than the wavelet and Fast Fourier Transform (FFT). The application of HHT based on its advantages over other methods is viewed to be very critical in the analysis of multi-frequency signals where different frequencies could be determined distinctively at a point.展开更多
Hilbert-Huang Transform (HHT) is a newly developed powerful method for nonlinear and non-stationary time series analysis. The empirical mode decomposition is the key part of HHT, while its algorithm was protected by N...Hilbert-Huang Transform (HHT) is a newly developed powerful method for nonlinear and non-stationary time series analysis. The empirical mode decomposition is the key part of HHT, while its algorithm was protected by NASA as a US patent, which limits the wide application among the scientific community. Two approaches, mirror periodic and extrema extending methods, have been developed for handling the end effects of empirical mode decomposition. The implementation of the HHT is realized in detail to widen the application. The detailed comparison of the results from two methods with that from Huang et al. (1998, 1999), and the comparison between two methods are presented. Generally, both methods reproduce faithful results as those of Huang et al. For mirror periodic method (MPM), the data are extended once forever. Ideally, it is a way for handling the end effects of the HHT, especially for the signal that has symmetric waveform. The extrema extending method (EEM) behaves as good as MPM, and it is better than MPM for the signal that has strong asymmetric waveform. However, it has to perform extrema envelope extending in every shifting process.展开更多
Pressure activity data as an important index of gastrointestinal (GI) motility can be obtained from the wireless radiotelemetry capsule. The Hilbert-Huang transform (HHT) method, which is more effective to process...Pressure activity data as an important index of gastrointestinal (GI) motility can be obtained from the wireless radiotelemetry capsule. The Hilbert-Huang transform (HHT) method, which is more effective to process non-stationary signal, is proposed to identify the characteristics of GI motility. We decompose the pressure activity data into intrinsic mode functions (IMFs), calculate the Hi/bert marginal spectrum and attain the peristalsis characteristics of GI tract. The IMFs represent the peristalses modes of GI tract activity embedded in the pressure data. The time-varying characteristic of the method suggests that the HHT is suitable to accommodate other non-stationary biomedical data analysis.展开更多
Objective: To study the characteristics of pulse tracings in CHD, and objectively evaluate the significance of pulse signal in diagnosis and appreciation of therapeutic effect in patients with coronary heart disease(C...Objective: To study the characteristics of pulse tracings in CHD, and objectively evaluate the significance of pulse signal in diagnosis and appreciation of therapeutic effect in patients with coronary heart disease(CHD), and accordingly provide with theoretic proofs for developing non-invasive technique of pulse diagnosis. Methods: By using the pulse detection system, pulse graphs in CHD patients, patients without CHD and "health" adults were collected and compared. Then characters of the pulse signal were analyzed with Hilbert-Huang transformation routine (HHT) and time-domain method respectively. Results: There existed characteristic change in pulse graph in CHD. ① h1,h3,h4,h3/h1,t,t5/t4 in time domain parameters of pulse graph increased and w1 was widened. ② 44% of C2 wave in HHT display showed chaotic and disorderly wave and irregularly wave amplitude in CHD. And 72% of C5 Wave exhibited in irregular wave with average wave amplitude over 10 gram-forces. These changes were significantly different from health adults. Conclusion: Characteristic wave of pulse graph extracted with methods of time domain or HHT routine might be considered as proofs for diagnosis and differentiation in CHD. Our researches prognosticate that pulse diagnosis can be used as an ancillary determination in occurrence of CHD for reasons of the advantage of convenient operation and non-invasion.展开更多
Imaging the spatial precession cone-shaped targets with narrowband radar is a new technical approach in mid-course recognition problem. However, most existing time-frequency methods still have some inevitable deficien...Imaging the spatial precession cone-shaped targets with narrowband radar is a new technical approach in mid-course recognition problem. However, most existing time-frequency methods still have some inevitable deficiencies for extracting microDoppler information in practical applications, which leads to blurring of the image. A new narrowband radar imaging algorithm for the precession cone-shaped targets is proposed. The instantaneous frequency of each scattering point is gained by using the improved Hilbert-Huang transform, then the positions of scattering points in the parameter domain are reconstructed. Numerical simulation and experiment results confirm the effectiveness and high precision of the proposed algorithm.展开更多
A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing ch...A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing characteristics of pulse parameters in radar emitter signals.The features can be applied in modern complex electronic warfare environment to address the issue of signal sorting when radar emitter pulse signal parameters severely or even completely overlap.Experiment results show that the proposed feature class and feature extraction method can discriminate periodically changing pulse sequence signal sorting features from radar pulse signal flow with complex variant features,therefore provide a new methodology for signal sorting.展开更多
Continuous observation data from 24 GPS stations are selected in the area (33.0°N-41.0°N, 95.0°E-105.0°E) for this study (the period is from Jan. 1, 2015 to Jan. 20, 2016). Three components, NS...Continuous observation data from 24 GPS stations are selected in the area (33.0°N-41.0°N, 95.0°E-105.0°E) for this study (the period is from Jan. 1, 2015 to Jan. 20, 2016). Three components, NS, EW and UD, of the daily solutions are filtered by the Hilbert-Huang transform (HHT) with frequency band of 5.787×10^-7-7.716 ×10^-8 Hz (20-150 days in period). And short-term dynamic characteristics of micro displacement before Menyuan M6.4 earthquake are studied by using the temporal dependencies and cross spectrum analysis. The results show that before the earthquake the horizontal undulatory motions are higher than the average level in the series data which indicate the disturbance feature of regional stress before the earthquake. Three GPS stations on Qinghai-Tibet Plateau with their setting perpendicular to the seismogenic fault have consistent movement. The increase of amplitude of the horizontal micro motion observed before the quake is conducive to the earthquake occurrence. However, we could not be sure if the undulatory motion triggered the earthquake. It is quite necessary to build more GPS continuous observation stations and optimize the monitoring network so as to improve the understanding of the shortterm dynamic crustal variation before earthquake.展开更多
The ESMD method can be seen as a new alternate of the well-known Hilbert-Huang transform (HHT) for non-steady data processing. It is good at finding the optimal adaptive global mean fitting curve, which is superior to...The ESMD method can be seen as a new alternate of the well-known Hilbert-Huang transform (HHT) for non-steady data processing. It is good at finding the optimal adaptive global mean fitting curve, which is superior to the common least-square method and running-mean approach. Take the air-sea momentum flux investigation as an example, only when the non-turbulent wind components is well extracted, can the remainder signal be seen as actual oscillations caused by turbulence. With the aid of —5/3 power law for the turbulence, a mode-filtering approach based on ESMD decomposition is developed here. The test on observational data indicates that this approach is very feasible and it may greatly reduce the error caused by the non-turbulent components.展开更多
Under harmonic wave excitation, the dynamic response of a bilinear SDOF system can be expressed by the Hilbert spectrum. The Hilbert spectrum can be formulated by (1) the inter-wave combination mechanism between the s...Under harmonic wave excitation, the dynamic response of a bilinear SDOF system can be expressed by the Hilbert spectrum. The Hilbert spectrum can be formulated by (1) the inter-wave combination mechanism between the steady response and the transient response when the system behaves linearly, or (2) the intra-wave modulation mechanism embedded in one intrinsic mode function (IMF) component when the system behaves nonlinearly. The temporal variation of the instantaneous frequency of the IMF component is consistent with the system nonlinear behavior of yielding and unloading. As a thorough study of this fundamental structural dynamics problem, this article investigates the influence of the amplitude of the harmonic wave excitation on the Hilbert spectrum and the intrinsic oscillatory mode of the dynamic response of a bilinear SDOF system.展开更多
The sEMG signals are collected from the vastus lateralis,vastus medialis,biceps femoris,and semitendinosus of lower extremity during level walking among control subjects and knee osteoarthritis (OA) patients,the latte...The sEMG signals are collected from the vastus lateralis,vastus medialis,biceps femoris,and semitendinosus of lower extremity during level walking among control subjects and knee osteoarthritis (OA) patients,the latter including mild,moderate and severe degree.The 5-fold cross-validation is used to measure the accuracy of the proposed analysis algorithm on collected sEMG recordings.For comparison,the more classical feature vectors of form factor,degree of skewness,kurtosis,and wavelet entropy are also tested.In experiment,the normalized energy ratio and marginal spectrum ratio achieve larger accuracy than the other features for all the four muscular groups.Moreover the accuracy of vastus medialis and biceps femoris are larger than that of vastus lateralis and semitendinosus.These results suggest that the normalized energy ratio and marginal spectrum ratio via the analysis of knee sEMG signals by HHT can server as characteristic parameters to easily classify osteoarthritis with noninvasive method.The more important muscular groups for maintaining the knee joint function are medialis and biceps femoris;as a result of that they should be exercise especially for rehabilitation.展开更多
To improve the accuracy of the stator winding fault diagnosis in induction motor,a new diagnostic method based on the Hilbert-Huang transform(HHT)was proposed.The ratio of fundamental zero sequence voltage to positive...To improve the accuracy of the stator winding fault diagnosis in induction motor,a new diagnostic method based on the Hilbert-Huang transform(HHT)was proposed.The ratio of fundamental zero sequence voltage to positive sequence voltage after switch-off was selected as the stator fault characteristic,which could effectively avoid the influence of the supply unbalance and the load fluctuation,and directly represent the asymmetry in the stator.Using the empirical mode decomposition(EMD)based on HHT,the zero sequence voltage after switch-off was decomposed and the fundamental component was extracted.Then,the fault characteristic can be acquired.Experimental results on a 4-kW induction motor demonstrate the feasibility and effectiveness of this method.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51375467)Quality Inspection of Public Welfare Industry Research Projects,China(Grant No.201410009)
文摘In fault diagnosis of rotating machinery, Hil- bert-Huang transform (HHT) is often used to extract the fault characteristic signal and analyze decomposition results in time-frequency domain. However, end effect occurs in HHT, which leads to a series of problems such as modal aliasing and false IMF (Intrinsic Mode Func- tion). To counter such problems in HHT, a new method is put forward to process signal by combining the general- ized regression neural network (GRNN) with the bound- ary local characteristic-scale continuation (BLCC). Firstly, the improved EMD (Empirical Mode Decompo- sition) method is used to inhibit the end effect problem that appeared in conventional EMD. Secondly, the gen- erated IMF components are used in HHT. Simulation and measurement experiment for the cases of time domain, frequency domain and related parameters of Hilbert- Huang spectrum show that the method described here can restrain the end effect compared with the results obtained through mirror continuation, as the absolute percentage of the maximum mean of the beginning end point offset and the terminal point offset are reduced from 30.113% and 27.603% to 0.510% and 6.039% respectively, thus reducing the modal aliasing, and eliminating the false IMF components of HHT. The proposed method caneffectively inhibit end effect, reduce modal aliasing and false IMF components, and show the real structure of signal components accuratelX.
文摘The flow of supersonic plasma is accompanied by a highly thermalized region called the Magnetoshealth found after the bow shock. Enclosed within this region are different wave modes associated with classes of boundaries which have been determined by different methods. The efficacy of Hilbert-Huang transform (HHT) is based on the conditionality of allowing for the local analysis of frequencies, which presents the physical meaning of the original signal at that instant. The observed data have been taken from Cluster II Fluxgate Magnetometer (FGM) instrument that provides advantage for the analysis in three dimensions. The result compares favourably with instantaneous frequencies computed using simple Hilbert transform (SHT) with electric field measurements of Cluster II mission already carried out in literatures. The result of this study has shown that HHT provides the best applicability in the magnetosheath data analysis than the wavelet and Fast Fourier Transform (FFT). The application of HHT based on its advantages over other methods is viewed to be very critical in the analysis of multi-frequency signals where different frequencies could be determined distinctively at a point.
文摘The flow of supersonic plasma is accompanied by a highly thermalized region called the Magnetoshealth found after the bow shock. Enclosed within this region are different wave modes associated with classes of boundaries which have been determined by different methods. The efficacy of Hilbert-Huang transform (HHT) is based on the conditionality of allowing for the local analysis of frequencies, which presents the physical meaning of the original signal at that instant. The observed data have been taken from Cluster II Fluxgate Magnetometer (FGM) instrument that provides advantage for the analysis in three dimensions. The result compares favourably with instantaneous frequencies computed using simple Hilbert transform (SHT) with electric field measurements of Cluster II mission already carried out in literatures. The result of this study has shown that HHT provides the best applicability in the magnetosheath data analysis than the wavelet and Fast Fourier Transform (FFT). The application of HHT based on its advantages over other methods is viewed to be very critical in the analysis of multi-frequency signals where different frequencies could be determined distinctively at a point.
基金This study is supported by the National Natural Science Foundation of China(NSFC)under contract Nos 49790010,40076010 and 49634140,National Key Basic Research and Development Plan in China under contract No.G1999043701)and the OCEAN-863 Project of China.
文摘Hilbert-Huang Transform (HHT) is a newly developed powerful method for nonlinear and non-stationary time series analysis. The empirical mode decomposition is the key part of HHT, while its algorithm was protected by NASA as a US patent, which limits the wide application among the scientific community. Two approaches, mirror periodic and extrema extending methods, have been developed for handling the end effects of empirical mode decomposition. The implementation of the HHT is realized in detail to widen the application. The detailed comparison of the results from two methods with that from Huang et al. (1998, 1999), and the comparison between two methods are presented. Generally, both methods reproduce faithful results as those of Huang et al. For mirror periodic method (MPM), the data are extended once forever. Ideally, it is a way for handling the end effects of the HHT, especially for the signal that has symmetric waveform. The extrema extending method (EEM) behaves as good as MPM, and it is better than MPM for the signal that has strong asymmetric waveform. However, it has to perform extrema envelope extending in every shifting process.
基金the National High.Technology Research and Development Programme of China(2004AA404013)
文摘Pressure activity data as an important index of gastrointestinal (GI) motility can be obtained from the wireless radiotelemetry capsule. The Hilbert-Huang transform (HHT) method, which is more effective to process non-stationary signal, is proposed to identify the characteristics of GI motility. We decompose the pressure activity data into intrinsic mode functions (IMFs), calculate the Hi/bert marginal spectrum and attain the peristalsis characteristics of GI tract. The IMFs represent the peristalses modes of GI tract activity embedded in the pressure data. The time-varying characteristic of the method suggests that the HHT is suitable to accommodate other non-stationary biomedical data analysis.
基金The National Basic Research Program (973 Program)grant number: 2003CB517108
文摘Objective: To study the characteristics of pulse tracings in CHD, and objectively evaluate the significance of pulse signal in diagnosis and appreciation of therapeutic effect in patients with coronary heart disease(CHD), and accordingly provide with theoretic proofs for developing non-invasive technique of pulse diagnosis. Methods: By using the pulse detection system, pulse graphs in CHD patients, patients without CHD and "health" adults were collected and compared. Then characters of the pulse signal were analyzed with Hilbert-Huang transformation routine (HHT) and time-domain method respectively. Results: There existed characteristic change in pulse graph in CHD. ① h1,h3,h4,h3/h1,t,t5/t4 in time domain parameters of pulse graph increased and w1 was widened. ② 44% of C2 wave in HHT display showed chaotic and disorderly wave and irregularly wave amplitude in CHD. And 72% of C5 Wave exhibited in irregular wave with average wave amplitude over 10 gram-forces. These changes were significantly different from health adults. Conclusion: Characteristic wave of pulse graph extracted with methods of time domain or HHT routine might be considered as proofs for diagnosis and differentiation in CHD. Our researches prognosticate that pulse diagnosis can be used as an ancillary determination in occurrence of CHD for reasons of the advantage of convenient operation and non-invasion.
基金supported by the China National Funds for Distinguished Young Scientists(61025006)
文摘Imaging the spatial precession cone-shaped targets with narrowband radar is a new technical approach in mid-course recognition problem. However, most existing time-frequency methods still have some inevitable deficiencies for extracting microDoppler information in practical applications, which leads to blurring of the image. A new narrowband radar imaging algorithm for the precession cone-shaped targets is proposed. The instantaneous frequency of each scattering point is gained by using the improved Hilbert-Huang transform, then the positions of scattering points in the parameter domain are reconstructed. Numerical simulation and experiment results confirm the effectiveness and high precision of the proposed algorithm.
基金supported by the National Natural Science Foundation of China (60872108)the Postdoctoral Science Foundation of China(200902411+3 种基金20080430903)Heilongjiang Postdoctoral Financial Assistance (LBH-Z08129)the Scientific and Technological Creative Talents Special Research Foundation of Harbin Municipality (2008RFQXG030)Central University Basic Research Professional Expenses Special Fund Project
文摘A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing characteristics of pulse parameters in radar emitter signals.The features can be applied in modern complex electronic warfare environment to address the issue of signal sorting when radar emitter pulse signal parameters severely or even completely overlap.Experiment results show that the proposed feature class and feature extraction method can discriminate periodically changing pulse sequence signal sorting features from radar pulse signal flow with complex variant features,therefore provide a new methodology for signal sorting.
基金funded by the Project of National Natural Science Foundation of China,based on GPS and leveling data simulation and study on the state of seismogenic deformation field and its mechanical characteristics(41274008)the Basic Research Project of Institute the Earthquake Science,China Earthquake Administration,crustal deformation observation experiment and dynamic process simulation research(2014IES010201)
文摘Continuous observation data from 24 GPS stations are selected in the area (33.0°N-41.0°N, 95.0°E-105.0°E) for this study (the period is from Jan. 1, 2015 to Jan. 20, 2016). Three components, NS, EW and UD, of the daily solutions are filtered by the Hilbert-Huang transform (HHT) with frequency band of 5.787×10^-7-7.716 ×10^-8 Hz (20-150 days in period). And short-term dynamic characteristics of micro displacement before Menyuan M6.4 earthquake are studied by using the temporal dependencies and cross spectrum analysis. The results show that before the earthquake the horizontal undulatory motions are higher than the average level in the series data which indicate the disturbance feature of regional stress before the earthquake. Three GPS stations on Qinghai-Tibet Plateau with their setting perpendicular to the seismogenic fault have consistent movement. The increase of amplitude of the horizontal micro motion observed before the quake is conducive to the earthquake occurrence. However, we could not be sure if the undulatory motion triggered the earthquake. It is quite necessary to build more GPS continuous observation stations and optimize the monitoring network so as to improve the understanding of the shortterm dynamic crustal variation before earthquake.
文摘The ESMD method can be seen as a new alternate of the well-known Hilbert-Huang transform (HHT) for non-steady data processing. It is good at finding the optimal adaptive global mean fitting curve, which is superior to the common least-square method and running-mean approach. Take the air-sea momentum flux investigation as an example, only when the non-turbulent wind components is well extracted, can the remainder signal be seen as actual oscillations caused by turbulence. With the aid of —5/3 power law for the turbulence, a mode-filtering approach based on ESMD decomposition is developed here. The test on observational data indicates that this approach is very feasible and it may greatly reduce the error caused by the non-turbulent components.
基金National Natural Science Foundation of China Under Grant No.50278090
文摘Under harmonic wave excitation, the dynamic response of a bilinear SDOF system can be expressed by the Hilbert spectrum. The Hilbert spectrum can be formulated by (1) the inter-wave combination mechanism between the steady response and the transient response when the system behaves linearly, or (2) the intra-wave modulation mechanism embedded in one intrinsic mode function (IMF) component when the system behaves nonlinearly. The temporal variation of the instantaneous frequency of the IMF component is consistent with the system nonlinear behavior of yielding and unloading. As a thorough study of this fundamental structural dynamics problem, this article investigates the influence of the amplitude of the harmonic wave excitation on the Hilbert spectrum and the intrinsic oscillatory mode of the dynamic response of a bilinear SDOF system.
基金Sponsored by the International Science and Technology Cooperation Project of China(Grant No.2009DFA32050)
文摘The sEMG signals are collected from the vastus lateralis,vastus medialis,biceps femoris,and semitendinosus of lower extremity during level walking among control subjects and knee osteoarthritis (OA) patients,the latter including mild,moderate and severe degree.The 5-fold cross-validation is used to measure the accuracy of the proposed analysis algorithm on collected sEMG recordings.For comparison,the more classical feature vectors of form factor,degree of skewness,kurtosis,and wavelet entropy are also tested.In experiment,the normalized energy ratio and marginal spectrum ratio achieve larger accuracy than the other features for all the four muscular groups.Moreover the accuracy of vastus medialis and biceps femoris are larger than that of vastus lateralis and semitendinosus.These results suggest that the normalized energy ratio and marginal spectrum ratio via the analysis of knee sEMG signals by HHT can server as characteristic parameters to easily classify osteoarthritis with noninvasive method.The more important muscular groups for maintaining the knee joint function are medialis and biceps femoris;as a result of that they should be exercise especially for rehabilitation.
基金Project (No. 50677060) supported by the National Natural ScienceFoundation of China
文摘To improve the accuracy of the stator winding fault diagnosis in induction motor,a new diagnostic method based on the Hilbert-Huang transform(HHT)was proposed.The ratio of fundamental zero sequence voltage to positive sequence voltage after switch-off was selected as the stator fault characteristic,which could effectively avoid the influence of the supply unbalance and the load fluctuation,and directly represent the asymmetry in the stator.Using the empirical mode decomposition(EMD)based on HHT,the zero sequence voltage after switch-off was decomposed and the fundamental component was extracted.Then,the fault characteristic can be acquired.Experimental results on a 4-kW induction motor demonstrate the feasibility and effectiveness of this method.