鉴于恢复力曲面法(Restoring Force Surface,RFS)和随机森林(Random Forest,RF)模型在参数辨识领域的优越性,结合上述两种方法提出一种新的基于RFS-RF的局部非线性模型辨识方法。首先,针对局部非线性模型求解其动力响应。其次,根据获得...鉴于恢复力曲面法(Restoring Force Surface,RFS)和随机森林(Random Forest,RF)模型在参数辨识领域的优越性,结合上述两种方法提出一种新的基于RFS-RF的局部非线性模型辨识方法。首先,针对局部非线性模型求解其动力响应。其次,根据获得的动力响应计算恢复力曲面与边际谱,然后再通过边际谱求解非线性指标。再次,通过多次改变结构的刚度和阻尼参数生成若干组非线性指标并建立随机森林模型。然后,将新的非线性指标作为预测集输入已经建立的随机森林模型并判断系统的非线性类型和非线性函数形式。最后,采用最小二乘法对局部非线性系统的待求参数进行精确识别。通过一个四层剪切型框架结构模型对所提方法进行验证,研究结果表明:基于RFS-RF的多自由度局部非线性模型辨识方法能够准确识别结构系统的非线性类型、函数形式以及未知参数。展开更多
Under harmonic wave excitation, the dynamic response of a bilinear SDOF system can be expressed by the Hilbert spectrum. The Hilbert spectrum can be formulated by (1) the inter-wave combination mechanism between the s...Under harmonic wave excitation, the dynamic response of a bilinear SDOF system can be expressed by the Hilbert spectrum. The Hilbert spectrum can be formulated by (1) the inter-wave combination mechanism between the steady response and the transient response when the system behaves linearly, or (2) the intra-wave modulation mechanism embedded in one intrinsic mode function (IMF) component when the system behaves nonlinearly. The temporal variation of the instantaneous frequency of the IMF component is consistent with the system nonlinear behavior of yielding and unloading. As a thorough study of this fundamental structural dynamics problem, this article investigates the influence of the amplitude of the harmonic wave excitation on the Hilbert spectrum and the intrinsic oscillatory mode of the dynamic response of a bilinear SDOF system.展开更多
文摘鉴于恢复力曲面法(Restoring Force Surface,RFS)和随机森林(Random Forest,RF)模型在参数辨识领域的优越性,结合上述两种方法提出一种新的基于RFS-RF的局部非线性模型辨识方法。首先,针对局部非线性模型求解其动力响应。其次,根据获得的动力响应计算恢复力曲面与边际谱,然后再通过边际谱求解非线性指标。再次,通过多次改变结构的刚度和阻尼参数生成若干组非线性指标并建立随机森林模型。然后,将新的非线性指标作为预测集输入已经建立的随机森林模型并判断系统的非线性类型和非线性函数形式。最后,采用最小二乘法对局部非线性系统的待求参数进行精确识别。通过一个四层剪切型框架结构模型对所提方法进行验证,研究结果表明:基于RFS-RF的多自由度局部非线性模型辨识方法能够准确识别结构系统的非线性类型、函数形式以及未知参数。
基金National Natural Science Foundation of China Under Grant No.50278090
文摘Under harmonic wave excitation, the dynamic response of a bilinear SDOF system can be expressed by the Hilbert spectrum. The Hilbert spectrum can be formulated by (1) the inter-wave combination mechanism between the steady response and the transient response when the system behaves linearly, or (2) the intra-wave modulation mechanism embedded in one intrinsic mode function (IMF) component when the system behaves nonlinearly. The temporal variation of the instantaneous frequency of the IMF component is consistent with the system nonlinear behavior of yielding and unloading. As a thorough study of this fundamental structural dynamics problem, this article investigates the influence of the amplitude of the harmonic wave excitation on the Hilbert spectrum and the intrinsic oscillatory mode of the dynamic response of a bilinear SDOF system.