Traditional vegetation techniques for the control of concentrated flow erosion are widely recognized, whereas only a few studies have experimentally investigated the impacts of belowground roots on the erodibility of ...Traditional vegetation techniques for the control of concentrated flow erosion are widely recognized, whereas only a few studies have experimentally investigated the impacts of belowground roots on the erodibility of topsoils in semi-arid areas. To quantify the effects of root architectures on soil erodibility and its relevant structural properties, simulated flow experiments were conducted at six-week intervals from 18 July to 20 October in 2012 in the hilly Loess Plateau. Five treatments were: 1) bare(control), 2) purple alfalfa(Medicago sativa), representing tap roots(T), 3) switchgrass(Panicum virgatum), representing fibrous roots(F), 4) purple alfalfa and switchgrass, representing both tap and fibrous roots(T + F), and 5) natural recovery(N). For each treatment, soil structural properties and root characteristics were measured at an interval of six weeks. Soil anti-scouribility was calculated. Results showed that grass planting slightly reduced soil bulk density, but increased soil aggregate content by 19.1%, 10.6%, 28.5%, and 41.2% in the treatments T, F, T + F, and N, respectively. Soil shear strength(cohesion and angle of internal friction(φ)) significantly increased after the grass was planted. As roots grew, soil cohesion increased by 115.2%–135.5%, while soil disintegration rate decreased by 39.0%–58.1% in the 21 th week compared with the recorded value in the 9th week. Meanwhile, root density and root surface area density increased by 64.0%–104.7% and 75.9%–157.1%, respectively. No significant differences in soil anti-scouribility were observed between the treatments of T and F or of T + F and N, but the treatments of T + F and N performed more effectively than T or F treatment alone in retarding concentrated flow. Soil aggregation and root surface-area density explained the observed soil anti-scouribility during concentrated flow well for the different treatments. This result proved that the restoration of natural vegetation might be the most appropriate strategy in soil reinforcement in the hilly Loess Plateau.展开更多
According to variations of 137Cs and clay contents, 44 flood couplets were identified in a profile of res- ervoir deposit with a vertical length of 28.12 m in the Yuntaishan Gully. Couplet 27 at the middle of the prof...According to variations of 137Cs and clay contents, 44 flood couplets were identified in a profile of res- ervoir deposit with a vertical length of 28.12 m in the Yuntaishan Gully. Couplet 27 at the middle of the profile had the highest average 137Cs content of 12.65 Bq·kg?1, which indicated the 1963s' deposits, then 137Cs content decreased both downward and upward in the profile. The second top and bottom couplets had average 137Cs contents of 2.15 Bq·kg?1 and 0.92 Bq·kg?1, respectively. By integrated analysis of reservoir construction and management history, variations of 137Cs contents over the profile, sediment yields of flood couplets and rainfall data during the period of 1958-1970, individual storms related to the flood couplets were identified. 44 floods with a total sediment yield of 2.36×104 m3 occurred and flood events in a year varied between 1 and 10 times during the period of 1960-1970. 7-10 flood events occurred during the wet period of 1961-1964 with very wet autumn, while only 1-2 events during the dry period of 1965-1969. Average annual specific sediment yield was 1.29×104 t·km?2·a?1 for the Yuntaishan Gully during the period of 1960-1970, which was slightly higher than 1.11 ×104 t·km?2·a?1 for the Upper Yanhe River Basin above the Ganguyi Hydrological Station and slightly lower than 1.40 ×104 t·km?2·a?1 for the nearby Zhifang Gully during the same period. Annual specific sediment yields for the Yuntaishan Gully were correlated to the wet season's rainfalls well.展开更多
[Objective] The aim was to study the climate changes characteristics in the hilly region of the loess plateau and its influence on agricultural production.[Method] Taking Yan’an City as an example,and by dint of temp...[Objective] The aim was to study the climate changes characteristics in the hilly region of the loess plateau and its influence on agricultural production.[Method] Taking Yan’an City as an example,and by dint of temperature and precipitation in nine meteorological stations from 1957 to 2007 and accumulated anomaly curve,linear regression and relevant analysis,the climate changes characteristics in 51 years in Yan’an were expounded.The climate changes in the hilly region of the loess plateau were studied and its influences on agricultural production were concluded.[Result] The characteristics of climate changes in the hilly region were as follow:high temperature in winter and warm winter trend was clearly;the temperature in spring enhanced fast and the drought disaster was increasing worse;rainy days occurred now and then in autumn.The climate changes had different levels of influences on agricultural production in Yan’an City.Because of rising temperature in winter,facility agriculture was vigorously developed and the apple range expanded;in the meantime,because of rising temperature in spring,drought was worsen and sowing in spring can not proceed;constant rain in autumn damaged the quality of date.[Conclusion] The study provided theoretical basis for the regional agricultural production and agricultural structure adjustment.展开更多
Due to relatively strong human activities in the hilly area of Loess Plateau, the natural vegetation has been destroyed, and landscape pattern based on agricultural land matrix was land use mosaic composing of shrub l...Due to relatively strong human activities in the hilly area of Loess Plateau, the natural vegetation has been destroyed, and landscape pattern based on agricultural land matrix was land use mosaic composing of shrub land, grassland, woodland and orchard. This pattern has an important effect on soil moisture and soil nutrients. The Danangou catchment, a typical small catchment, was selected to study the effects of land use and its patterns on soil moisture and nutrients in this paper. The results are as follows: The comparisons of soil moisture among seven land uses for wet year and dry year were performed: (1) the average of soil moisture content for whole catchment was 12.11% in wet year, while it was 9.37% in dry year; (2) soil moisture among seven land uses was significantly different in dry year, but not in wet year; (3) from wet year to dry year, the profile type of soil moisture changed from decreasing type to fluctuation-type and from fluctuant type to increasing type; (4) the increasing trend in soil moisture from the top to foot of hillslope occurred in simple land use along slope, while complicated distribution of soil moisture was observed in multiple land uses along slope. The relationships between soil nutrients and land uses and landscape positions were analysed: (1) five nutrient contents of soil organic matter (SOM), total N (TN), available N (AN), total P (TP) and available P (AP) in hilly area were lower than that in other areas. SOM content was less than 1%, TN content less than 0.07%, and TP content between 0.05% and 0.06%; (2) SOM and TN contents in woodland, shrub land and grassland were significantly higher than that in fallow land and cropland, and higher level in soil fertility was found in crop-fruit intercropping land among croplands; (3) soil nutrient distribution and responses to landscape positions were variable depending on slope and the location of land use types.展开更多
Detecting variation trend in dry-wet conditions can provide information for devel- oping strategic measures to mitigate the impacts of global warming, particularly in dry regions Taking the hilly region of northern Sh...Detecting variation trend in dry-wet conditions can provide information for devel- oping strategic measures to mitigate the impacts of global warming, particularly in dry regions Taking the hilly region of northern Shaanxi on the Loess Plateau as a case area, this study analyzed the trend of aridity variation during 1981-2012, and explored the effect of vegetation restoration promoted by the Grain-for-Green (GFG) program implemented in 1999. The re- sults indicated that the aridity in the region was non-significantly increased by 0.88% per year during 1981-2012, showing a drying trend. This drying trend and amplitude were changed by the influence of vegetation restoration promoted by the GFG program, based on two findings. The first one was that the aridity variation tended to increase during 1981-1999 while it turned to decrease during 2000-2012, with the regional mean relative change rate changed from 2.45% to -1.06%. This distinction was more remarkable in the loess gully region, where the vegetation was improved more obviously. The second one was that the mean vegetation coverage as indicated by EVI increased by 0.90% to 4.32% per year at county level, while the aridity decreased by 0.14% to 2.32% per year during 2000-2012. The regression analysis using the mean county data indicated that the change rate of aridity was negatively related to that of EVI with the coefficient of determination (R2) of 0.56, illustrating that around half of the aridity decline was explained by the EVI change. The mechanism of this effect was compli- cated, but it was found that the wind speed decline induced by the vegetation improvement could be an important contributor. It is concluded that the region became drier during 1981-2012, but the eco-restoration reduced the drying speed. However, this conclusion is involved in uncertainties, and further study based on experiments is needed to confirm the effect of the GFG-promoted vegetation restoration.展开更多
The objective of this study was to determine the mechanisms of the hydrologic cycle in the loess area in China.Sixty eight water samples from precipitation,soil water of the 0-4 m layer,surface water in the valley,gro...The objective of this study was to determine the mechanisms of the hydrologic cycle in the loess area in China.Sixty eight water samples from precipitation,soil water of the 0-4 m layer,surface water in the valley,ground water(spring and well)were collected and the Deuterium(D)and Oxygen-18(^(18)O)of these water samples were analyzed to interpret the relationship among those waters in the watershed in the loess hilly region during 2005-2009.The results show that:the D&^(18)O of precipitation in Yangou was consistent with that of Xi,an,apparently the north migration of water vapor in Xi^an;according to the correlations among the differential waters in D&^(18)O,confirmed that precipitation recharge could account for most of the sources of valley flow,with part of the recharge water going to soil water recharge.The D&^(18)O of groundwater were very close to that of precipitation,likely the soil preferential flow was dominant in groundwater recharge although the infiltration had a certain lag.Under the influence of rainfall and evaporation,the response of the soil moisture profile,and its D&^(18)O profile were different.The soil moisture had the strong influenced layer in the 60-160 cm range,a weak impacted layer in 60 l60 cm,and a stable layer below l60 cm.It was shown that the soil evaporation depth could be up to l60 cm because the D&^(18)O changed in that depth.The study could increase our understanding of the magnitude and pattern of the hydrologic cycle,which should improve water resources management in the watershed scale.展开更多
基金Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of Chinese Academy of Sciences(No.XDA05060300)
文摘Traditional vegetation techniques for the control of concentrated flow erosion are widely recognized, whereas only a few studies have experimentally investigated the impacts of belowground roots on the erodibility of topsoils in semi-arid areas. To quantify the effects of root architectures on soil erodibility and its relevant structural properties, simulated flow experiments were conducted at six-week intervals from 18 July to 20 October in 2012 in the hilly Loess Plateau. Five treatments were: 1) bare(control), 2) purple alfalfa(Medicago sativa), representing tap roots(T), 3) switchgrass(Panicum virgatum), representing fibrous roots(F), 4) purple alfalfa and switchgrass, representing both tap and fibrous roots(T + F), and 5) natural recovery(N). For each treatment, soil structural properties and root characteristics were measured at an interval of six weeks. Soil anti-scouribility was calculated. Results showed that grass planting slightly reduced soil bulk density, but increased soil aggregate content by 19.1%, 10.6%, 28.5%, and 41.2% in the treatments T, F, T + F, and N, respectively. Soil shear strength(cohesion and angle of internal friction(φ)) significantly increased after the grass was planted. As roots grew, soil cohesion increased by 115.2%–135.5%, while soil disintegration rate decreased by 39.0%–58.1% in the 21 th week compared with the recorded value in the 9th week. Meanwhile, root density and root surface area density increased by 64.0%–104.7% and 75.9%–157.1%, respectively. No significant differences in soil anti-scouribility were observed between the treatments of T and F or of T + F and N, but the treatments of T + F and N performed more effectively than T or F treatment alone in retarding concentrated flow. Soil aggregation and root surface-area density explained the observed soil anti-scouribility during concentrated flow well for the different treatments. This result proved that the restoration of natural vegetation might be the most appropriate strategy in soil reinforcement in the hilly Loess Plateau.
基金Supported by CAS(Grant No.KZCX3-SW 422)NNSF(Grant Nos.90502002,40271015)+1 种基金ISWC(B105101-109)IAEA(12322/RO)
文摘According to variations of 137Cs and clay contents, 44 flood couplets were identified in a profile of res- ervoir deposit with a vertical length of 28.12 m in the Yuntaishan Gully. Couplet 27 at the middle of the profile had the highest average 137Cs content of 12.65 Bq·kg?1, which indicated the 1963s' deposits, then 137Cs content decreased both downward and upward in the profile. The second top and bottom couplets had average 137Cs contents of 2.15 Bq·kg?1 and 0.92 Bq·kg?1, respectively. By integrated analysis of reservoir construction and management history, variations of 137Cs contents over the profile, sediment yields of flood couplets and rainfall data during the period of 1958-1970, individual storms related to the flood couplets were identified. 44 floods with a total sediment yield of 2.36×104 m3 occurred and flood events in a year varied between 1 and 10 times during the period of 1960-1970. 7-10 flood events occurred during the wet period of 1961-1964 with very wet autumn, while only 1-2 events during the dry period of 1965-1969. Average annual specific sediment yield was 1.29×104 t·km?2·a?1 for the Yuntaishan Gully during the period of 1960-1970, which was slightly higher than 1.11 ×104 t·km?2·a?1 for the Upper Yanhe River Basin above the Ganguyi Hydrological Station and slightly lower than 1.40 ×104 t·km?2·a?1 for the nearby Zhifang Gully during the same period. Annual specific sediment yields for the Yuntaishan Gully were correlated to the wet season's rainfalls well.
文摘[Objective] The aim was to study the climate changes characteristics in the hilly region of the loess plateau and its influence on agricultural production.[Method] Taking Yan’an City as an example,and by dint of temperature and precipitation in nine meteorological stations from 1957 to 2007 and accumulated anomaly curve,linear regression and relevant analysis,the climate changes characteristics in 51 years in Yan’an were expounded.The climate changes in the hilly region of the loess plateau were studied and its influences on agricultural production were concluded.[Result] The characteristics of climate changes in the hilly region were as follow:high temperature in winter and warm winter trend was clearly;the temperature in spring enhanced fast and the drought disaster was increasing worse;rainy days occurred now and then in autumn.The climate changes had different levels of influences on agricultural production in Yan’an City.Because of rising temperature in winter,facility agriculture was vigorously developed and the apple range expanded;in the meantime,because of rising temperature in spring,drought was worsen and sowing in spring can not proceed;constant rain in autumn damaged the quality of date.[Conclusion] The study provided theoretical basis for the regional agricultural production and agricultural structure adjustment.
文摘Due to relatively strong human activities in the hilly area of Loess Plateau, the natural vegetation has been destroyed, and landscape pattern based on agricultural land matrix was land use mosaic composing of shrub land, grassland, woodland and orchard. This pattern has an important effect on soil moisture and soil nutrients. The Danangou catchment, a typical small catchment, was selected to study the effects of land use and its patterns on soil moisture and nutrients in this paper. The results are as follows: The comparisons of soil moisture among seven land uses for wet year and dry year were performed: (1) the average of soil moisture content for whole catchment was 12.11% in wet year, while it was 9.37% in dry year; (2) soil moisture among seven land uses was significantly different in dry year, but not in wet year; (3) from wet year to dry year, the profile type of soil moisture changed from decreasing type to fluctuation-type and from fluctuant type to increasing type; (4) the increasing trend in soil moisture from the top to foot of hillslope occurred in simple land use along slope, while complicated distribution of soil moisture was observed in multiple land uses along slope. The relationships between soil nutrients and land uses and landscape positions were analysed: (1) five nutrient contents of soil organic matter (SOM), total N (TN), available N (AN), total P (TP) and available P (AP) in hilly area were lower than that in other areas. SOM content was less than 1%, TN content less than 0.07%, and TP content between 0.05% and 0.06%; (2) SOM and TN contents in woodland, shrub land and grassland were significantly higher than that in fallow land and cropland, and higher level in soil fertility was found in crop-fruit intercropping land among croplands; (3) soil nutrient distribution and responses to landscape positions were variable depending on slope and the location of land use types.
基金National Basic Research Program of China,No.2012CB955304
文摘Detecting variation trend in dry-wet conditions can provide information for devel- oping strategic measures to mitigate the impacts of global warming, particularly in dry regions Taking the hilly region of northern Shaanxi on the Loess Plateau as a case area, this study analyzed the trend of aridity variation during 1981-2012, and explored the effect of vegetation restoration promoted by the Grain-for-Green (GFG) program implemented in 1999. The re- sults indicated that the aridity in the region was non-significantly increased by 0.88% per year during 1981-2012, showing a drying trend. This drying trend and amplitude were changed by the influence of vegetation restoration promoted by the GFG program, based on two findings. The first one was that the aridity variation tended to increase during 1981-1999 while it turned to decrease during 2000-2012, with the regional mean relative change rate changed from 2.45% to -1.06%. This distinction was more remarkable in the loess gully region, where the vegetation was improved more obviously. The second one was that the mean vegetation coverage as indicated by EVI increased by 0.90% to 4.32% per year at county level, while the aridity decreased by 0.14% to 2.32% per year during 2000-2012. The regression analysis using the mean county data indicated that the change rate of aridity was negatively related to that of EVI with the coefficient of determination (R2) of 0.56, illustrating that around half of the aridity decline was explained by the EVI change. The mechanism of this effect was compli- cated, but it was found that the wind speed decline induced by the vegetation improvement could be an important contributor. It is concluded that the region became drier during 1981-2012, but the eco-restoration reduced the drying speed. However, this conclusion is involved in uncertainties, and further study based on experiments is needed to confirm the effect of the GFG-promoted vegetation restoration.
基金supported jointly by the Key Project of Chinese Academy of Sciences(KZZD-EW-04-03)the National Science Foundation of China(41171421)the Basic Scientific Fund of Northwest Agriculture and Forestry University(2109021121).
文摘The objective of this study was to determine the mechanisms of the hydrologic cycle in the loess area in China.Sixty eight water samples from precipitation,soil water of the 0-4 m layer,surface water in the valley,ground water(spring and well)were collected and the Deuterium(D)and Oxygen-18(^(18)O)of these water samples were analyzed to interpret the relationship among those waters in the watershed in the loess hilly region during 2005-2009.The results show that:the D&^(18)O of precipitation in Yangou was consistent with that of Xi,an,apparently the north migration of water vapor in Xi^an;according to the correlations among the differential waters in D&^(18)O,confirmed that precipitation recharge could account for most of the sources of valley flow,with part of the recharge water going to soil water recharge.The D&^(18)O of groundwater were very close to that of precipitation,likely the soil preferential flow was dominant in groundwater recharge although the infiltration had a certain lag.Under the influence of rainfall and evaporation,the response of the soil moisture profile,and its D&^(18)O profile were different.The soil moisture had the strong influenced layer in the 60-160 cm range,a weak impacted layer in 60 l60 cm,and a stable layer below l60 cm.It was shown that the soil evaporation depth could be up to l60 cm because the D&^(18)O changed in that depth.The study could increase our understanding of the magnitude and pattern of the hydrologic cycle,which should improve water resources management in the watershed scale.