期刊文献+
共找到387篇文章
< 1 2 20 >
每页显示 20 50 100
Impacts of hydropower-induced flow alterations on composition and diversity of riparian vegetation in the Western Himalayas: A case study in Uttarakhand, India
1
作者 Dharmveer KAINTURA Sabyasachi DASGUPTA Dhanpal Singh CHAUHAN 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1272-1286,共15页
The increasing demand for water and energy resources has led to widespread dam construction,particularly in ecologically sensitive regions like the Himalayan Range.This study focuses on the Uttarakhand state in the We... The increasing demand for water and energy resources has led to widespread dam construction,particularly in ecologically sensitive regions like the Himalayan Range.This study focuses on the Uttarakhand state in the Western Himalayas,where hydroelectric projects(HEPs)have significantly altered river flow regimes.The research investigates the impact of flow alterations on the composition and structure of riparian vegetation in the Garhwal Himalayas,specifically analysing four rivers regulated by hydroelectric projects.Utilizing the paired-reach comparison method,control(undisturbed),diverted(downstream of barrage/dam),and altered flow conditions(downstream of water outlet)were examined.The research reveals diverse and unique riparian ecosystems,with 89 genera and 113 taxa identified,showcasing the dominance of families like Asteraceae and Lamiaceae.The study unveils the structural importance of key species such as Berberis asiatica and Artemisia nilagirica.The density,diversity,and richness of shrub and herb species vary significantly across flow conditions.Notably,altered flow conditions demonstrate resilience in vegetation structure,while diverted conditions exhibit decreased species richness and density.The study emphasizes the importance of nuanced environmental flow management for mitigating adverse effects on riparian biodiversity in the fragile Himalayan region.These findings contribute to the global discourse on dam impacts and riparian ecology,shedding light on the complexities of this dynamic relationship in a vulnerable ecosystem. 展开更多
关键词 Dam construction Water stress Western himalayas Disturbed flow regimes Riparian ecosystem
下载PDF
Modeling glacio-hydrological processes in the Himalayas:A review and future perspectives
2
作者 Lei Wang Hu Liu +3 位作者 Ranjeet Bhlon Deliang Chen Junshui Long Tenzing C.Sherpa 《Geography and Sustainability》 CSCD 2024年第2期179-192,共14页
The Himalayas and their surrounding areas boast vast glaciers rivaling those in polar regions,supplying vital meltwater to the Indus,Ganges,and Brahmaputra rivers,supporting over a billion downstream inhabitants for d... The Himalayas and their surrounding areas boast vast glaciers rivaling those in polar regions,supplying vital meltwater to the Indus,Ganges,and Brahmaputra rivers,supporting over a billion downstream inhabitants for drinking,power,and agriculture.With changing runoff patterns due to accelerated glacial melt,understanding and projecting glacio-hydrological processes in these basins is imperative.This review assesses the evolution,applications,and key challenges in diverse glacio-hydrology models across the Himalayas,varying in complexities like ablation algorithms,glacier dynamics,ice avalanches,and permafrost.Previous findings indicate higher glacial melt contributions to annual runoff in the Indus compared to the Ganges and Brahmaputra,with anticipated peak melting in the latter basins—having less glacier cover—before the mid-21st century,contrasting with the delayed peak expected in the Indus Basin due to its larger glacier area.Different modeling studies still have large uncertainties in the simulated runoff components in the Himalayan basins;and the projections of future glacier melt peak time vary at different Himalaya sub-basins under different Coupled Model Intercomparison Project(CMIP)scenarios.We also find that the lack of reliable meteorological forcing data(particularly the precipitation errors)is a major source of uncertainty for glacio-hydrological modeling in the Himalayan basins.Furthermore,permafrost degradation compounds these challenges,complicating assessments of future freshwater availability.Urgent measures include establishing comprehensive in situ observations,innovating remote-sensing technologies(especially for permafrost ice monitoring),and advancing glacio-hydrology models to integrate glacier,snow,and permafrost processes.These endeavors are crucial for informed policymaking and sustainable resource management in this pivotal,glacier-dependent ecosystem. 展开更多
关键词 Glacio-hydrology MODELING himalayas Glacier snow and permafrost Sustainable development
下载PDF
Himalayas as a global hot spot of springtime stratospheric intrusions:Insight from isotopic signatures in sulfate aerosols
3
作者 Kun Wang ShiChang Kang +9 位作者 Mang Lin PengFei Chen ChaoLiu Li XiuFeng Yin Shohei Hattori Teresa L.Jackson JunHua Yang YiXi Liu Naohiro Yoshida Mark HThiemens 《Research in Cold and Arid Regions》 CSCD 2024年第1期5-13,共9页
Downward transport of stratospheric air into the troposphere(identified as stratospheric intrusions)could potentially modify the radiation budget and chemical of the Earth's surface atmosphere.As the highest and l... Downward transport of stratospheric air into the troposphere(identified as stratospheric intrusions)could potentially modify the radiation budget and chemical of the Earth's surface atmosphere.As the highest and largest plateau on earth,the Tibetan Plateau including the Himalayas couples to global climate,and has attracted widespread attention due to rapid warming and cryospheric shrinking.Previous studies recognized strong stratospheric intrusions in the Himalayas but are poorly understood due to limited direct evidences and the complexity of the meteorological dynamics of the third pole.Cosmogenic^(35)S is a radioactive isotope predominately produced in the lower stratosphere and has been demonstrated as a sensitive chemical tracer to detect stratospherically sourced air mass in the planetary boundary layer.Here,we report 6-month(April–September 2018)observation of^(35)S in atmospheric sulfate aerosols(^(35)SO_(4)^(2-))collected from a remote site in the Himalayas to reveal the stratospheric intrusion phenomenon as well as its potential impacts in this region.Throughout the sampling campaign,the^(35)SO_(4)^(2-)concentrations show an average of 1,070±980 atoms/m^(3).In springtime,the average is 1,620±730 atoms/m^(3),significantly higher than the global existing data measured so far.The significant enrichments of^(35)SO_(4)^(2-)measured in this study verified the hypothesis that the Himalayas is a global hot spot of stratospheric intrusions,especially during the springtime as a consequence of its unique geology and atmospheric couplings.In combined with the ancillary evidences,e.g.,oxygen-17 anomaly in sulfate and modeling results,we found that the stratospheric intrusions have a profound impact on the surface ozone concentrations over the study region,and potentially have the ability to constrain how the mechanisms of sulfate oxidation are affected by a change in plateau atmospheric properties and conditions.This study provides new observational constraints on stratospheric intrusions in the Himalayas,which would further provide additional information for a deeper understanding on the environment and climatic changes over the Tibetan Plateau. 展开更多
关键词 himalayas Stratospheric intrusions Cosmogenic^(35)SO_(4)^(2-) Ozone Atmospheric oxidation
下载PDF
Physicochemical composition and climate response of surface sediments at different altitudes in Motuo on the southern slope of the Himalayas
4
作者 XIE Mengping SONG Yougui +2 位作者 LAN Minwen ZHANG Mingyu HAN Yixiao 《地球环境学报》 CSCD 2024年第4期624-640,共17页
Background,aim,and scope Certain physicochemical indexes of topsoil are closely related to climatic factors including temperature,and precipitation.Understanding the relationship between modern topsoil properties and ... Background,aim,and scope Certain physicochemical indexes of topsoil are closely related to climatic factors including temperature,and precipitation.Understanding the relationship between modern topsoil properties and climatic factors is essential for quantitative paleoclimate reconstruction.Motuo located in the eastern Himalayas,exhibits a significant elevation gradient of over 7000 m from Nnamjagbarwa Peak(7782 m a.s.l.)to the Baxika(150 m a.s.l.).This region features a complete vertical zonation of vegetation,from alpine meadow to tropical forest,presenting an ideal place to investigate the relationships among vegetation,soil and climate conditions across altitudinal gradients.This study aims to explore the vertical variations in the physicochemical composition of topsoil and its relationship with temperature and precipitation.Materials and methods Twenty-seven topsoil samples were collected at 100 m intervals from 800 m to 3600 m a.s.l.along the southern slope of the Himalayas.Grain size,magnetic susceptibility and geochemical elements were measured to discuss the vertical variation characteristics of topsoil composition and their correlation with climatic factors.Results(1)The grain size of topsoil at different altitudes in Motuo is mainly composed of sand accounting for an averaged 53.2%,followed by silt and clay.(2)In the mixed forest zone,frequency dependent magnetic susceptibility(χfd%)shows a clear relationship with altitude,and clay is positively correlated with both altitude and climatic factors.(3)The oxides of topsoil in this area mainly consist of SiO_(2),Al_(2)O_(3) and Fe_(2)O_(3),followed by MgO,CaO,Na_(2)O and K_(2)O,with slight variations in the primary components at different altitudes.The sensitivity of elements to climate varies across different altitudes and vegetation zone,likely due to the region’s complex topography and vegetation.(4)Physical and biological weathering dominates in the broad-leaved forest zone of Motuo,while chemical weathering is more prominent in the coniferous forest zone,with the mixed forest zone falling in between.Discussion The formation of topsoil across the three vegetation zones is influenced by various factors,including parent material,vegetation,and climate.In the broad-leaved forest zone,physical weathering(precipitation,root wedging etc.)and pedogenesis dominate,resulting in finer grain size.The χ_(fd)% increases with altitude likely due to the high temperature and abundant precipitation in this zone,which facilitate the transformation of strong magnetic miners into weaker ones,particularly when the soil is oversaturated.Zirconium(Zr),primarily found in zircon,is depleted at lower altitudes by strong current erosion.Barium(Ba)is similarly reduced at low altitudes in this zone.In mixed forest zone,clay content is the lowest,indicating weaker physical weathering conditions than broad-leaved forest zone.The coarser grain size may result from the combined effects of topography and vegetation coverage.Magnetic susceptibility and organic matter show a positive correlation with altitude.Zr concentration is higher than that in the broad-leaved forest zone,likely resulting from decreased precipitation.In the coniferous zone,the clay content shows considerable fluctuations,with grain size generally becoming finer as altitude increases.This trend may be explained by intensified soil disintegration from seasonal freeze-thaw cycles.The χ_(fd)% values lack a clear trend or pattern,possibly due to soil erosion causing the migration of magnetic minerals or insufficient iron precipitation,which reduces the concentration of magnetic minerals in the soil.Additionally,a positive correlation is observed between altitude and organic matter content,with higher altitudes associated with greater organic matter accumulation.This may be attributed to lower microbial activity in colder conditions,which slows the decomposition and transformation of organic matter.Conclusions The variations in grain size,magnetic susceptibility,and geochemical elements differ across altitudes and vegetation zones,closely connected to the complex interplay of terrain,vegetation,and climate in Motuo.In the mixed forest,altitude has a significant impact onχfd%,and the clay component is particularly sensitive to changes in altitude,mean annual temperature,and precipitation.Zr shows a strong correlation with altitude and climate factors,making it a valuable indicator for assessing changes in atmospheric precipitation within specific altitude ranges.Recommendations and perspectives This study enhances our understanding of the relationships between the physicochemical properties of topsoil and climate conditions,offering valuable insights for paleoclimate reconstruction in Motuo. 展开更多
关键词 southern slope of the himalayas MOTUO TOPSOIL altitude difference vegetation zone physicochemical indexes
下载PDF
Influence of edaphic factors on distribution and condition of Himalayan silver birch(Betula utilis D.Don)communities in the northwestern Indian Himalayas
5
作者 Khashti DASILA Renu RAWAL +3 位作者 Tanay BARMAN Sher Singh SAMANT Anita PANDEY Veena PANDE 《Journal of Mountain Science》 SCIE CSCD 2024年第2期590-606,共17页
The basic concept of phytosociology is crucial for the assessment of species composition and dynamic ecological succession of forests supporting ecological services,functions,disturbance,and resilience that lead to th... The basic concept of phytosociology is crucial for the assessment of species composition and dynamic ecological succession of forests supporting ecological services,functions,disturbance,and resilience that lead to the development of integrated areas such as ecological niche modeling and contribute to identifying the valuable bio-indicators which can be used in framing conservation and management planning.B.utilis is one of the most dominant tree species of treeline ecotone in the Himalayan Region.The species is also considered as indicator species for monitoring the past and recent climate change impact.The current study was carried out in the natural populations of B.utilis from the sub-alpine zone of North-western Indian Himalaya.The birch dominated forest harbors a total of 305 plant species comprising Angiosperms(51 families,160 genera and 277 species),Gymnosperms(03 families,05 genera and 07 species)and Pteridophytes(07 families,11 genera and 21 species)with Asteraceae,Ranunculaceae and Rosaceae as dominant family.Birch forests are found dominant in shady moist habitat and North West aspect.Geographical characteristics,anthropogenic and developmental activities affect the population structure of B.utilis and associated species.However,the species has fair regeneration status in the study area.The acidic nature of soil pH and spatial variation in edaphic characteristics may be due to geographical differences,rooting patterns and litter accumulation of below and above-ground vegetation.Biomass estimation of a representative population of B.utilis from each site showed that TAGBD,TCD and TBD were found maximum in ST3(Hamta Pass II site).The CCA analysis determined that environmental variables such as altitude,organic matter,available phosphorous,organic carbon,available nitrogen,and electrical conductivity played a significant role in determining tree species composition and distribution in B.utilis dominated forests. 展开更多
关键词 Species composition Indicator species Biomass North-western Indian Himalaya Regeneration Environmental variables
下载PDF
Spatial distribution characteristics of climate-induced landslides in the Eastern Himalayas
6
作者 UWIZEYIMANA David LIU Weiming +3 位作者 HUANG Yu HABUMUGISHA Jules Maurice ZHOU Yanlian YANG Zewen 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3396-3412,共17页
Climate warming is constantly causing hydro-meteorological perturbations,especially in high-altitude mountainous regions,which lead to the occurrences of landslides.The impact of climatic variables(i.e.,precipitation ... Climate warming is constantly causing hydro-meteorological perturbations,especially in high-altitude mountainous regions,which lead to the occurrences of landslides.The impact of climatic variables(i.e.,precipitation and temperature)on the distribution of landslides in the eastern regions of the Himalayas is poorly understood.To address this,the current study analyzes the relationship between the spatial distribution of landslide characteristics and climatic variables from 2013 to 2021.Google Earth Engine(GEE)was employed to make landslide inventories using satellite data.The results show that 2163,6927,and 9601 landslides were heterogeneously distributed across the study area in 2013,2017,and 2021,respectively.The maximum annual temperature was positively correlated with the distribution of landslides,whereas precipitation was found to have a non-significant impact on the landslide distribution.Spatially,most of the landslides occurred in areas with maximum annual precipitation ranging from 800 to 1600 mm and maximum annual temperature above 15℃.However,in certain regions,earthquake disruptions marginally affected the occurrence of landslides.Landslides were highly distributed in areas with elevations ranging between 3000 and 5000 m above sea level,and many landslides occurred near the lower permafrost limit and close to glaciers.The latter indicates that temperature change-induced freeze-thaw action influences landslides in the region.Temperature changes have shown a positive correlation with the number of landslides within elevations,indicating that temperature affects their spatial distribution.Various climate projections suggest that the region will experience further warming,which will increase the likelihood of landslides in the future.Thus,it is crucial to enhance ground observation capabilities and climate datasets to effectively monitor and mitigate landslide risks. 展开更多
关键词 Landslide inventory Climate variables Normalized difference vegetation index CRYOSPHERE Eastern Himalaya
下载PDF
Siwalik plant megafossil diversity in the Eastern Himalayas: A review
7
作者 Mahasin Ali Khan Sumana Mahato +4 位作者 Robert A.Spicer Teresa E.V.Spicer Ashif Ali Taposhi Hazra Subir Bera 《Plant Diversity》 SCIE CAS CSCD 2023年第3期243-264,共22页
The Eastern Himalayas are renowned for their high plant diversity.To understand how this modern botanical richness formed,it is critical to investigate past plant biodiversity preserved as fossils throughout the easte... The Eastern Himalayas are renowned for their high plant diversity.To understand how this modern botanical richness formed,it is critical to investigate past plant biodiversity preserved as fossils throughout the eastern Himalayan Siwalik succession(middle Miocene-early Pleistocene).Here,we present a summary of plant diversity records that document Neogene floristic and climate changes.We do this by compiling published records of megafossil plant remains,because these offer better spatial and temporal resolution than do palynological records.Analyses of the Siwalik floral assemblages based on the distribution of the nearest living relative taxa suggest that a tropical wet evergreen forest was growing in a warm humid monsoonal climate at the deposition time.This qualitative interpretation is also corroborated by published CLAMP(Climate Leaf Analysis Multivariate Program) analyses.Here,we also reconstruct the climate by applying a new common proxy WorldClim2 calibration.This allows the detection of subtle climate differences between floral assemblages free of artefacts introduced by using different methodologies and climate calibrations.An analysis of the Siwalik floras indicates that there was a gradual change in floral composition.The lower Siwalik assemblages provide evidence of a predominance of evergreen elements.An increase in deciduous elements in the floral composition is noticed towards the close of the middle Siwalik and the beginning of the upper Siwalik formation.This change reflects a climatic difference between Miocene and Plio-Pleistocene times.This review helps us to understand under what paleoenvironmental conditions plant diversity occurred and evolved in the eastern Himalayas throughout the Cenozoic. 展开更多
关键词 Megafossils Siwalik MiocenePleistocene PALAEOVEGETATION PALAEOENVIRONMENT Eastern himalayas
下载PDF
Crucial, But not Systematically Investigated: Rock Glaciers, the Concealed Water Reservoirs of the Himalayas: An Opinion
8
作者 Sheikh Nawaz Ali Pratima Pandey 《Journal of Atmospheric Science Research》 2023年第2期33-41,共9页
The current article is an opinion on the sensitivity of high mountain regions which are the most fragile,sensitive and vulnerable to ongoing climate change.Its impacts are especially severe on the high mountain commun... The current article is an opinion on the sensitivity of high mountain regions which are the most fragile,sensitive and vulnerable to ongoing climate change.Its impacts are especially severe on the high mountain communities owing to their weak socio-economic profile,limited livelihood resources and agricultural land.The melting of glaciers and changes in the snow cover under the climate change scenario is leading to the scarcity of freshwater supplies,affecting both local and downstream communities.Changes in the precipitation patterns have been suggested to cause droughts,impact restricted agriculture,and limit the availability of water for domestic use.Additionally,the high mountain areas contain distinct flora and fauna,and climate change is not just altering them,but also has resulted in biodiversity loss as species are unable to adapt to the changing climate.Because of its higher altitudes and semi-arid to arid climate,the consequences of climate change are more evident in the higher Himalayas.Climate change is affecting the availability of key resources,such as freshwater and agriculture and pasture lands,resulting in food and water insecurity and their reliance on imports from other regions.As a result,high mountain communities in the Himalayas are progressively shifting to higher glacier valleys in search of suitable cultivable land with adequate irrigation.People are engaging in agro-pastoral activities around thermokarst lakes(Oasis)atop rock glaciers as part of this endeavour.Such actions underscore the crucial role of rock glaciers in dealing with and adjusting to the consequences of climate change.Despite its relevance,rock glacier research in the Himalayan region is still in its infancy.The purpose of this work is to emphasise the significance of these major climate-resilient water resources,as well as the methodology that must be adopted for their systematic and compressive investigations. 展开更多
关键词 Climate change Rock glaciers Evolving agricultural practices Systematic study Higher himalayas
下载PDF
Influence of slope position and aspect on the vegetation attributes and treewater relations in forests of the central Himalayas
9
作者 Vidit TYAGI Surendra P.SINGH +3 位作者 Ripu Daman SINGH Surabhi GUMBER Rajesh THADANI Rajiv PANDEY 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2592-2602,共11页
While the need for understanding the effects of topographical factors on forest structure and function is well recognized,comprehensive studies are scarce.This study evaluates the effect of slope aspect and slope posi... While the need for understanding the effects of topographical factors on forest structure and function is well recognized,comprehensive studies are scarce.This study evaluates the effect of slope aspect and slope position on water relations and forest attributes across six forest types occurring between 400 m and 2600 m altitude in the Central Himalaya(27°-38°N).We found that predawn tree water potential and soil water potential were generally higher on moist north slope aspect(-0.78±0.05 MPa and-3.34±0.18 MPa,respectively)than dry south slope aspect(-0.82±0.18 MPa and-3.77±0.18 MPa,respectively).Across six different forests,these values were higher at hill base(-0.71±0.06 MPa and-2.77±0.19 MPa,tree predawn water potential and soil water potential,respectively)than other topographical positions.The favorable effect of north aspect and hill base was also observed in maintaining soil water and tree water potential during the dry season.Vegetation attributes,such as species richness,unique species and plant density were also generally higher on north slope and hill base than southern aspect and lowest at hill top.Across forest types,the hill base provided shelter to 46 unique species,compared to 16-18 at the other positions,thus emphasizing its importance as refugia for species to survive climate change induced perturbations.The favorable conditions of hill base position not only contribute to increase in alpha diversity,but also to extended species distributional range. 展开更多
关键词 Hill base HIMALAYA REFUGIA Unique species Water relation
下载PDF
Analyzing geomorphological and topographical controls for the heterogeneous glacier mass balance in the Sikkim Himalayas
10
作者 GUHA Supratim TIWARI Reet Kamal 《Journal of Mountain Science》 SCIE CSCD 2023年第7期1854-1864,共11页
Glacier response patterns at the catchment scale are highly heterogeneous and defined by a complex interplay of various dynamics and surface factors.Previous studies have explained heterogeneous responses in qualitati... Glacier response patterns at the catchment scale are highly heterogeneous and defined by a complex interplay of various dynamics and surface factors.Previous studies have explained heterogeneous responses in qualitative ways but quantitative assessment is lacking yet where an intrazone homogeneous climate assumption can be valid.Hence,in the current study,the reason for heterogeneous mass balance has been explained in quantitative methods using a multiple linear regression model in the Sikkim Himalayan region.At first,the topographical parameters are selected from previously published studies,then the most significant topographical and geomorphological parameters are selected with backward stepwise subset selection methods.Finally,the contributions of selected parameters are calculated by least square methods.The results show that,the magnitude of mass balance lies between-0.003±0.24 to-1.029±0.24 m.w.e.a^(-1) between 2000 and 2020 in the Sikkim Himalaya region.Also,the study shows that,out of the terminus type of the glacier,glacier area,debris cover,ice-mixed debris,slope,aspect,mean elevation,and snout elevation of the glaciers,only the terminus type and mean elevation of the glacier are significantly altering the glacier mass balance in the Sikkim Himalayan region.Mathematically,the mass loss is approximately 0.40 m.w.e.a^(-1) higher in the lake-terminating glaciers compared to the land-terminating glaciers in the same elevation zone.On the other hand,a thousand meters mean elevation drop is associated with 0.179 m.w.e.a-1of mass loss despite the terminus type of the glaciers.In the current study,the model using the terminus type of the glaciers and the mean elevation of the glaciers explains 76% of fluctuation of mass balance in the Sikkim Himalayan region. 展开更多
关键词 Glacier mass balance Glacier terminus Topographical parameter Sikkim Himalaya Multiple linear regression model
下载PDF
Emerging leishmaniasis in southern Himalayas:A mini-review
11
作者 Ashwani Sharma Santosh Kumar +2 位作者 Prasan Kumar Panda Sweety Yadav Deepjyoti Kalita 《World Journal of Clinical Infectious Diseases》 2023年第2期11-23,共13页
Leishmaniasis is a vector-borne parasitic disease affecting millions of people worldwide.However,in the last decade,the number of cases has been reduced from well-documented endemic parts,but sporadic cases have been ... Leishmaniasis is a vector-borne parasitic disease affecting millions of people worldwide.However,in the last decade,the number of cases has been reduced from well-documented endemic parts,but sporadic cases have been reported widely from various non-endemic areas,especially from the southern Himalayan zone.This raises concerns about the emergence of new ecological niches.This warrants a critical evaluation of key factors causing this rapid spread and possibly indigenous transmission.This mini-review article is aimed to briefly address the parasite,the vector,and the environmental aspects in the transmission of leishmaniasis in these new foci against a background of worldwide endemic leishmaniasis with a special focus on the southern Himalayan zone.As the lack of knowledge about the causative parasites,vectors,reservoir hosts,atypical presentations,and their management make the problem serious and may lead to the emergence of public health issues.The present works also reviewed the existing information regarding clinical variations,diagnostic methods,treatment,its outcome,and ignite for further research in these aspects of the disease. 展开更多
关键词 Anthroponosis Kala azar sandfly Sporadic transmission Southern Himalaya
下载PDF
Monitoring Glacier and Supra-glacier Lakes from Space in Mt. Qomolangma Region of the Himalayas on the Tibetan Plateau in China 被引量:27
12
作者 YE Qinghua ZHONG Zhenwei +3 位作者 KANG Shichang Alfred Stein WEI Qiufang LIU Jingshi 《Journal of Mountain Science》 SCIE CSCD 2009年第3期211-220,共10页
Because of the large number and remoteness, satellite data, including microwave data and optical imagery, have commonly been used in alpine glaciers surveys. Using remote sensing and Geographical Information System (... Because of the large number and remoteness, satellite data, including microwave data and optical imagery, have commonly been used in alpine glaciers surveys. Using remote sensing and Geographical Information System (GIS) techniques, the paper presents the results of a multitemporal satellite glacier extent mapping and glacier changes by glacier sizes in the Mt. Qomolangma region at the northern slopes of the middle Himalayas over the Tibetan Plateau. Glaciers in this region have both retreated and advanced in the past 35 years, with retreat dominating. The glacier retreat area was 3.23 km2 (or o.75 km^2 yr^-1 during 1974 and 1976, 8.68 km^2 (or 0.36 km^2 yr^-1 during 1976 and 1992, 1.44 km^2 (or 0.12 km^2 yr^-1) during 1992-2ooo. 1.14 km^2 (or 0.22 km^2 yr^-1 during 2000-2003, and 0.52 km^2 (or 0.07 km^2 yr^-1 during 2003-2008, respectively. While supra-glacier lakes on the debris-terminus of the Rongbuk Glacier were enlarged dramatically at the same time, from 0.05 km^2 in 1974 increased to 0.71 km^2 in 2008, which was more than 13 times larger in the last 35 years. In addition, glacier changes also showed spatial differences, for example, glacier retreat rate was the fastest at glacier termini between 5400 and 5700 m a.s.l than at other elevations. The result also shows that glaciers in the middle Himalayas retreat almost at a same pace with those in the western Himalayas. 展开更多
关键词 GLACIER lake Remote Sensing Mr. Qomolangma region himalayas Tibetan Plateau
下载PDF
Progress in the Study of Deep Profiles of Tibet and the Himalayas (INDEPTH) 被引量:10
13
作者 ZHAOWenjin ZHAOXun SHIDanian LIUKui JIANGWan WUZhenhan XIONGJiayu ZHENGYukun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第4期931-939,共9页
This paper introduces 8 major discoveries and new understandings with regard to the deep structure and tectonics of the Himalayas and Tibetan Plateau obtained in Project INDEPTH, They are mainly as follows. (1) The up... This paper introduces 8 major discoveries and new understandings with regard to the deep structure and tectonics of the Himalayas and Tibetan Plateau obtained in Project INDEPTH, They are mainly as follows. (1) The upper crust, lower crust and mantle lithosphere beneath the blocks of the plateau form a 'sandwich' structure with a relatively rigid-brittle upper crust, a visco-plastic lower crust and a relatively rigid-ductile mantle lithosphere. This structure is completely different from that of monotonous, cold and more rigid oceanic plates. (2) In the process of north-directed collision-compression of the Indian subcontinent, the upper crust was attached to the foreland in the form of a gigantic foreland accretionary wedge. The interior of the accretionary wedge thickened in such tectonic manners as large-scale thrusting, backthrusting and folding, and magmatic masses and partially molten masses participated in the crustal thickening. Between the upper crust and lower crust lies a large detachment (e.g. the Main Himalayan Thrust in southern Tibet, 5-8 km thick) or a very thick shear-schistose zone (e.g. the Main Qiangtang Thrust-MQT in northern Tibet, up to 20 km thick), which causes the decoupling of the upper crust and lower crust and separation of tectonic activities. (3) During the collision-compression, the Indian mantle lithosphere was delaminated into two layers from where the crust thickened most rapidly (beneath the High Himalayas). The upper layer extends to 34.5°N and the lower layer to 33.5°. They have been underthrust to depths of 250-300 km into the asthenosphere. Meanwhile the Asian lithosphere (possibly the Qaidam terrane) has also been subducted southwards. Very thick mantle lithosphere does not exist beneath the plateau. (4) The oceanic lithosphere, in light of its lithology and dynamic behaviour, might be close to those of the continental lithosphere and its front might enter the asthenosphere before the continental lithosphere. (5) A 150-200 km deep low-velocity body below 35°N and a wide low-velocity zone below the area between 33.5° and 35°N dip north at very steep angles. Volcanism took place frequently in northern Tibet and anisotropy variations are prominent at depths, which might indicate a zone of large-scale eastward transfer of deep-seated materials. 展开更多
关键词 INDEPTH himalayas Tibetan Plateau crust structure mantle lithosphere structure
下载PDF
Phylogenetic and morphological significance of an overlooked flying squirrel(Pteromyini,Rodentia)from the eastern Himalayas with the description of a new genus 被引量:5
14
作者 Quan Li Feng Cheng +10 位作者 Stephen M.Jackson Kristofer M.Helgen Wen-Yu Song Shao-Ying Liu Daosavanh Sanamxay Song Li Fei Li Yun Xiong Jun Sun Hong-Jiao Wang Xue-Long Jiang 《Zoological Research》 SCIE CAS CSCD 2021年第4期389-400,共12页
The flying squirrels(Pteromyini,Rodentia)are the most diverse and widely distributed group of gliding mammals.Taxonomic boundaries and relationships within flying squirrels remain an area of active research in mammalo... The flying squirrels(Pteromyini,Rodentia)are the most diverse and widely distributed group of gliding mammals.Taxonomic boundaries and relationships within flying squirrels remain an area of active research in mammalogy.The discovery of new specimens of Pteromys(Hylopetes)leonardi Thomas,1921,previously considered a synonym of Hylopetes alboniger,in Yunnan Province,China allowed a morphological and genetic reassessment of the status of this taxon.Phylogenetic reconstruction was implemented using sequences of two mitochondrial(12S ribosomal RNA and 16S ribosomal RNA)and one nuclear(interphotoreceptor retinoid-binding protein)gene fragments.Morphological assessments involved examinations of features preserved on skins,skulls,and penises of museum specimens,supplemented with principal component analysis of craniometric data.Together these assessments revealed that this taxon should be recognized not only as a distinct species,but should also be placed within a new genus,described here as Priapomys gen.nov. 展开更多
关键词 Eastern himalayas Flying squirrel PENIS Priapomys Pteromyini New genus SYSTEMATICS TAXONOMY
下载PDF
O,H,and Sr isotope evidence for origin and mixing processes of the Gudui geothermal system,Himalayas,China 被引量:6
15
作者 Chenguang Wang Mianping Zheng +4 位作者 Xuefei Zhang Enyuan Xing Jiangyi Zhang Jianhong Ren Yuan Ling 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第4期1175-1187,共13页
Tho Gudui geothermal field records the highest temperature at equivalent borehole depths among the lainland hydrothermal systems in China's Mainland.Located about 150 km southeast of Lhasa City,the capital of Tibe... Tho Gudui geothermal field records the highest temperature at equivalent borehole depths among the lainland hydrothermal systems in China's Mainland.Located about 150 km southeast of Lhasa City,the capital of Tibet,the Gudui geothermal field belongs to the Sangri-Cuona rift belt,also known as the Sangri-Cuona geothermal belt,and is representative of the non-volcanic geothermal systems in the Himalayas.In this study,oxygen-18 and deuterium isotope compositions as well as 87Sr/86Sr ratios of water samples collected from the Gudui geothermal field were characterized to understand the origin and mixing processes of the geothermal fluids at Gudui.Hydrogen and oxygen isotope plots show both,deep and shallow reservoirs in the Gudui geothermal field.Deep geothermal fluids are the mixing product of magmatic and infiltrating snow-melt water.Calculations show that the magma fluid component of the deep geothermal fluids account for about 21.10%-24.04%;magma fluids lay also be a contributing source of lithium.The linear relationship of the 87Sr/86Sr isotopic ratio versus the 1/Sr plot indicates that shallow geothermal fluids form from the mixing of deep geothermal fluids with cold groundwater.Using a binary mixing model with deep geothermal fluid and cold groundwater as two end-members,the nixing ratios of the latter in most surface hot springs samples were calculated to be between 5% and 10%.Combined with basic geological characteristics,hydrogen and oxygen isotope characteristics,strontium concentration,87Sr/(86)Sr ratios,and the binary mixing model,we infer the 6 th-Class Reservoirs Evolution Conceptual Model(6-CRECM) for the Gudui geothermal system.This model represents an idealized summary of the characteristics of the Gudui geothermal field based on our comprehensive understanding of the origin and mixing processes of the geothermal fluid in Gudui.This study may aid in identifying the geothermal and geochemical origin of the Gudui high-temperature hydrothermal systems in remote Tibet of China,whose potential for geothermal development and utilization is enormous and untapped. 展开更多
关键词 Geothermal fluid Oxygen-18 and deuterium isotope 87Sr/86Sr ratio Origin and mixing Gudui himalayas
下载PDF
Regolith thickness modeling using a GIS approach for landslide distribution analysis, NW Himalayas 被引量:4
16
作者 Muhammad BASHARAT Masood QASIM +3 位作者 Muhammad SHAFIQUE Nasir HAMEED Muhammad Tayyib RIAZ Muhammad Rustam KHAN 《Journal of Mountain Science》 SCIE CSCD 2018年第11期2466-2479,共14页
Regolith thickness is considered as a contributing factor for the occurrence of landslides.Although, mostly it is ignored because of complex nature and as it requires more time and resources for investigation. This st... Regolith thickness is considered as a contributing factor for the occurrence of landslides.Although, mostly it is ignored because of complex nature and as it requires more time and resources for investigation. This study aimed to appraise the role of regolith thickness on landslide distribution in the Muzaffarabad and surrounding areas, NW Himalayas.For this purpose regolith thickness samples were evenly collected from all the lithological units at representative sites within different slope and elevation classes in the field. Topographic attributes(slope, aspect, drainage, Topographic Wetness Index,elevation and curvature) were derived from the Digital Elevation Model(DEM)(12.5 m resolution).Arc GIS Model Builder was used to develop the regolith thickness model. Stepwise regression technique was used to explore the spatial variation of regolith thickness using topographic attributes and lithological units. The derived model explains about 88% regolith thickness variation. The model was validated and shows good agreement(70%) between observed and predicted values. Subsequently, the derived regolith model was used to understand the relationship between regolith thickness and landslide distribution. The analysis shows that most of the landslides were located within 1-5 m regolith thickness. However, landslide concentration is highest within 5-10 m regolith thickness, which shows that regolith thickness played a significant role for the occurrence of landslide in the studied area. 展开更多
关键词 REGOLITH GIS Regression LANDSLIDES himalayas
下载PDF
Biodiversity and Invasibility: Distribution Patterns of Invasive Plant Species in the Himalayas, Nepal 被引量:4
17
作者 BHATTARAI Khem Raj M?REN Inger Elisabeth SUBEDI Suresh Chandra 《Journal of Mountain Science》 SCIE CSCD 2014年第3期688-696,共9页
Invasive plant species are exerting a serious threat to biological diversity in many regions of the world. To understand plant invasions this study aims to test which of the two plant invasiveness hypotheses; ‘low na... Invasive plant species are exerting a serious threat to biological diversity in many regions of the world. To understand plant invasions this study aims to test which of the two plant invasiveness hypotheses; ‘low native diversity' vs. ‘high native diversity', is supported by the regional distribution patterns of invasive plant species in the Himalayas,Nepal. This study is based on data retrieved from published literatures and herbarium specimens. The relationship between invasive plant species distribution patterns and that of native plant species is elucidated by scatter plots, as well as by generalized linear models. The native plant species and invasive plant species have similar distribution patterns and the maximum number of invasive plant species is found in the same altitudinal range where the highest richness for native tree species is found. There is a clear trend of higher invasive plant richness in regions where native tree species richness is relatively high.Consequently, the native plant richness is highest in the central phytogeographic region, followed by the eastern and the western regions, respectively. The invasive plant species also follows a similar trend.Additionally, the invasive plant species richness was positively correlated with anthropogenic factors such as human population density and the number of visiting tourists. This study supports the hypothesis that ‘high native diversity' supports or facilitates invasive plant species. Further, it indicates that nativeand invasive plant species may require similar natural conditions, but that the invasive plant species seem more dependent and influenced by anthropogenic disturbance factors. 展开更多
关键词 Anthropogenic disturbance BIODIVERSITY Native species Biological invasions DISTRIBUTION himalayas
下载PDF
Epiphytic orchids and their ecological niche under anthropogenic influence in central Himalayas,Nepal 被引量:4
18
作者 ADHIKARI Yagya Prasad FISCHER Anton FISCHER Hagen Siegfried 《Journal of Mountain Science》 SCIE CSCD 2016年第5期774-784,共11页
The survival chance of epiphytie orchids today not only depends on the natural site conditions required by the orchids but also on anthropogenic changes in site conditions. This study answers two questions: (1) Wha... The survival chance of epiphytie orchids today not only depends on the natural site conditions required by the orchids but also on anthropogenic changes in site conditions. This study answers two questions: (1) What is the ecological niche of the different epiphytic orchid species? (2) What are the ecological factors that threaten epiphytic orchid's population under anthropogenic disturbances? Our study area was the Kathmandu valley, Nepal, with its subtropical forest. We established 156 systematically selected sampling points in the Kathmandu area covering different types of ecosystems under human impacts such as densely populated area, agricultural land, mixed agricultural and settled area, old tree patches, and a natural forest in a national park. The ecological niche of the orchid species was analyzed with a principal component analysis (PCA). The correlations between the different site factors were statistically significant. Spearman's rank correlation matrices showed that the variables land-use intensities with altitude, and height with diameter in breast height (dbh) of host had the highest significant positive correlation coefficient (0.67 and 0.64 respectively). On the other hand, host bark pH and altitude as well as land use had a significantly strong negative correlation coefficient (-0.80 and -0.61, respectively). Different epiphytic orchid species interact differently with the given set of environmental factors: for occurrence of Vanda cristata there is no single environmental factor of special influence, while for Rhynehostylis retusa high bark pH and high light availability are important. First two axis of the PCA explained more than 50% of the total variance. Most orchid species occupy a specific, narrow niche in this ecological space. The main causes of anthropogenie influence of orchid population in the Kathmandu Valley are loss of adequate host trees (species and size) and increasing air pollution, resulting in increasing host bark pH. 展开更多
关键词 Host characteristics Epiphytic orchids Anthropogenic disturbances Canopy ecosystem Ecological niche himalayas
下载PDF
Growth response of Abies spectabilis to climate along an elevation gradient of the Manang valley in the central Himalayas 被引量:3
19
作者 Samresh Rai Binod Dawadi +3 位作者 Yafeng Wang Xiaoming Lu Huang Ru Shalik Ram Sigdel 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第6期2245-2254,共10页
The Himalayas are characterized by a broad gradient of bioclimatic zones along their elevation.However,less is known how forest growth responds to climatic change along elevation.In this study,four standard treering w... The Himalayas are characterized by a broad gradient of bioclimatic zones along their elevation.However,less is known how forest growth responds to climatic change along elevation.In this study,four standard treering width chronologies of Himalayan fir(Abies spectabilis)were developed,spanning 142–649 years along an elevation gradient of 3076–3900 m a.s.l.Principal component analysis classified the four chronologies into two groups;the ones at lower elevations(M1 and M2)and higher elevations(M3 and M4)show two distinct growth trends.Radial growth is limited by summer(June–August)precipitation at M3,and by precipitation during spring(March–May)and summer at M4.It is limited by spring temperatures and winter precipitation(December–February)at M1.Tree-ring width chronologies also significantly correlate with winter and spring Palmer Drought Severity Index(PDSI)at M1,and with summer PDSI at M3 and M4.Thus,Himalayan fir growth at high elevations is mainly limited by moisture stress rather than by low temperatures.Furthermore,the occurrence of missing rings coincides with dry periods,providing additional evidence for moisture limitation of Himalayan fir growth. 展开更多
关键词 Climate signals Tree-ring width Abies spectabilis Radial growth Precipitation Manang valley himalayas
下载PDF
Composition and diversity of five major forest types in moist temperate climate of the western Himalayas 被引量:4
20
作者 Sumeet GAIROLA Chandra M. SHARMA +1 位作者 Sarvesh SUYAL Sunil K. GHILDIYAL 《Forestry Studies in China》 CAS 2011年第2期139-153,共15页
The present study was undertaken in five major forest types (dominated by Quercus semecarpifolia, Quercusfloribunda, Acer acuminatum, Abiespindrow and Aesculus indica, respectively) between 2400 and 2850 m a.s.1, in... The present study was undertaken in five major forest types (dominated by Quercus semecarpifolia, Quercusfloribunda, Acer acuminatum, Abiespindrow and Aesculus indica, respectively) between 2400 and 2850 m a.s.1, in a moist temperate forest of the Mandal-Chopta area in the Garhwal region of Uttarakhand, India. The aim was to assess the variation in composition and diversity in different vegetation layers, i.e., herb, shrub and tree, among these five forest types. Diversity indices, such as the Shannon-Wiener diversity index, density, total basal cover, Simpson's concentration of dominance index, Simpson's diversity index, Pielou's equitability, species richness, species heterogeneity and r-diversity, were calculated to understand community structures. Dominance-diversity curves were drawn to ascertain resource apportionment among various species in different forest types. 展开更多
关键词 density DIVERSITY ELEVATION fl-diversity dominance-diversity curves Garhwal himalayas
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部