The histogensis of extramammary Paget's disease has not been solved and remained controversial. Eight cases of extramammary Paget's disease of geni-tocrural region were investigated by alcian blue and PAS stai...The histogensis of extramammary Paget's disease has not been solved and remained controversial. Eight cases of extramammary Paget's disease of geni-tocrural region were investigated by alcian blue and PAS stain and immunoreaction of anti-CEA and anti-keratin. It was found that the pattern and intensity of alcian blue, PAS staining were identical for Paget cells and secretory cells of apocrine sweat gland; and CEA immunoreactivity was uniformly observed in both Paget cells and eccrine sweat gland. The keratin immunoreaction was positive in keratinocytes, apocrine and eccrine sweat gland, whereas Paget cells were negative. These results suggested that Paget cells of extramammary Paget's disease could be derived from multipotential epidermal germ cells.展开更多
Objective To further investigate the mechanism of nasal secretion closely related to the innervation patterns in nasal mucosa with emphasis on the acetylcholinesterase (AChE) positive fibers and peptidergic terminal...Objective To further investigate the mechanism of nasal secretion closely related to the innervation patterns in nasal mucosa with emphasis on the acetylcholinesterase (AChE) positive fibers and peptidergic terminals in nasal mucosa as well as trigeminal ganglion (TG) cells. Methods Histochemical demonstration of AChE positive fibers, immunohistochemical study of the distribution patterns of multiple peptidergic terminals, double labelling of AChE and substance P (SP) and somatostatin (SOM) mRNA in situ hybridization were carried out in nasal mucosa and trigeminal ganglion (TG) in rats. Results AChE positive terminals were mainly distributed in the mid to posterior one third of septal nasal mucosa, with greater staining density on the walls of small vessels and glands. There were fewer such terminals in turbinate mucosa. Tachykinins ergic terminals, including substance P(SP) , neurokinin A (NKA) , neurokinin B(NKB) and calcitonin gene related peptide (CGRP) ergic terminals, had an extensive localizations in nasal mucosa, involving the following areas: between epithelial cells, submucosa, the walls of small vessels, glands and venous sinusoids in both septal and turbinate nasal mucosa. Septal mucosa had the greater density. There were overlaps in the distribution of these peptidergic terminals. There were also vasoactive intestinal peptide (VIP) , neuropeptide Y (NPY) and galanin (GAL) ergic terminals in nasal mucosa. But no neurotensin (NT) and somatostatin (SOM) ergic terminals were found. In situ hybridization revealed SOMmRNA expression in TG cells. AChE and nine neuropeptides existed in the cytoplasms of TG cells. Besides, AChE and SP could exist simultaneously in cytoplasms of TG cells. Conclusions AChE positive (corresponding to parasympathetic nerves) and peptidergic terminals have different distribution patterns in the nasal mucosa of rats, although an overlap does exist, indicative of their different physiological effects on the regulation of nasal secretion and other functions; AChE and multiple neuropeptides in the cytoplasm of TG cells might play a role in modulating the nasal secretion in response to stimuli in the nasal mucosa.展开更多
文摘The histogensis of extramammary Paget's disease has not been solved and remained controversial. Eight cases of extramammary Paget's disease of geni-tocrural region were investigated by alcian blue and PAS stain and immunoreaction of anti-CEA and anti-keratin. It was found that the pattern and intensity of alcian blue, PAS staining were identical for Paget cells and secretory cells of apocrine sweat gland; and CEA immunoreactivity was uniformly observed in both Paget cells and eccrine sweat gland. The keratin immunoreaction was positive in keratinocytes, apocrine and eccrine sweat gland, whereas Paget cells were negative. These results suggested that Paget cells of extramammary Paget's disease could be derived from multipotential epidermal germ cells.
文摘Objective To further investigate the mechanism of nasal secretion closely related to the innervation patterns in nasal mucosa with emphasis on the acetylcholinesterase (AChE) positive fibers and peptidergic terminals in nasal mucosa as well as trigeminal ganglion (TG) cells. Methods Histochemical demonstration of AChE positive fibers, immunohistochemical study of the distribution patterns of multiple peptidergic terminals, double labelling of AChE and substance P (SP) and somatostatin (SOM) mRNA in situ hybridization were carried out in nasal mucosa and trigeminal ganglion (TG) in rats. Results AChE positive terminals were mainly distributed in the mid to posterior one third of septal nasal mucosa, with greater staining density on the walls of small vessels and glands. There were fewer such terminals in turbinate mucosa. Tachykinins ergic terminals, including substance P(SP) , neurokinin A (NKA) , neurokinin B(NKB) and calcitonin gene related peptide (CGRP) ergic terminals, had an extensive localizations in nasal mucosa, involving the following areas: between epithelial cells, submucosa, the walls of small vessels, glands and venous sinusoids in both septal and turbinate nasal mucosa. Septal mucosa had the greater density. There were overlaps in the distribution of these peptidergic terminals. There were also vasoactive intestinal peptide (VIP) , neuropeptide Y (NPY) and galanin (GAL) ergic terminals in nasal mucosa. But no neurotensin (NT) and somatostatin (SOM) ergic terminals were found. In situ hybridization revealed SOMmRNA expression in TG cells. AChE and nine neuropeptides existed in the cytoplasms of TG cells. Besides, AChE and SP could exist simultaneously in cytoplasms of TG cells. Conclusions AChE positive (corresponding to parasympathetic nerves) and peptidergic terminals have different distribution patterns in the nasal mucosa of rats, although an overlap does exist, indicative of their different physiological effects on the regulation of nasal secretion and other functions; AChE and multiple neuropeptides in the cytoplasm of TG cells might play a role in modulating the nasal secretion in response to stimuli in the nasal mucosa.