Automatic palmprint identification has received much attention in security applications and law enforcement. The performance of a palmprint identification system is improved by means of feature extraction and classifi...Automatic palmprint identification has received much attention in security applications and law enforcement. The performance of a palmprint identification system is improved by means of feature extraction and classification. Feature extraction methods such as Subspace learning are highly sensitive to the rotation variances, translation and illumination in image identification. Thus, Histogram of Oriented Lines (HOL) has not obtained promising performance for palmprint recognition so far. In this paper, we propose a new descriptor of palmprint named Improved Histogram of Oriented Lines (IHOL), which is an alternative of HOL. Improved HOL is not very sensitive to changes of translation and illumination, and has the robustness against small transformations whereas the small translation and rotations make no change in histogram value adjustment of the proposed work. The experiment results show that based on IHOL, with Principal Component Analysis (PCA) subspace learning can achieve high recognition rates. The proposed method (IHOL-Cosine distance) improves 1.30% on PolyU I database, and similarly (IHOL-Euclidean distance) improves 2.36% on COEP database compared with existing HOL method.展开更多
为了实现对焊缝表面缺陷的自动检测与分类,研究一种有效识别焊缝表面缺陷的激光视觉检测方法.通过激光视觉传感器采集焊缝图像并进行预处理,包括图像分割,灰度化,平滑去噪以及焊缝轮廓提取.采用方向梯度直方图(Histogram of Oriented Gr...为了实现对焊缝表面缺陷的自动检测与分类,研究一种有效识别焊缝表面缺陷的激光视觉检测方法.通过激光视觉传感器采集焊缝图像并进行预处理,包括图像分割,灰度化,平滑去噪以及焊缝轮廓提取.采用方向梯度直方图(Histogram of Oriented Gradient,HOG)提取焊缝激光条纹轮廓图像的特征向量.其次,基于5折-交叉验证网格搜索方法进行模型参数寻优,最终建立了支持向量机(Support Vector Machine,SVM)智能模型识别与分类焊缝表面缺陷.通过调整焊缝轮廓提取算法、HOG特征维度得到不同特征数据并进行对比、分析焊缝缺陷的识别效果.在相同试验条件下,发现支持向量机比随机森林分类器、K最近邻分类器以及朴素贝叶斯分类器的识别率更高,达到97.86%.基于HOG-SVM的焊缝表面缺陷智能识别方法可有效提高焊缝缺陷(气孔、凹陷、咬边)及无缺陷的分类精度.展开更多
A solution is proposed for the real-time vehicle verification which is an important problem for numerous on- road vehicle applications. First, based on the vertical symmetry characteristics of vehicle images, a vertic...A solution is proposed for the real-time vehicle verification which is an important problem for numerous on- road vehicle applications. First, based on the vertical symmetry characteristics of vehicle images, a vertical symmetrical histograms of oriented gradients (VS-HOG) descriptor is proposed for extracting the image features. In the classification stage, an extreme learning machine (ELM) is used to improve the real-time performance. Experimental data demonstrate that, compared with other classical methods, the vehicle verification algorithm based on VS-HOG and ELM achieves a better trade-off between cost and performance. The computational cost is reduced by using the algorithm, while keeping the performance loss as low as possible. Furthermore, experimental results further show that the proposed vehicle verification method is suitable for on-road vehicle applications due to its better performance both in efficiency and accuracy.展开更多
The Histograms of Oriented Gradients(HOG)can produce good results in an image target recognition mission,but it requires the same size of the target images for classification of inputs.In response to this shortcoming,...The Histograms of Oriented Gradients(HOG)can produce good results in an image target recognition mission,but it requires the same size of the target images for classification of inputs.In response to this shortcoming,this paper performs spatial pyramid segmentation on target images of any size,gets the pixel size of each image block dynamically,and further calculates and normalizes the gradient of the oriented feature of each block region in each image layer.The new feature is called the Histogram of Spatial Pyramid Oriented Gradients(HSPOG).This approach can obtain stable vectors for images of any size,and increase the target detection rate in the image recognition process significantly.Finally,the article verifies the algorithm using VOC2012 image data and compares the effect of HOG.展开更多
行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histogram of Oriented Gradient-Non-negative Matrix Factorization,HOG-NMF)特征的快速行人检测方法。采用...行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histogram of Oriented Gradient-Non-negative Matrix Factorization,HOG-NMF)特征的快速行人检测方法。采用频谱调谐显著性检测提取显著图,并基于熵值门限进行感兴趣区域的提取;组合非负矩阵分解和方向梯度直方图生成HOG-NMF特征;采用加性交叉核支持向量机方法(Intersection Kernel Support Vector Machine,IKSVM)。该算法显著降低了特征维数,在相同的计算复杂度下明显改善了线性支持向量机的检测率。在INRIA数据库的实验结果表明,该方法对比HOG/线性SVM和HOG/RBF-SVM显著减少了检测时间,并达到了满意的检测率。展开更多
文摘Automatic palmprint identification has received much attention in security applications and law enforcement. The performance of a palmprint identification system is improved by means of feature extraction and classification. Feature extraction methods such as Subspace learning are highly sensitive to the rotation variances, translation and illumination in image identification. Thus, Histogram of Oriented Lines (HOL) has not obtained promising performance for palmprint recognition so far. In this paper, we propose a new descriptor of palmprint named Improved Histogram of Oriented Lines (IHOL), which is an alternative of HOL. Improved HOL is not very sensitive to changes of translation and illumination, and has the robustness against small transformations whereas the small translation and rotations make no change in histogram value adjustment of the proposed work. The experiment results show that based on IHOL, with Principal Component Analysis (PCA) subspace learning can achieve high recognition rates. The proposed method (IHOL-Cosine distance) improves 1.30% on PolyU I database, and similarly (IHOL-Euclidean distance) improves 2.36% on COEP database compared with existing HOL method.
基金The National Natural Science Foundation of China(No.61203237)the Natural Science Foundation of Zhejiang Province(No.LQ12F03016)the China Postdoctoral Science Foundation(No.2011M500836)
文摘A solution is proposed for the real-time vehicle verification which is an important problem for numerous on- road vehicle applications. First, based on the vertical symmetry characteristics of vehicle images, a vertical symmetrical histograms of oriented gradients (VS-HOG) descriptor is proposed for extracting the image features. In the classification stage, an extreme learning machine (ELM) is used to improve the real-time performance. Experimental data demonstrate that, compared with other classical methods, the vehicle verification algorithm based on VS-HOG and ELM achieves a better trade-off between cost and performance. The computational cost is reduced by using the algorithm, while keeping the performance loss as low as possible. Furthermore, experimental results further show that the proposed vehicle verification method is suitable for on-road vehicle applications due to its better performance both in efficiency and accuracy.
基金partly supported by the National Natural Science Foundation of China(No.51802348)。
文摘The Histograms of Oriented Gradients(HOG)can produce good results in an image target recognition mission,but it requires the same size of the target images for classification of inputs.In response to this shortcoming,this paper performs spatial pyramid segmentation on target images of any size,gets the pixel size of each image block dynamically,and further calculates and normalizes the gradient of the oriented feature of each block region in each image layer.The new feature is called the Histogram of Spatial Pyramid Oriented Gradients(HSPOG).This approach can obtain stable vectors for images of any size,and increase the target detection rate in the image recognition process significantly.Finally,the article verifies the algorithm using VOC2012 image data and compares the effect of HOG.
文摘行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histogram of Oriented Gradient-Non-negative Matrix Factorization,HOG-NMF)特征的快速行人检测方法。采用频谱调谐显著性检测提取显著图,并基于熵值门限进行感兴趣区域的提取;组合非负矩阵分解和方向梯度直方图生成HOG-NMF特征;采用加性交叉核支持向量机方法(Intersection Kernel Support Vector Machine,IKSVM)。该算法显著降低了特征维数,在相同的计算复杂度下明显改善了线性支持向量机的检测率。在INRIA数据库的实验结果表明,该方法对比HOG/线性SVM和HOG/RBF-SVM显著减少了检测时间,并达到了满意的检测率。