A molecular electronegativity distance vector(M)based on 13 atomic types has been used to describe the structures of 19 conjugates(LHCc)of levofloxacin-thiadiazole HDAC inhibitor(HDACi)and related inhibitory activitie...A molecular electronegativity distance vector(M)based on 13 atomic types has been used to describe the structures of 19 conjugates(LHCc)of levofloxacin-thiadiazole HDAC inhibitor(HDACi)and related inhibitory activities(pH,i=1,2,6)of LHCc against histone deacetylases(HDACs,such as HDAC1,HDAC2 and HDAC6).The quantitative structure-activity relationships(QSAR)were established by using leaps-and-bounds regression analysis for the inhibitory activities(pH)of 19 above compounds to HDAC1,HDAC2 and HDAC6 along with M.The correlation coefficients(R~2)and the leave-one-out(LOO)cross validation Rfor the pH,pHand pHmodels were 0.976 and 0.949;0.985 and 0.977;0.976 and 0.932,respectively.The QSAR models had favorable correlations,as well as robustness and good prediction capability by R~2,F,R~2,A,Fand Vtests.Validated by using 3876 training sets,the models have good external prediction ability.The results indicate that the molecular structural units:–CH–(g=1,2),–NH,–OH,=O,–O–and–S–are the main factors which can affect the inhibitory activity of pH,pHas well as pHbioactivities of these compounds directly.Accordingly,the main interactions between HDACs inhibitor and HDACs are hydrophobic interaction,hydrogen bond,and coordination with Znto form compounds,which is consistent with the results in reports.展开更多
The immune system plays a vital role in maintaining the delicate balance between immune recognition and tumor development.Regardless,it is not uncommon that cancerous cells can intelligently acquire abilities to bypas...The immune system plays a vital role in maintaining the delicate balance between immune recognition and tumor development.Regardless,it is not uncommon that cancerous cells can intelligently acquire abilities to bypass the antitumor immune responses,thus allowing continuous tumor growth and development.Immune evasion has emerged as a significant factor contributing to the progression and immune resistance of pancreatic cancer.Compared with other cancers,pancreatic cancer has a tumor microenvironment that can resist most treatment modalities,including emerging immunotherapy.Sadly,the use of immunotherapy has yet to bring significant clinical breakthrough among pancreatic cancer patients,suggesting that pancreatic cancer has successfully evaded immunomodulation.In this review,we summarize the impact of genetic alteration and epigenetic modification(especially histone deacetylases,HDAC)on immune evasion in pancreatic cancer.HDAC overexpression significantly suppresses tumor suppressor genes,contributing to tumor growth and progression.We review the evidence on HDAC inhibitors in tumor eradication,improving T cells activation,restoring tumor immunogenicity,and modulating programmed death 1 interaction.We provide our perspective in targeting HDAC as a strategy to reverse immune evasion in pancreatic cancer.展开更多
Epigenetic control of regeneration after spinal cord injury: Com- plete spinal cord injury (SCI) in humans and other mammals leads to irreversible paralysis below the level of injury, due to failure of axonal regen...Epigenetic control of regeneration after spinal cord injury: Com- plete spinal cord injury (SCI) in humans and other mammals leads to irreversible paralysis below the level of injury, due to failure of axonal regeneration in the central nervous system (CNS). Previous work has shown that successful axon regeneration is dependent upon transcription of a large number of regeneration-associated genes (RAGs) and transcription factors (TFs) (Van Kesteren et al., 2011). A prominent theory in the field of axon regeneration is that the large differences in regenerative potential between peripheral nervous system (PNS) neurons, which regenerate well, and CNS neurons, which do not, reflect differences in intrinsic transcriptional net- works, rather than individual genes (Van Kesteren et al., 2011).展开更多
Although the pathogenesis of cardio-cerebrovascular disease (CCVD) is multifactorial, an increasing number of experimental and clinical studies have highlighted the importance of histone deacetylase (HDAC)-mediate...Although the pathogenesis of cardio-cerebrovascular disease (CCVD) is multifactorial, an increasing number of experimental and clinical studies have highlighted the importance of histone deacetylase (HDAC)-mediated epigenetic processes in the development of cardio-cerebrovascular injury. HDACs are a family of enzymes to balance the acetylation activities of histone acetyltransferases on chromatin remodeling and play essential roles in regulating gene transcription. To date, 18 mammalian HDACs are identified and grouped into four classes based on similarity to yeast orthologs. The zinc-dependent HDAC family currently consists of 11 members divided into three classes (class I, II, and IV) on the basis of structure, sequence homology, and domain organization. In comparison, class III HDACs (also known as the sirtuins) are composed of a family of NAD+-dependent protein-modifying enzymes related to the Sir2 gene. HDAC inhibitors are a group of compounds that block HDAC activities typically by binding to the zinc-containing catalytic domain of HDACs and have displayed an- ti-inflammatory and antifibrotic effects in the cardio-cerebrovascular system. In this review, we summarize the current knowledge about classifications, functions of HDACs and their roles and regulatory mechanisms in the cardio-cerebrovascular system. Pharmacological tar- geting of HDAC-mediated epigenetic processes may open new therapeutic avenues for the treatment of CCVD.展开更多
Hepatocellular carcinoma(HCC)is one of the most commonly diagnosed cancers and a leading cause of cancerrelated mortality worldwide,but its pathogenesis remains largely unknown.Nevertheless,genomic instability has bee...Hepatocellular carcinoma(HCC)is one of the most commonly diagnosed cancers and a leading cause of cancerrelated mortality worldwide,but its pathogenesis remains largely unknown.Nevertheless,genomic instability has been recognized as one of the facilitating characteristics of cancer hallmarks that expedites the acquisition of genetic diversity.Genomic instability is associated with a greater tendency to accumulate DNA damage and tumor-specific DNA repair defects,which gives rise to gene mutations and chromosomal damage and causes oncogenic transformation and tumor progression.Histone deacetylases(HDACs)have been shown to impair a variety of cellular processes of genome stability,including the regulation of DNA damage and repair,reactive oxygen species generation and elimination,and progression to mitosis.In this review,we provide an overview of the role of HDAC in the different aspects of DNA repair and genome instability in HCC as well as the current progress on the development of HDAC-specific inhibitors as new cancer therapies.展开更多
Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal funct...Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal function and rebalancing lysosomal acidification in neurons in the brain may be a new treatment strategy for Alzheimer's disease.Microtubule acetylation/deacetylation plays a central role in lysosomal acidification.Here,we show that inhibiting the classic microtubule deacetylase histone deacetylase 6 with an histone deacetylase 6 shRNA or thehistone deacetylase 6 inhibitor valproic acid promoted lysosomal reacidification by modulating V-ATPase assembly in Alzheimer's disease.Fu rthermore,we found that treatment with valproic acid markedly enhanced autophagy.promoted clearance of amyloid-βaggregates,and ameliorated cognitive deficits in a mouse model of Alzheimer's disease.Our findings demonstrate a previously unknown neuroprotective mechanism in Alzheimer's disease,in which histone deacetylase 6 inhibition by valproic acid increases V-ATPase assembly and lysosomal acidification.展开更多
Reversible histone acetylation and deacetylation at the N-terminus of histone tails play crucial roles in regulation of eukaryotic gene activity. Acetylation of core histones usually induces an 'open' chromatin stru...Reversible histone acetylation and deacetylation at the N-terminus of histone tails play crucial roles in regulation of eukaryotic gene activity. Acetylation of core histones usually induces an 'open' chromatin structure and is associated with gene activation, whereas deacetylation of histone is often correlated with 'closed' chromatin and gene repression. Histone deacetylation is catalyzed by histone deacetylases (HDACs). A growing number of studies have demonstrated the importance of histone deacetylation/acetylation on genome stability, transcriptional regulation, and development in plants. Furthermore, HDACs were shown to interact with various chromatin remolding factors and transcription factors involved in transcriptional repression in multiple developmental processes. In this review, we summarized recent findings on the transcriptional repression mediated by HDACs in plants.展开更多
Epigenetic mechanisms such as DNA methylation,histone modification and microRNA changes have been shown to be important for the regulation of cellular functions.Among them,histone deacetylases(HDACs)are enzymes that b...Epigenetic mechanisms such as DNA methylation,histone modification and microRNA changes have been shown to be important for the regulation of cellular functions.Among them,histone deacetylases(HDACs)are enzymes that balance the acetylation activities of histone acetyltransferases in chromatin remodeling and play essential roles in gene transcription to regulate cell proliferation,migration and death.Recent studies indicate that HDACs are promising drug targets for a wide range of diseases including cancer,neurodegenerative and psychiatric disorders,cardiovascular dysfunction,autoimmunity and diabetes mellitus.This review highlights the role of HDACs in diabetes mellitus and outlines several important cellular and molecular mechanisms by which HDACs regulate glucose homeostasis and can be targeted for the treatment of dia betic microvascular complications.It is hoped that our understanding of the role of HDACs in diabetes.mellitus will lead to the development of better diagnostic tools and the design of more potent and specific drugs targeting selective HDAC proteins for the treatment of the disease.展开更多
Subject Code:H31With the support by the National Natural Science Foundation of China,Ministry of Science and Technology of China and Chinese Academy of Sciences,the research team led by Prof.Geng Meiyu(耿美玉)and Ding...Subject Code:H31With the support by the National Natural Science Foundation of China,Ministry of Science and Technology of China and Chinese Academy of Sciences,the research team led by Prof.Geng Meiyu(耿美玉)and Ding Jian(丁健)from Shanghai Institute of Materia Medica,Chinese Academy of Sciences,demonstrated the therapeutic opportunities of histone deacetylases(HDACs)inhibitors in展开更多
The Arabidopsis thaliana RPD3-type histone deacetylases have been known to form conserved SIN3-type histone deacetylase complexes,but whether they form other types of complexes is unknown.Here,we perform affinity puri...The Arabidopsis thaliana RPD3-type histone deacetylases have been known to form conserved SIN3-type histone deacetylase complexes,but whether they form other types of complexes is unknown.Here,we perform affinity purification followed by mass spectrometry and demonstrate that the Arabidopsis RPD3-type histone deacetylases HDA6 and HDA19 interact with several previously uncharacterized proteins,thereby forming three types of plant-specific histone deacetylase complexes,which we named SANT,ESANT,and ARID.RNA-seq indicates that the newly identified components function together with HDA6 and HDA19 and coregulate the expression of a number of genes.HDA6 and HDA19 were previously thought to repress gene transcription by histone deacetylation.We find that the histone deacetylase complexes can repress gene expression via both histone deacetylation-dependent and-independent mechanisms.In the mutants of histone deacetylase complexes,the expression of a number of stressinduced genes is up-regulated,and several mutants of the histone deacetylase complexes show severe retardation in growth.Considering that growth retardation is thought to be a trade-off for an increase in stress tolerance,we infer that the histone deacetylase complexes identified in this study prevent overexpression of stress-induced genes and thereby ensure normal growth of plants under nonstress conditions.展开更多
Nucleolus is a membrane-less organelle where ribosomes are assembled, and ribosomal RNAs(r RNAs)transcribed and processed. The assembled ribosomes composed of ribosomal proteins and r RNAs synthesize proteins for cell...Nucleolus is a membrane-less organelle where ribosomes are assembled, and ribosomal RNAs(r RNAs)transcribed and processed. The assembled ribosomes composed of ribosomal proteins and r RNAs synthesize proteins for cell survival. In plants, the loss of nucleolar ribosomal proteins often causes gametophytically or embryonically lethality. The amount of r RNAs are under stringent regulation according to demand and partially switched off by epigenetic modifications. However, the molecular mechanism for the selective activation or silencing is still unclear, and the transcriptional coordination of r RNAs and ribosomal proteins is also unknown. Here, we report the critical role of three Arabidopsis nucleolar proteins HDT1,HDT2, and HDT3 in fertility and transcription of r DNAs and r RNA processing-related genes through histone acetylation. This study highlights the important roles of transcriptional repression of ribosome biogenesisrelated genes for plant reproductive development.展开更多
AIM:To investigate the expression and effect of histone deacetylase 7(HDAC7)in human retinal microvascular endothelial cells(HRMECs)under high glucose condition and related mechanism,and the expression of HDAC7 in the...AIM:To investigate the expression and effect of histone deacetylase 7(HDAC7)in human retinal microvascular endothelial cells(HRMECs)under high glucose condition and related mechanism,and the expression of HDAC7 in the retinal tissue in diabetic rats.METHODS:The expression of HDAC7 in HRMECs under high glucose and the retinal tissue from normal or diabetic rats were detected with immunohistochemistry and Western blot.LV-shHDAC7 HRMECs were used to study the effect of HDAC7 on cell activities.Cell count kit-8(CCK-8),5-ethynyl2’-deoxyuridine(EdU),flow cytometry,scratch test,Transwell test and tube formation assay were used to examine the ability of cell proliferation,migration,and angiogenesis.Finally,a preliminary exploration of its mechanism was performed by Western blot.RESULTS:The expression of HDAC7 was both upregulated in retinal tissues of diabetic rats and high glucosetreated HRMECs.Down-regulation of HDAC7 expression significantly reduced the ability of proliferation,migration,and tube formation,and reversed the high glucose-induced high expression of CDK1/Cyclin B1 and vascular endothelial growth factor in high glucose-treated HRMECs.CONCLUSION:High glucose can up-regulate the expression of HDAC7 in HRMECs.Down-regulation of HDAC7 can inhibit HRMECs activities.HDAC7 is proposed to be involved in pathogenesis of diabetic retinopathy and a therapeutic target.展开更多
Background:Cochlear hair cell injury is a common pathological feature of hearing loss.The basic helix-loop-helix family,member e40(Bhlhe40),a gene belonging to the basic helix-loop-helix(bHLH)family,exhibits strong tr...Background:Cochlear hair cell injury is a common pathological feature of hearing loss.The basic helix-loop-helix family,member e40(Bhlhe40),a gene belonging to the basic helix-loop-helix(bHLH)family,exhibits strong transcriptional repression activity.Methods:Oxidative damage,in House Ear Institute-Organ of Corti 1(HEI-OC1)cells,was caused using hydrogen peroxide(H2O2).The Ad-Bhlhe40 particles were constructed to overexpress Bhlhe40 in HEI-OC1 cells.Various assays including cell counting kit-8(CCK-8),terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay(TUNEL),flow cytometry,immunofluorescence,and corresponding commercial kits were employed to investigate the impacts of Bhlhe40 on cell viability,apoptosis,oxidative stress levels,mitochondrial membrane potential and cellular senescence.Additionally,a dual-luciferase reporter assay was performed to confirm the targeting of the histone deacetylases 2(Hdac2)by Bhlhe40.Results:The results revealed that Bhlhe40 was downregulated in H_(2)O_(2)-treated HEI-OC1 cells,but its overexpression improved cell viability and mitigated H_(2)O_(2)-induced oxidative injury in HEI-OC1 cells with increase of superoxide dismutase(SOD),catalase(CAT)and glutathione peroxidase(GPx)activities and decrease of reactive oxygen species(ROS)levels.Besides,overexpression of Bhlhe40 suppressed H_(2)O_(2)-triggered cell senescence,as evidenced by the fact that the upregulation of P53,P21,and P16 in HEI-OC1 cells treated with H2O2 were all alleviated by Bhlhe40 overexpression.And we further verified that overexpression of Bhlhe40 could inhibit the expression of Hdac2,which may be related to the repression of Hdac2 transcription.Conclusion:This study suggests that Bhlhe40 plays a protective role against senescence and oxidative damage in cochlear hair cells exposed to H2O2.展开更多
Head and neck squamous cell carcinoma(HNSCC) is the sixth most common cancer worldwide, and is responsible for a quarter of a million deaths annually. The survival rate for HNSCC patients is poor, showing only minor i...Head and neck squamous cell carcinoma(HNSCC) is the sixth most common cancer worldwide, and is responsible for a quarter of a million deaths annually. The survival rate for HNSCC patients is poor, showing only minor improvement in the last three decades. Despite new surgical techniques and chemotherapy protocols, tumor resistance to chemotherapy remains a significant challenge for HNSCC patients. Numerous mechanisms underlie chemoresistance, including genetic and epigenetic alterations in cancer cells that may be acquired during treatment and activation of mitogenic signaling pathways, such as nuclear factor kappa-light-chain-enhancer-of activated B cell, that cause reduced apoptosis. In addition to dysfunctional molecular signaling, emerging evidence reveals involvement of cancer stem cells(CSCs) in tumor development and in tumor resistance to chemotherapy and radiotherapy. These observations have sparked interest in understanding the mechanisms involved in the control of CSC function and fate. Post-translational modifications of histones dynamically influence gene expression independent of alterations to the DNA sequence. Recent findings from our group have shown that pharmacological induction of posttranslational modifications of tumor histones dynamically modulates CSC plasticity. These findings suggest that a better understanding of the biology of CSCs in response to epigenetic switches and pharmacological inhibitors of histone function may directly translate to the development of a mechanism-based strategy to disrupt CSCs. In this review, we present and discuss current knowledge on epigenetic modifications of HNSCC and CSC response to DNA methylation and histone modifications. In addition, we discuss chromatin modifications and their role in tumor resistance to therapy.展开更多
The HIV-1 LTR controls the expression of HIV-1 viral genes and thus is critical for viral propagation and pathology. Numerous host factors have been shown to participate in the regulation of the LTR promoter. Among th...The HIV-1 LTR controls the expression of HIV-1 viral genes and thus is critical for viral propagation and pathology. Numerous host factors have been shown to participate in the regulation of the LTR promoter. Among them is the thyroid hormone (T3) receptor (TR). TR has been shown to bind to the critical region of the promoter that contain the NFbB and Sp1 binding sites. Interestingly, earlier transient transfection studies in tissue culture cells have yielded contradicting conclusions on the role of TR in LTR regulation, likely due to the use of different cell types and/or lack of proper chromatin organization. Here, using the frog oocyte as a model system that allows replication-coupled chromatin assembly, mimicking that in somatic cells, we demonstrate that unliganded heterodimers of TR and RXR (9-cis retinoic acid receptor) repress LTR while the addition of T3 relieves the repression and further activates the promoter. More importantly, we show that chromatin and unliganded TR/RXR synergize to repress the promoter in a histone deacetylase-dependent manner.展开更多
Lymphomas enconlpass a group of malignancies that originate in the lymph nodes or other lymphoid tissues. Epigenetic modification, especially by histone deacetylase (HDACs), plays a key role during the occurrence an...Lymphomas enconlpass a group of malignancies that originate in the lymph nodes or other lymphoid tissues. Epigenetic modification, especially by histone deacetylase (HDACs), plays a key role during the occurrence and development of lymphomas. Consequently, HDAC inhibitors (HDACIs), a class of gene expression-modulating drugs, have emerged as promising mechanism-based agents for the treatment of lymphomas. This review presents the rationale of HDAC inhibition, describes the epigenetic-based mechanisms of action of HDACIs, discusses their clinical efficiency, and summarizes the current and future developments in this field.展开更多
Thalamic hemorrhage can lead to the development of central post-stroke pain.Changes in histone acetylation levels,which are regulated by histone deacetylases,affect the excitability of neurons surrounding the hemorrha...Thalamic hemorrhage can lead to the development of central post-stroke pain.Changes in histone acetylation levels,which are regulated by histone deacetylases,affect the excitability of neurons surrounding the hemorrhagic area.However,the regulato ry mechanism of histone deacetylases in central post-stroke pain remains unclea r.Here,we show that iron overload leads to an increase in histone deacetylase 2expression in damaged ventral posterolateral nucleus neurons.Inhibiting this increase restored histone H3 acetylation in the Kcna2 promoter region of the voltage-dependent potassium(Kv)channel subunit gene in a rat model of central post-stroke pain,thereby increasing Kcna2expression and relieving central pain.However,in the absence of nerve injury,increasing histone deacetylase 2 expression decreased Kcna2expression,decreased Kv current,increased the excitability of neurons in the ventral posterolateral nucleus area,and led to neuropathic pain symptoms.Moreover,treatment with the iron chelator deferiprone effectively reduced iron overload in the ventral posterolateral nucleus after intracerebral hemorrhage,reversed histone deacetylase 2 upregulation and Kv1.2 downregulation,and alleviated mechanical hypersensitivity in central post-stroke pain rats.These results suggest that histone deacetylase 2 upregulation and Kv1.2 downregulation,mediated by iron overload,are important factors in central post-stroke pain pathogenesis and co uld se rve as new to rgets for central poststroke pain treatment.展开更多
Histone deacetylases (HDACs) and histone acetyl transferases (HATs) are two counteracting enzyme families whose enzymatic activity controls the acetylation state of protein lysine residues, notably those contained...Histone deacetylases (HDACs) and histone acetyl transferases (HATs) are two counteracting enzyme families whose enzymatic activity controls the acetylation state of protein lysine residues, notably those contained in the N-terminal extensions of the core histones. Acetylation of histones affects gene expression through its influence on chromatin conformation. In addition, several non-histone proteins are regulated in their stability or biological function by the acetylation state of specific lysine residues. HDACs intervene in a multitude of biological processes and are part of a multiprotein family in which each member has its specialized functions. In addition, HDAC activity is tightly controlled through targeted recruitment, protein-protein interactions and post-translational modifications. Control of cell cycle progression, cell survival and differentiation are among the most important roles of these enzymes. Since these processes are affected by malignant transformation, HDAC inhibitors were developed as antineoplastic drugs and are showing encouraging efficacy in cancer patients.展开更多
AIM: To investigate the antiproliferative effect of the histone deacetylase (HDAC) inhibitor MS-275 on cholangiocarcinoma cells alone and in combination with conventional cytostatic drugs (gemcitabine or doxorubicin) ...AIM: To investigate the antiproliferative effect of the histone deacetylase (HDAC) inhibitor MS-275 on cholangiocarcinoma cells alone and in combination with conventional cytostatic drugs (gemcitabine or doxorubicin) or the novel anticancer agents sorafenib or bortezomib. METHODS: Two human bile duct adenocarcinoma cell lines (EGI-1 and TFK-1) were studied. Crystal violet staining was used for detection of cell number changes. Cytotoxicity was determined by measuring the release of the cytoplasmic enzyme lactate dehydrogenase (LDH). Apoptosis was determined by measuring the enzyme activity of caspase-3. Cell cycle status reflected by the DNA content was detected by flow cytometry.RESULTS: MS-275 treatment potently inhibited the proliferation of EGI-1 and TFK-1 cholangiocarcinoma cells by inducing apoptosis and cell cycle arrest. MS-275-induced apoptosis was characterized by activation of caspase-3, up-regulation of Bax and down-regulation of Bcl-2. Cell cycle was predominantly arrested at the G1/S checkpoint, which was associated with induction of the cyclin-dependent kinase inhibitor p21Waf/CIP1. Furthermore, additive anti-neoplastic effects were observed when MS-275 treatment was combined with gemcitabine or doxorubicin, while combination with the multi-kinase inhibitor sorafenib or the proteasome inhibitor bortezomib resulted in overadditive anti-neoplastic effects.CONCLUSION: The growth of human cholangiocarcinoma cells can be potently inhibited by MS-275 alone or in combination with conventional cytostatic drugs or new, targeted anticancer agents.展开更多
Arabidopsis thaliana histone deacetylase 1 (AtHD1 or AtHDA19), a homolog ot yeast RPD3, is a global regulator ot many physiological and developmental processes in plants. In spite of the genetic evidence for a role ...Arabidopsis thaliana histone deacetylase 1 (AtHD1 or AtHDA19), a homolog ot yeast RPD3, is a global regulator ot many physiological and developmental processes in plants. In spite of the genetic evidence for a role of AtHD1 in plant gene regulation and development, the biochemical and cellular properties ofAtHD 1 are poorly understood. Here we report cellular localization patterns ofAtHD 1 in vivo and histone deacetylase activity in vitro. The transient and stable expression of a green fluorescent protein (GFP)-tagged AtHD1 in onion cells and in roots, seeds and leaves of the transgenic Arabidopsis, respectively, revealed that AtHD1 is localized in the nucleus presumably in the euchromatic regions and excluded from the nucleolus. The localization patterns ofAtHD 1 are different from those of AtHD2 and AtHDA6 that are involved in nucleolus formation and silencing of transgenes and repeated DNA elements, respectively. In addition, a histone deacetylase activity assay showed that the recombinant AtHD 1 produced in bacteria demonstrated a specific histone deacetylase activity in vitro. The data suggest that AtHD 1 is a nuclear protein and possesses histone deacetylase activities responsible for global transcriptional regulation important to plant growth and development.展开更多
基金supported by the National Natural Science Foundation of China(21473081,21075138)special fund of State Key Laboratory of Structure Chemistry(20160028)
文摘A molecular electronegativity distance vector(M)based on 13 atomic types has been used to describe the structures of 19 conjugates(LHCc)of levofloxacin-thiadiazole HDAC inhibitor(HDACi)and related inhibitory activities(pH,i=1,2,6)of LHCc against histone deacetylases(HDACs,such as HDAC1,HDAC2 and HDAC6).The quantitative structure-activity relationships(QSAR)were established by using leaps-and-bounds regression analysis for the inhibitory activities(pH)of 19 above compounds to HDAC1,HDAC2 and HDAC6 along with M.The correlation coefficients(R~2)and the leave-one-out(LOO)cross validation Rfor the pH,pHand pHmodels were 0.976 and 0.949;0.985 and 0.977;0.976 and 0.932,respectively.The QSAR models had favorable correlations,as well as robustness and good prediction capability by R~2,F,R~2,A,Fand Vtests.Validated by using 3876 training sets,the models have good external prediction ability.The results indicate that the molecular structural units:–CH–(g=1,2),–NH,–OH,=O,–O–and–S–are the main factors which can affect the inhibitory activity of pH,pHas well as pHbioactivities of these compounds directly.Accordingly,the main interactions between HDACs inhibitor and HDACs are hydrophobic interaction,hydrogen bond,and coordination with Znto form compounds,which is consistent with the results in reports.
基金Supported by International Medical University to Sim W,Lim WM,and Leong CO,No.BMS I/2020(10)Shanghai Municipal Science and Technology Commission to Mai CW,No.20WZ250460.
文摘The immune system plays a vital role in maintaining the delicate balance between immune recognition and tumor development.Regardless,it is not uncommon that cancerous cells can intelligently acquire abilities to bypass the antitumor immune responses,thus allowing continuous tumor growth and development.Immune evasion has emerged as a significant factor contributing to the progression and immune resistance of pancreatic cancer.Compared with other cancers,pancreatic cancer has a tumor microenvironment that can resist most treatment modalities,including emerging immunotherapy.Sadly,the use of immunotherapy has yet to bring significant clinical breakthrough among pancreatic cancer patients,suggesting that pancreatic cancer has successfully evaded immunomodulation.In this review,we summarize the impact of genetic alteration and epigenetic modification(especially histone deacetylases,HDAC)on immune evasion in pancreatic cancer.HDAC overexpression significantly suppresses tumor suppressor genes,contributing to tumor growth and progression.We review the evidence on HDAC inhibitors in tumor eradication,improving T cells activation,restoring tumor immunogenicity,and modulating programmed death 1 interaction.We provide our perspective in targeting HDAC as a strategy to reverse immune evasion in pancreatic cancer.
基金supported by grants from Shriners Research Foundation grant SHC-85310
文摘Epigenetic control of regeneration after spinal cord injury: Com- plete spinal cord injury (SCI) in humans and other mammals leads to irreversible paralysis below the level of injury, due to failure of axonal regeneration in the central nervous system (CNS). Previous work has shown that successful axon regeneration is dependent upon transcription of a large number of regeneration-associated genes (RAGs) and transcription factors (TFs) (Van Kesteren et al., 2011). A prominent theory in the field of axon regeneration is that the large differences in regenerative potential between peripheral nervous system (PNS) neurons, which regenerate well, and CNS neurons, which do not, reflect differences in intrinsic transcriptional net- works, rather than individual genes (Van Kesteren et al., 2011).
基金This study was supported by grants from the National 973 Basic Research Program of China,the National Nature Science Foundation of China,Foundation of Program for New Century Excellent Talents in University (NCET-11-0311) to Yi F,Program for Changjiang Scholars and Innovative Research Team in University,the Special Financial Grant from the China Postdoctoral Science Foundation,the China Postdoctoral Science Foundation,the Shandong Province Post-doctoral Innovation Foundation
文摘Although the pathogenesis of cardio-cerebrovascular disease (CCVD) is multifactorial, an increasing number of experimental and clinical studies have highlighted the importance of histone deacetylase (HDAC)-mediated epigenetic processes in the development of cardio-cerebrovascular injury. HDACs are a family of enzymes to balance the acetylation activities of histone acetyltransferases on chromatin remodeling and play essential roles in regulating gene transcription. To date, 18 mammalian HDACs are identified and grouped into four classes based on similarity to yeast orthologs. The zinc-dependent HDAC family currently consists of 11 members divided into three classes (class I, II, and IV) on the basis of structure, sequence homology, and domain organization. In comparison, class III HDACs (also known as the sirtuins) are composed of a family of NAD+-dependent protein-modifying enzymes related to the Sir2 gene. HDAC inhibitors are a group of compounds that block HDAC activities typically by binding to the zinc-containing catalytic domain of HDACs and have displayed an- ti-inflammatory and antifibrotic effects in the cardio-cerebrovascular system. In this review, we summarize the current knowledge about classifications, functions of HDACs and their roles and regulatory mechanisms in the cardio-cerebrovascular system. Pharmacological tar- geting of HDAC-mediated epigenetic processes may open new therapeutic avenues for the treatment of CCVD.
基金supported by grants from the Science and Technology Research Program of Chongqing Education Commission (no.KJQN202100424)the Natural Science Foundation Project of Chongqing (no.cstc2018jcyjAX0825).
文摘Hepatocellular carcinoma(HCC)is one of the most commonly diagnosed cancers and a leading cause of cancerrelated mortality worldwide,but its pathogenesis remains largely unknown.Nevertheless,genomic instability has been recognized as one of the facilitating characteristics of cancer hallmarks that expedites the acquisition of genetic diversity.Genomic instability is associated with a greater tendency to accumulate DNA damage and tumor-specific DNA repair defects,which gives rise to gene mutations and chromosomal damage and causes oncogenic transformation and tumor progression.Histone deacetylases(HDACs)have been shown to impair a variety of cellular processes of genome stability,including the regulation of DNA damage and repair,reactive oxygen species generation and elimination,and progression to mitosis.In this review,we provide an overview of the role of HDAC in the different aspects of DNA repair and genome instability in HCC as well as the current progress on the development of HDAC-specific inhibitors as new cancer therapies.
基金supported by the National Natural Science Foundation of China,No.82201582(to QT)Scientific and Technological Research Program of Chongqing Municipal Education Commission,No.KJQN202200457(to QT)+3 种基金General Project of Changqing Natural Science Foundation,No.cstc2021jcyjmsxmX0442(to ZL)CQMU Program for Youth Innovation in Future Medicine,No.W0044(to ZD and GH)Direct Research Project for PhD of Chongqing,No.CSTB2022BSXM-JCX0051(to ZL)the Project of the Top-Notch Talent Cultivation Program For the Graduate Students of Chongqing Medical University,No.BJRC202310(to CG)。
文摘Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal function and rebalancing lysosomal acidification in neurons in the brain may be a new treatment strategy for Alzheimer's disease.Microtubule acetylation/deacetylation plays a central role in lysosomal acidification.Here,we show that inhibiting the classic microtubule deacetylase histone deacetylase 6 with an histone deacetylase 6 shRNA or thehistone deacetylase 6 inhibitor valproic acid promoted lysosomal reacidification by modulating V-ATPase assembly in Alzheimer's disease.Fu rthermore,we found that treatment with valproic acid markedly enhanced autophagy.promoted clearance of amyloid-βaggregates,and ameliorated cognitive deficits in a mouse model of Alzheimer's disease.Our findings demonstrate a previously unknown neuroprotective mechanism in Alzheimer's disease,in which histone deacetylase 6 inhibition by valproic acid increases V-ATPase assembly and lysosomal acidification.
文摘Reversible histone acetylation and deacetylation at the N-terminus of histone tails play crucial roles in regulation of eukaryotic gene activity. Acetylation of core histones usually induces an 'open' chromatin structure and is associated with gene activation, whereas deacetylation of histone is often correlated with 'closed' chromatin and gene repression. Histone deacetylation is catalyzed by histone deacetylases (HDACs). A growing number of studies have demonstrated the importance of histone deacetylation/acetylation on genome stability, transcriptional regulation, and development in plants. Furthermore, HDACs were shown to interact with various chromatin remolding factors and transcription factors involved in transcriptional repression in multiple developmental processes. In this review, we summarized recent findings on the transcriptional repression mediated by HDACs in plants.
基金The authors wish to thank the following for financial support for this study:the National 973 Basic Research Program of China(2012CB517700)the National Nature Science Foundation of China(81170772,81070918,81171062 and 30901551)+2 种基金the Shandong Natural Science Fund for Distin-guished Young Scholars to Yi F(JQ201121)the Independent Innovation Foundation of Shandong University(IIFS-DU2010JC17)the Nature Science Foundation of Shan-dong Province(ZR2010HM112).
文摘Epigenetic mechanisms such as DNA methylation,histone modification and microRNA changes have been shown to be important for the regulation of cellular functions.Among them,histone deacetylases(HDACs)are enzymes that balance the acetylation activities of histone acetyltransferases in chromatin remodeling and play essential roles in gene transcription to regulate cell proliferation,migration and death.Recent studies indicate that HDACs are promising drug targets for a wide range of diseases including cancer,neurodegenerative and psychiatric disorders,cardiovascular dysfunction,autoimmunity and diabetes mellitus.This review highlights the role of HDACs in diabetes mellitus and outlines several important cellular and molecular mechanisms by which HDACs regulate glucose homeostasis and can be targeted for the treatment of dia betic microvascular complications.It is hoped that our understanding of the role of HDACs in diabetes.mellitus will lead to the development of better diagnostic tools and the design of more potent and specific drugs targeting selective HDAC proteins for the treatment of the disease.
文摘Subject Code:H31With the support by the National Natural Science Foundation of China,Ministry of Science and Technology of China and Chinese Academy of Sciences,the research team led by Prof.Geng Meiyu(耿美玉)and Ding Jian(丁健)from Shanghai Institute of Materia Medica,Chinese Academy of Sciences,demonstrated the therapeutic opportunities of histone deacetylases(HDACs)inhibitors in
基金supported by the National Natural Science Foundation of China(32025003)by the National Key Research and Development Program of China(2016YFA0500801)from the Chinese Ministry of Science and Technology。
文摘The Arabidopsis thaliana RPD3-type histone deacetylases have been known to form conserved SIN3-type histone deacetylase complexes,but whether they form other types of complexes is unknown.Here,we perform affinity purification followed by mass spectrometry and demonstrate that the Arabidopsis RPD3-type histone deacetylases HDA6 and HDA19 interact with several previously uncharacterized proteins,thereby forming three types of plant-specific histone deacetylase complexes,which we named SANT,ESANT,and ARID.RNA-seq indicates that the newly identified components function together with HDA6 and HDA19 and coregulate the expression of a number of genes.HDA6 and HDA19 were previously thought to repress gene transcription by histone deacetylation.We find that the histone deacetylase complexes can repress gene expression via both histone deacetylation-dependent and-independent mechanisms.In the mutants of histone deacetylase complexes,the expression of a number of stressinduced genes is up-regulated,and several mutants of the histone deacetylase complexes show severe retardation in growth.Considering that growth retardation is thought to be a trade-off for an increase in stress tolerance,we infer that the histone deacetylase complexes identified in this study prevent overexpression of stress-induced genes and thereby ensure normal growth of plants under nonstress conditions.
基金supported by funding from the National Natural Science Foundation of China (31991203 and 31870295)。
文摘Nucleolus is a membrane-less organelle where ribosomes are assembled, and ribosomal RNAs(r RNAs)transcribed and processed. The assembled ribosomes composed of ribosomal proteins and r RNAs synthesize proteins for cell survival. In plants, the loss of nucleolar ribosomal proteins often causes gametophytically or embryonically lethality. The amount of r RNAs are under stringent regulation according to demand and partially switched off by epigenetic modifications. However, the molecular mechanism for the selective activation or silencing is still unclear, and the transcriptional coordination of r RNAs and ribosomal proteins is also unknown. Here, we report the critical role of three Arabidopsis nucleolar proteins HDT1,HDT2, and HDT3 in fertility and transcription of r DNAs and r RNA processing-related genes through histone acetylation. This study highlights the important roles of transcriptional repression of ribosome biogenesisrelated genes for plant reproductive development.
基金Supported by the Shaanxi Province Traditional Chinese Medicine Project(No.SZY-KJCYC-2023-028)。
文摘AIM:To investigate the expression and effect of histone deacetylase 7(HDAC7)in human retinal microvascular endothelial cells(HRMECs)under high glucose condition and related mechanism,and the expression of HDAC7 in the retinal tissue in diabetic rats.METHODS:The expression of HDAC7 in HRMECs under high glucose and the retinal tissue from normal or diabetic rats were detected with immunohistochemistry and Western blot.LV-shHDAC7 HRMECs were used to study the effect of HDAC7 on cell activities.Cell count kit-8(CCK-8),5-ethynyl2’-deoxyuridine(EdU),flow cytometry,scratch test,Transwell test and tube formation assay were used to examine the ability of cell proliferation,migration,and angiogenesis.Finally,a preliminary exploration of its mechanism was performed by Western blot.RESULTS:The expression of HDAC7 was both upregulated in retinal tissues of diabetic rats and high glucosetreated HRMECs.Down-regulation of HDAC7 expression significantly reduced the ability of proliferation,migration,and tube formation,and reversed the high glucose-induced high expression of CDK1/Cyclin B1 and vascular endothelial growth factor in high glucose-treated HRMECs.CONCLUSION:High glucose can up-regulate the expression of HDAC7 in HRMECs.Down-regulation of HDAC7 can inhibit HRMECs activities.HDAC7 is proposed to be involved in pathogenesis of diabetic retinopathy and a therapeutic target.
基金This research was supported by the Special Fund for Economic and Technological Development of Longgang District,Shenzhen(LGKCYLWS2021000030).
文摘Background:Cochlear hair cell injury is a common pathological feature of hearing loss.The basic helix-loop-helix family,member e40(Bhlhe40),a gene belonging to the basic helix-loop-helix(bHLH)family,exhibits strong transcriptional repression activity.Methods:Oxidative damage,in House Ear Institute-Organ of Corti 1(HEI-OC1)cells,was caused using hydrogen peroxide(H2O2).The Ad-Bhlhe40 particles were constructed to overexpress Bhlhe40 in HEI-OC1 cells.Various assays including cell counting kit-8(CCK-8),terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay(TUNEL),flow cytometry,immunofluorescence,and corresponding commercial kits were employed to investigate the impacts of Bhlhe40 on cell viability,apoptosis,oxidative stress levels,mitochondrial membrane potential and cellular senescence.Additionally,a dual-luciferase reporter assay was performed to confirm the targeting of the histone deacetylases 2(Hdac2)by Bhlhe40.Results:The results revealed that Bhlhe40 was downregulated in H_(2)O_(2)-treated HEI-OC1 cells,but its overexpression improved cell viability and mitigated H_(2)O_(2)-induced oxidative injury in HEI-OC1 cells with increase of superoxide dismutase(SOD),catalase(CAT)and glutathione peroxidase(GPx)activities and decrease of reactive oxygen species(ROS)levels.Besides,overexpression of Bhlhe40 suppressed H_(2)O_(2)-triggered cell senescence,as evidenced by the fact that the upregulation of P53,P21,and P16 in HEI-OC1 cells treated with H2O2 were all alleviated by Bhlhe40 overexpression.And we further verified that overexpression of Bhlhe40 could inhibit the expression of Hdac2,which may be related to the repression of Hdac2 transcription.Conclusion:This study suggests that Bhlhe40 plays a protective role against senescence and oxidative damage in cochlear hair cells exposed to H2O2.
基金Supported by University of Michigan,School of Dentistry startup
文摘Head and neck squamous cell carcinoma(HNSCC) is the sixth most common cancer worldwide, and is responsible for a quarter of a million deaths annually. The survival rate for HNSCC patients is poor, showing only minor improvement in the last three decades. Despite new surgical techniques and chemotherapy protocols, tumor resistance to chemotherapy remains a significant challenge for HNSCC patients. Numerous mechanisms underlie chemoresistance, including genetic and epigenetic alterations in cancer cells that may be acquired during treatment and activation of mitogenic signaling pathways, such as nuclear factor kappa-light-chain-enhancer-of activated B cell, that cause reduced apoptosis. In addition to dysfunctional molecular signaling, emerging evidence reveals involvement of cancer stem cells(CSCs) in tumor development and in tumor resistance to chemotherapy and radiotherapy. These observations have sparked interest in understanding the mechanisms involved in the control of CSC function and fate. Post-translational modifications of histones dynamically influence gene expression independent of alterations to the DNA sequence. Recent findings from our group have shown that pharmacological induction of posttranslational modifications of tumor histones dynamically modulates CSC plasticity. These findings suggest that a better understanding of the biology of CSCs in response to epigenetic switches and pharmacological inhibitors of histone function may directly translate to the development of a mechanism-based strategy to disrupt CSCs. In this review, we present and discuss current knowledge on epigenetic modifications of HNSCC and CSC response to DNA methylation and histone modifications. In addition, we discuss chromatin modifications and their role in tumor resistance to therapy.
文摘The HIV-1 LTR controls the expression of HIV-1 viral genes and thus is critical for viral propagation and pathology. Numerous host factors have been shown to participate in the regulation of the LTR promoter. Among them is the thyroid hormone (T3) receptor (TR). TR has been shown to bind to the critical region of the promoter that contain the NFbB and Sp1 binding sites. Interestingly, earlier transient transfection studies in tissue culture cells have yielded contradicting conclusions on the role of TR in LTR regulation, likely due to the use of different cell types and/or lack of proper chromatin organization. Here, using the frog oocyte as a model system that allows replication-coupled chromatin assembly, mimicking that in somatic cells, we demonstrate that unliganded heterodimers of TR and RXR (9-cis retinoic acid receptor) repress LTR while the addition of T3 relieves the repression and further activates the promoter. More importantly, we show that chromatin and unliganded TR/RXR synergize to repress the promoter in a histone deacetylase-dependent manner.
文摘Lymphomas enconlpass a group of malignancies that originate in the lymph nodes or other lymphoid tissues. Epigenetic modification, especially by histone deacetylase (HDACs), plays a key role during the occurrence and development of lymphomas. Consequently, HDAC inhibitors (HDACIs), a class of gene expression-modulating drugs, have emerged as promising mechanism-based agents for the treatment of lymphomas. This review presents the rationale of HDAC inhibition, describes the epigenetic-based mechanisms of action of HDACIs, discusses their clinical efficiency, and summarizes the current and future developments in this field.
基金supported by the National Natural Science Foundation of China,Nos.U2004106 (to WY),81971061 (to JC)the Key Scientific Research Project of Colleges and Universities in Henan Province,No.21A320039 (to WY)。
文摘Thalamic hemorrhage can lead to the development of central post-stroke pain.Changes in histone acetylation levels,which are regulated by histone deacetylases,affect the excitability of neurons surrounding the hemorrhagic area.However,the regulato ry mechanism of histone deacetylases in central post-stroke pain remains unclea r.Here,we show that iron overload leads to an increase in histone deacetylase 2expression in damaged ventral posterolateral nucleus neurons.Inhibiting this increase restored histone H3 acetylation in the Kcna2 promoter region of the voltage-dependent potassium(Kv)channel subunit gene in a rat model of central post-stroke pain,thereby increasing Kcna2expression and relieving central pain.However,in the absence of nerve injury,increasing histone deacetylase 2 expression decreased Kcna2expression,decreased Kv current,increased the excitability of neurons in the ventral posterolateral nucleus area,and led to neuropathic pain symptoms.Moreover,treatment with the iron chelator deferiprone effectively reduced iron overload in the ventral posterolateral nucleus after intracerebral hemorrhage,reversed histone deacetylase 2 upregulation and Kv1.2 downregulation,and alleviated mechanical hypersensitivity in central post-stroke pain rats.These results suggest that histone deacetylase 2 upregulation and Kv1.2 downregulation,mediated by iron overload,are important factors in central post-stroke pain pathogenesis and co uld se rve as new to rgets for central poststroke pain treatment.
文摘Histone deacetylases (HDACs) and histone acetyl transferases (HATs) are two counteracting enzyme families whose enzymatic activity controls the acetylation state of protein lysine residues, notably those contained in the N-terminal extensions of the core histones. Acetylation of histones affects gene expression through its influence on chromatin conformation. In addition, several non-histone proteins are regulated in their stability or biological function by the acetylation state of specific lysine residues. HDACs intervene in a multitude of biological processes and are part of a multiprotein family in which each member has its specialized functions. In addition, HDAC activity is tightly controlled through targeted recruitment, protein-protein interactions and post-translational modifications. Control of cell cycle progression, cell survival and differentiation are among the most important roles of these enzymes. Since these processes are affected by malignant transformation, HDAC inhibitors were developed as antineoplastic drugs and are showing encouraging efficacy in cancer patients.
基金a scholarship from the Sonnenfeld-Stiftung,Berlin,Germany for Viola Baradari
文摘AIM: To investigate the antiproliferative effect of the histone deacetylase (HDAC) inhibitor MS-275 on cholangiocarcinoma cells alone and in combination with conventional cytostatic drugs (gemcitabine or doxorubicin) or the novel anticancer agents sorafenib or bortezomib. METHODS: Two human bile duct adenocarcinoma cell lines (EGI-1 and TFK-1) were studied. Crystal violet staining was used for detection of cell number changes. Cytotoxicity was determined by measuring the release of the cytoplasmic enzyme lactate dehydrogenase (LDH). Apoptosis was determined by measuring the enzyme activity of caspase-3. Cell cycle status reflected by the DNA content was detected by flow cytometry.RESULTS: MS-275 treatment potently inhibited the proliferation of EGI-1 and TFK-1 cholangiocarcinoma cells by inducing apoptosis and cell cycle arrest. MS-275-induced apoptosis was characterized by activation of caspase-3, up-regulation of Bax and down-regulation of Bcl-2. Cell cycle was predominantly arrested at the G1/S checkpoint, which was associated with induction of the cyclin-dependent kinase inhibitor p21Waf/CIP1. Furthermore, additive anti-neoplastic effects were observed when MS-275 treatment was combined with gemcitabine or doxorubicin, while combination with the multi-kinase inhibitor sorafenib or the proteasome inhibitor bortezomib resulted in overadditive anti-neoplastic effects.CONCLUSION: The growth of human cholangiocarcinoma cells can be potently inhibited by MS-275 alone or in combination with conventional cytostatic drugs or new, targeted anticancer agents.
基金We thank Mary Bryk and Timothy Hall for critical suggestions to improve the manuscript,David Stelly and Keerti Rathore for assistance in GFP localization studies in onion cells,and Stanislav Vitha in the Microscopy and Imaging Center at Texas A&M University for technical support for epifluorescence microscopic image analysis in the transgenic plants.The work is supported by grants from the National Institutes of Health(GM067015)the National Science Foundation Plant Genome Research Program(DBI0077774)to Z J C.
文摘Arabidopsis thaliana histone deacetylase 1 (AtHD1 or AtHDA19), a homolog ot yeast RPD3, is a global regulator ot many physiological and developmental processes in plants. In spite of the genetic evidence for a role of AtHD1 in plant gene regulation and development, the biochemical and cellular properties ofAtHD 1 are poorly understood. Here we report cellular localization patterns ofAtHD 1 in vivo and histone deacetylase activity in vitro. The transient and stable expression of a green fluorescent protein (GFP)-tagged AtHD1 in onion cells and in roots, seeds and leaves of the transgenic Arabidopsis, respectively, revealed that AtHD1 is localized in the nucleus presumably in the euchromatic regions and excluded from the nucleolus. The localization patterns ofAtHD 1 are different from those of AtHD2 and AtHDA6 that are involved in nucleolus formation and silencing of transgenes and repeated DNA elements, respectively. In addition, a histone deacetylase activity assay showed that the recombinant AtHD 1 produced in bacteria demonstrated a specific histone deacetylase activity in vitro. The data suggest that AtHD 1 is a nuclear protein and possesses histone deacetylase activities responsible for global transcriptional regulation important to plant growth and development.