期刊文献+
共找到455篇文章
< 1 2 23 >
每页显示 20 50 100
Extracellular histones stimulate collagen expression in vitro and promote liver fibrogenesis in a mouse model via the TLR4-MyD88 signaling pathway 被引量:4
1
作者 Zhi Wang Zhen-Xing Cheng +7 位作者 Simon T Abrams Zi-Qi Lin ED Yates Qian Yu Wei-Ping Yu Ping-Sheng Chen Cheng-Hock Toh Guo-Zheng Wang 《World Journal of Gastroenterology》 SCIE CAS 2020年第47期7513-7527,共15页
BACKGROUND Liver fibrosis progressing to liver cirrhosis and hepatic carcinoma is very common and causes more than one million deaths annually.Fibrosis develops from recurrent liver injury but the molecular mechanisms... BACKGROUND Liver fibrosis progressing to liver cirrhosis and hepatic carcinoma is very common and causes more than one million deaths annually.Fibrosis develops from recurrent liver injury but the molecular mechanisms are not fully understood.Recently,the TLR4-MyD88 signaling pathway has been reported to contribute to fibrosis.Extracellular histones are ligands of TLR4 but their roles in liver fibrosis have not been investigated.AIM To investigate the roles and potential mechanisms of extracellular histones in liver fibrosis.METHODS In vitro,LX2 human hepatic stellate cells(HSCs)were treated with histones in the presence or absence of non-anticoagulant heparin(NAHP)for neutralizing histones or TLR4-blocking antibody.The resultant cellular expression of collagen I was detected using western blotting and immunofluorescent staining.In vivo,the CCl4-induced liver fibrosis model was generated in male 6-week-old ICR mice and in TLR4 or MyD88 knockout and parental mice.Circulating histones were detected and the effect of NAHP was evaluated.RESULTS Extracellular histones strongly stimulated LX2 cells to produce collagen I.Histone-enhanced collagen expression was significantly reduced by NAHP and TLR4-blocking antibody.In CCl4-treated wild type mice,circulating histones were dramatically increased and maintained high levels during the duration of fibrosisinduction.Injection of NAHP not only reduced alanine aminotransferase and liver injury scores,but also significantly reduced fibrogenesis.Since the TLR4-blocking antibody reduced histone-enhanced collagen I production in HSC,the CCl4 model with TLR4 and MyD88 knockout mice was used to demonstrate the roles of the TLR4-MyD88 signaling pathway in CCl4-induced liver fibrosis.The levels of liver fibrosis were indeed significantly reduced in knockout mice compared to wild type parental mice.CONCLUSION Extracellular histones potentially enhance fibrogenesis via the TLR4–MyD88 signaling pathway and NAHP has therapeutic potential by detoxifying extracellular histones. 展开更多
关键词 Liver fibrosis Extracellular histones Non-anticoagulant heparin TLR4 MYD88 CCl4
下载PDF
Brownian dynamics simulation of the cross-talking effect among modified histones on conformations of nucleosomes
2
作者 段兆文 李伟 +2 位作者 谢平 窦硕星 王鹏业 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第4期461-468,共8页
Using Brownian dynamics simulation, we studied the effect of histone modifications On conformations of an array of nucleosomes in a segment of chromatin. The simulation demonstrated that the segment of chromatin shows... Using Brownian dynamics simulation, we studied the effect of histone modifications On conformations of an array of nucleosomes in a segment of chromatin. The simulation demonstrated that the segment of chromatin shows the dynamic behaviour that its conformation can switch between a state with nearly all of the histones being wrapped by DNA and a state with nearly all of the histones being unwrapped by DNA, thus involving the "cross-talking" interactions among the histones. Each state can stay for a sufficiently long time. These conformational states are essential for gene expression or gene silence. The simulation also shows that these conformational states can be inherited by the daughter DNAs during DNA replication, giving a theoretical explanation of the epigenetic phenomenon. 展开更多
关键词 NUCLEOSOME histone modification DNA Brownian dynamics
下载PDF
Histones released by NETosis enhance the infectivity of SARS-CoV-2 by bridging the spike protein subunit 2 and sialic acid on host cells 被引量:2
3
作者 Weiqi Hong Jingyun Yang +54 位作者 Jun Zou Zhenfei Bi Cai He Hong Lei Xuemei He Xue Li Aqu Alu Wenyan Ren Zeng Wang Xiaohua Jiang Kunhong Zhong Guowen Jia Yun Yang Wenhai Yu Qing Huang Mengli Yang Yanan Zhou Yuan Zhao Dexuan Kuang Junbin Wang Haixuan Wang Siyuan Chen Min Luo Ziqi Zhang Tiangi Lu Li Chen Haiying Que Zhiyao He Qiu Sun Wei Wang Guobo Shen Guangwen Lu Zhiwei Zhao Li Yang Jinliang Yang Zhenling Wang Jiong Li Xiangrong Song Lunzhi Dai Chong Chen Jia Geng Maling Gou Lu Chen Haohao Dong Yong Peng Canhua Huang Zhiyong Qian Wei Cheng Changfa Fan Yuquan Wei Zhaoming Su Aiping Tong Shuaiyao Lu Xiaozhong Peng Xiawei Wei 《Cellular & Molecular Immunology》 SCIE CAS CSCD 2022年第5期577-587,共11页
Neutrophil extracellular traps(NETs)can capture and kill viruses,such as influenza viruses,human immunodeficiency virus(HIV),and respiratory syncytial virus(RSV),thus contributing to host defense.Contrary to our expec... Neutrophil extracellular traps(NETs)can capture and kill viruses,such as influenza viruses,human immunodeficiency virus(HIV),and respiratory syncytial virus(RSV),thus contributing to host defense.Contrary to our expectation,we show here that the histones released by NETosis enhance the infectivity of SARS-CoV-2,as found by using live SARS-CoV-2 and two pseudovirus systems as well as a mouse model.The histone H3 or H4 selectively binds to subunit 2 of the spike(S)protein,as shown by a biochemical binding assay,surface plasmon resonance and binding energy calculation as well as the construction of a mutant S protein by replacing four acidic amino acids.Sialic acid on the host cell surface is the key molecule to which histones bridge subunit 2 of the S protein.Moreover,histones enhance cell-cell fusion.Finally,treatment with an inhibitor of NETosis,histone H3 or H4,or sialic acid notably affected the levels of sgRNA copies and the number of apoptotic cells in a mouse model.These findings suggest that SARS-CoV-2 could hijack histones from neutrophil NETosis to promote its host cell attachment and entry process and may be important in exploring pathogenesis and possible strategies to develop new effective therapies for COVID-19. 展开更多
关键词 COVID-19 SARS-CoV-2 neutrophil extracellular traps histones sialic acid
原文传递
Epigenetic control on transcription of vernalization genes and whole-genome gene expression profile induced by vernalization in common wheat
4
作者 Yunzhen Li Liujie Jin +4 位作者 Xinyu Liu Chao He Siteng Bi Sulaiman Saeed Wenhao Yan 《Plant Diversity》 SCIE CAS CSCD 2024年第3期386-394,共9页
Vernalization is necessary for winter wheat to flower.However,it is unclear whether vernalization is also required for spring wheat,which is frequently sown in fall,and what molecular mechanisms underlie the vernaliza... Vernalization is necessary for winter wheat to flower.However,it is unclear whether vernalization is also required for spring wheat,which is frequently sown in fall,and what molecular mechanisms underlie the vernalization response in wheat varieties.In this study,we examined the molecular mechanisms that regulate vernalization response in winter and spring wheat varieties.For this purpose,we determined how major vernalization genes(VRN1,VRN2,and VRN3)respond to vernalization in these varieties and whether modifications to histones play a role in changes in gene expression.We also identified genes that are differentially regulated in response to vernalization in winter and spring wheat varieties.We found that in winter wheat,but not in spring wheat,VRN1 expression decreases when returned to warm temperature following vernalization.This finding may be associated with differences between spring and winter wheat in the levels of tri-methylation of lysine 27 on histone H3(H3K27me3)and tri-methylation of lysine 4 on histone H3(H3K4me3)at the VRN1 gene.Analysis of winter wheat transcriptomes before and after vernalization revealed that vernalization influences the expression of several genes,including those involved in leucine catabolism,cysteine biosynthesis,and flavonoid biosynthesis.These findings provide new candidates for further study on the mechanism of vernalization regulation in wheat. 展开更多
关键词 WHEAT VERNALIZATION VRN1 Histone modification Regulate network
下载PDF
Pig H3K4me3,H3K27ac,and gene expression profiles reveal reproductive tissue-specific activity of transposable elements
5
作者 Tao Jiang Zhi-Min Zhou +6 位作者 Zi-Qi Ling Qing Zhang Zhong-Zi Wu Jia-Wen Yang Si-Yu Yang Bin Yang Lu-Sheng Huang 《Zoological Research》 SCIE CSCD 2024年第1期138-151,共14页
Regulatory sequences and transposable elements(TEs)account for a large proportion of the genomic sequences of species;however,their roles in gene transcription,especially tissue-specific expression,remain largely unkn... Regulatory sequences and transposable elements(TEs)account for a large proportion of the genomic sequences of species;however,their roles in gene transcription,especially tissue-specific expression,remain largely unknown.Pigs serve as an excellent animal model for studying genomic sequence biology due to the extensive diversity among their wild and domesticated populations.Here,we conducted an integrated analysis using H3K27ac ChIP-seq,H3K4me3 ChIP-seq,and RNA-seq data from 10 different tissues of seven fetuses and eight closely related adult pigs.We aimed to annotate the regulatory elements and TEs to elucidate their associations with histone modifications and mRNA expression across different tissues and developmental stages.Based on correlation analysis between mRNA expression and H3K27ac and H3K4me3 peak activity,results indicated that H3K27ac exhibited stronger associations with gene expression than H3K4me3.Furthermore,1.45%of TEs overlapped with either the H3K27ac or H3K4me3 peaks,with the majority displaying tissue-specific activity.Notably,a TE subfamily(LTR4C_SS),containing binding motifs for SIX1 and SIX4,showed specific enrichment in the H3K27ac peaks of the adult and fetal ovaries.RNA-seq analysis also revealed widespread expression of TEs in the exons or promoters of genes,including 4688 TE-containing transcripts with distinct development stage-specific and tissue-specific expression.Of note,1967 TE-containing transcripts were enriched in the testes.We identified a long terminal repeat(LTR),MLT1F1,acting as a testis-specific alternative promoter in SRPK2(a cell cycle-related protein kinase)in our pig dataset.This element was also conserved in humans and mice,suggesting either an ancient integration of TEs in genes specifically expressed in the testes or parallel evolutionary patterns.Collectively,our findings demonstrate that TEs are deeply embedded in the genome and exhibit important tissue-specific biological functions,particularly in the reproductive organs. 展开更多
关键词 Transposable elements PORCINE Histone modification Alternative promoter TE-containing transcript
下载PDF
Targeting epigenetic mechanisms in amyloid-β-mediated Alzheimer’s pathophysiology:unveiling therapeutic potential
6
作者 Jennie Z.Li Nagendran Ramalingam Shaomin Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期54-66,共13页
Alzheimer’s disease is a prominent chronic neurodegenerative condition characterized by a gradual decline in memory leading to dementia.Growing evidence suggests that Alzheimer’s disease is associated with accumulat... Alzheimer’s disease is a prominent chronic neurodegenerative condition characterized by a gradual decline in memory leading to dementia.Growing evidence suggests that Alzheimer’s disease is associated with accumulating various amyloid-βoligomers in the brain,influenced by complex genetic and environmental factors.The memory and cognitive deficits observed during the prodromal and mild cognitive impairment phases of Alzheimer’s disease are believed to primarily result from synaptic dysfunction.Throughout life,environmental factors can lead to enduring changes in gene expression and the emergence of brain disorders.These changes,known as epigenetic modifications,also play a crucial role in regulating the formation of synapses and their adaptability in response to neuronal activity.In this context,we highlight recent advances in understanding the roles played by key components of the epigenetic machinery,specifically DNA methylation,histone modification,and microRNAs,in the development of Alzheimer’s disease,synaptic function,and activity-dependent synaptic plasticity.Moreover,we explore various strategies,including enriched environments,exposure to non-invasive brain stimulation,and the use of pharmacological agents,aimed at improving synaptic function and enhancing long-term potentiation,a process integral to epigenetic mechanisms.Lastly,we deliberate on the development of effective epigenetic agents and safe therapeutic approaches for managing Alzheimer’s disease.We suggest that addressing Alzheimer’s disease may require distinct tailored epigenetic drugs targeting different disease stages or pathways rather than relying on a single drug. 展开更多
关键词 Alzheimer’s disease DNA methylation enriched environments histone modification microRNAs non-invasive brain stimulation synaptic plasticity
下载PDF
Repressing iron overload ameliorates central poststroke pain via the Hdac2-Kv1.2 axis in a rat model of hemorrhagic stroke
7
作者 He Fang Mengjie Li +6 位作者 Jingchen Yang Shunping Ma Li Zhang Hongqi Yang Qiongyan Tang Jing Cao Weimin Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2708-2722,共15页
Thalamic hemorrhage can lead to the development of central post-stroke pain.Changes in histone acetylation levels,which are regulated by histone deacetylases,affect the excitability of neurons surrounding the hemorrha... Thalamic hemorrhage can lead to the development of central post-stroke pain.Changes in histone acetylation levels,which are regulated by histone deacetylases,affect the excitability of neurons surrounding the hemorrhagic area.However,the regulato ry mechanism of histone deacetylases in central post-stroke pain remains unclea r.Here,we show that iron overload leads to an increase in histone deacetylase 2expression in damaged ventral posterolateral nucleus neurons.Inhibiting this increase restored histone H3 acetylation in the Kcna2 promoter region of the voltage-dependent potassium(Kv)channel subunit gene in a rat model of central post-stroke pain,thereby increasing Kcna2expression and relieving central pain.However,in the absence of nerve injury,increasing histone deacetylase 2 expression decreased Kcna2expression,decreased Kv current,increased the excitability of neurons in the ventral posterolateral nucleus area,and led to neuropathic pain symptoms.Moreover,treatment with the iron chelator deferiprone effectively reduced iron overload in the ventral posterolateral nucleus after intracerebral hemorrhage,reversed histone deacetylase 2 upregulation and Kv1.2 downregulation,and alleviated mechanical hypersensitivity in central post-stroke pain rats.These results suggest that histone deacetylase 2 upregulation and Kv1.2 downregulation,mediated by iron overload,are important factors in central post-stroke pain pathogenesis and co uld se rve as new to rgets for central poststroke pain treatment. 展开更多
关键词 central post-stroke pain hemorrhagic stroke histone deacetylase iron overload voltage-gated potassium ion channel 1.2
下载PDF
Unraveling the relationship between histone methylation and nonalcoholic fatty liver disease
8
作者 Li Xu Yu-Hong Fan +1 位作者 Xiao-Jing Zhang Lan Bai 《World Journal of Hepatology》 2024年第5期703-715,共13页
Non-alcoholic fatty liver disease(NAFLD)poses a significant health challenge in modern societies due to shifts in lifestyle and dietary habits.Its complexity stems from genetic predisposition,environmental influences,... Non-alcoholic fatty liver disease(NAFLD)poses a significant health challenge in modern societies due to shifts in lifestyle and dietary habits.Its complexity stems from genetic predisposition,environmental influences,and metabolic factors.Epigenetic processes govern various cellular functions such as transcription,chromatin structure,and cell division.In NAFLD,these epigenetic tendencies,especially the process of histone methylation,are intricately intertwined with fat accumulation in the liver.Histone methylation is regulated by different enzymes like methyltransferases and demethylases and influences the expression of genes related to adipogenesis.While early-stage NAFLD is reversible,its progression to severe stages becomes almost irreversible.Therefore,early detection and intervention in NAFLD are crucial,and understanding the precise role of histone methylation in the early stages of NAFLD could be vital in halting or potentially reversing the progression of this disease. 展开更多
关键词 Non-alcoholic fatty liver disease MECHANISM Histone methylation METHYLTRANSFERASES Demethytrasferases Epigenetic modification ADIPOGENESIS
下载PDF
Research Progress of Epigenetics in Liver Cancer
9
作者 Shijian Fu Min Guo 《Journal of Cancer Therapy》 2024年第3期71-82,共12页
Epigenetic changes are changes in gene expression by regulating gene transcription and translation without changing the nucleotide sequence of the genome. Although the genome itself changes during the occurrence and d... Epigenetic changes are changes in gene expression by regulating gene transcription and translation without changing the nucleotide sequence of the genome. Although the genome itself changes during the occurrence and development of most malignant tumors, recent studies have found that epigenetic changes also play an important role in the occurrence and development of tumors. Epigenetic modification mainly includes DNA methylation, histone modification and miRNA regulation. This review focuses on the role and mechanism of epigenetic modification in the occurrence, metastasis and invasion of hepatocellular carcinoma (HCC), and summarizes the latest methods for the treatment of HCC by restoring dysregulated epigenetic modification. It provides a theoretical basis for revealing the pathogenesis of liver cancer and developing new methods of diagnosis and treatment. 展开更多
关键词 EPIGENETICS Hepatocellular Carcinoma DNA Methylation Histone Modification miRNA Regulation
下载PDF
Roles of histones and nucleosomes in gene transcription
10
作者 Baiqu Huang Qinhua Zeng +2 位作者 Xiaohui Bi Yuhong Wang Yuxin Li 《Chinese Science Bulletin》 SCIE EI CAS 2001年第3期184-188,共5页
This article reviews the latest research developments in the field of eukaryotic gene regulation by the structural alterations of chromatin and nucleosomes. The following issues are briefly addressed: (i) nucleosome a... This article reviews the latest research developments in the field of eukaryotic gene regulation by the structural alterations of chromatin and nucleosomes. The following issues are briefly addressed: (i) nucleosome and histone modifications by both the ATP-dependent remodeling complexes and the histone acetyltransferases and their roles in gene activation; (ii) competitive binding of histones and transcription factors on gene promoters, and transcription repression by nucleosomes; and (iii) influences of linker histone HI on gene regulation. Meanwhile, the significance and impact of these new research progresses, as well as issues worthwhile for further study are commented. 展开更多
关键词 histones NUCLEOSOME CHROMATIN REMODELING gene transcription.
原文传递
A tumor-penetrable drug nanococktail made from human histones for interventional nucleus-targeted chemophotothermal therapy of drug-resistant tumors
11
作者 Jianquan Guo Dongsheng Tan +5 位作者 Chenmei Lou Shiying Guo Xing Jin Haijing Qu Lijia Jing Sijin Li 《Bioactive Materials》 SCIE 2022年第3期554-565,共12页
Nanoparticle-based chemophotothermal therapy(CPT)is a promising treatment for multidrug resistant tumors.In this study,a drug nanococktail of DIR825@histone was developed by employing doxorubicin(DOX),NIR dye IR825 an... Nanoparticle-based chemophotothermal therapy(CPT)is a promising treatment for multidrug resistant tumors.In this study,a drug nanococktail of DIR825@histone was developed by employing doxorubicin(DOX),NIR dye IR825 and human histones for interventional nucleus-targeted CPT of multidrug resistant tumors with an interventional laser.After localized intervention,DIR825@histone penetrated tumor tissues by transcytosis,efficiently entered tumor cells and targeted the cell nuclei.DIR825@histone also exhibited good photothermal performance and thermal-triggered drug release.Efficient multidrug resistant tumor inhibition was achieved by enhanced CPT sensitization and MDR reversion via nuclear targeting.Moreover,an interventional laser assisted DIR825@histone in inhibiting multidrug resistant tumors by promoting the sufficient delivery of laser energy inside the tumor while reducing skin injury.Therefore,DIR825@histone together with this interventional nucleus-targeted CPT strategy holds great promise for treating multidrug resistant tumors. 展开更多
关键词 Human histones Chemotherapy Photothermal therapy Nuclear targeting Localized intervention Drug resistant tumor
原文传递
Targeting histones for degradation in cancer cells as a novel strategy in cancer treatment 被引量:2
12
作者 Yesheng Yin Qianqian Zhu +2 位作者 Tianxia Jiang Libin Fan Xiaobo Qiu 《Science China(Life Sciences)》 SCIE CAS CSCD 2019年第8期1078-1086,共9页
The anticancer therapies with the joint treatment of a histone deacetylase(HDAC) inhibitor and a DNA-damaging approach are actively under clinical investigations, but the underlying mechanism is unclear. Histone homeo... The anticancer therapies with the joint treatment of a histone deacetylase(HDAC) inhibitor and a DNA-damaging approach are actively under clinical investigations, but the underlying mechanism is unclear. Histone homeostasis is critical to genome stability, transcriptional accuracy, DNA repair process, senescence, and survival. We have previously demonstrated that the HDAC inhibitor, trichostatin A(TSA), could promote the degradation of the core histones induced by γ-radiation or the DNAalkylating agent methyl methanesulfonate(MMS) in non-cancer cells, including mouse spermatocyte and embryonic fibroblast cell lines. In this study, we found that the joint treatment by TSA and MMS induced the death of the cultured cancer cells with an additive effect, but induced degradation of the core histones synergistically in these cells. We then analyzed various combinations of other HDAC inhibitors, including suberoylanilide hydroxamic acid and valproate sodium, with MMS or other DNAdamaging agents, including etoposide and camptothecin. Most of these combined treatments induced cell death additively, but all the tested combinations induced degradation of the core histones synergistically. Meanwhile, we showed that cell cycle arrest might not be a primary consequence for the joint treatment of TSA and MMS. Given that clinic treatments of cancers jointly with an HDAC inhibitor and a DNA-damaging approach often show synergistic effects, histone degradation might more accurately underlie the synergistic effects of these joint treatments in clinic applications than other parameters, such as cell death and cell cycle arrest. Thus, our studies might suggest that the degradation of the core histones can serve as a new target for the development of cancer therapies. 展开更多
关键词 HDAC HISTONE DEACETYLASE inhibitor DNA damage ANTICANCER agent HISTONE DEGRADATION
原文传递
Open and Closed: The Roles of Linker Histones in Plants and Animals 被引量:2
13
作者 Ryan S. Over Scott D. Michaels 《Molecular Plant》 SCIE CAS CSCD 2014年第3期481-491,共11页
Histones package DNA in all eukaryotes and play key roles in regulating gene expression. Approximately 150 base pairs of DNA wraps around an octamer of core histones to form the nucleosome, the basic unit of chromatin... Histones package DNA in all eukaryotes and play key roles in regulating gene expression. Approximately 150 base pairs of DNA wraps around an octamer of core histones to form the nucleosome, the basic unit of chromatin. Linker histones compact chromatin further by binding to and neutralizing the charge of the DNA between nucleosomes. It is well established that chromatin packing is regulated by a complex pattern of posttranslational modifications (PTMs) to core histones, but linker histone function is less well understood. In this review, we describe the current understand- ing of the many roles that linker histones play in cellular processes, including gene regulation, cell division, and devel- opment, while putting the linker histone in the context of other nuclear proteins. Although intriguing roles for plant linker histones are beginning to emerge, much of our current understanding comes from work in animal systems. Many unanswered questions remain and additional work is required to fully elucidate the complex processes mediated by linker histones in plants. 展开更多
关键词 linker histone histone H1 CHROMATIN gene regulation development differentiation IMPRINTING posttrans-lational modifications DNA methylation high mobility group proteins.
原文传递
Transcription-Coupled Replacement of Histones:Degradation or Recycling? 被引量:1
14
作者 Yu-Shan Chen Xiao-Bo Qiu 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2012年第11期575-580,共6页
Histone modifications are proposed to constitute a "histone code" for epigenetic regulation of gene expression. However, recent studies demonstrate that histones have to be disassembled from chromatin during transcr... Histone modifications are proposed to constitute a "histone code" for epigenetic regulation of gene expression. However, recent studies demonstrate that histones have to be disassembled from chromatin during transcription. Recent evidence, though not conclusive, suggests that histories might be degradable after being removed from chromatin during transcription. Degradation of overexpressed excessive histones, instead of native histones, has been shown to be dependent on proteasomes and ubiquitination. Since the 26S proteasome usually recognizes polyubiquitinated substrates, it is critical to demonstrate whether degradation of histones is mediated by polyubiquitination. Unexpectedly, there is almost no evidence that any ubiquitin ligase can promote polyubiquitination-dependent degradation of constitutive histones. Meanwhile, acetylation and phosphorylation are also associated with histone degradation. This review attempts to summarize the current knowledge on the transcription-coupled degradation of histones and its regulation by posttranslational protein modifications. 展开更多
关键词 Histone degradation Ubiquitin PROTEASOME UBIQUITINATION ACETYLATION Phosphorytation Gene activation TRANSCRIPTION
原文传递
Mechanism of cancer: Oncohistones in action 被引量:1
15
作者 Lei Qiu Xiaoyan Hu +3 位作者 Qian Jing Xinyi Zeng Kui-Ming Chan Junhong Han 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2018年第5期227-236,共10页
Oncohistones are histones with high-frequency point mutations that are associated with tumorigenesis. Although each histone variant is encoded by multiple genes, a single mutation in one allele of one gene seems to ha... Oncohistones are histones with high-frequency point mutations that are associated with tumorigenesis. Although each histone variant is encoded by multiple genes, a single mutation in one allele of one gene seems to have a dominant effect over global histone H3 methylation level at the relevant amino acid residue. These oncohistones are highly tumor type specific. For example, H3K27M and H3G34V/R mutations occur only in pediatric brain cancers, whereas H3K36M and H3G34W/L have only been found in pediatric bone tumors. H1 mutations also seem to be exclusively linked to lymphomas. In this review, we discuss the occurrence, frequency and potential functional mechanisms of each oncohistone in tumorigenesis of its relevant cancer. We believe that further investigation into the mechanism regarding their tumor type specificity and cancer-related functions will shed new light on their application in cancer diagnosis and targeted therapy development. 展开更多
关键词 Oncohistone Histone modification TUMORIGENESIS Pediatric cancer
原文传递
The conformation alteration of mouse hepatic histones after reacting with nicotine in vitro
16
作者 Xiaohong Wu Hongfang Sun Yuanfang Liu 《Chinese Science Bulletin》 SCIE EI CAS 2000年第9期825-830,共6页
UV differential spectroscopy, fluorescence spectroscopy and circular dichroism (CD) spectroscopy assays have been applied to studying the conformation alteration of mouse hepatic histones H1 and H3 after reacting with... UV differential spectroscopy, fluorescence spectroscopy and circular dichroism (CD) spectroscopy assays have been applied to studying the conformation alteration of mouse hepatic histones H1 and H3 after reacting with nicotine in vitro. The results indicate that their conformation changes from regular form to random form with the increasing reaction dose of nicotine. The adduction of nicotine or its metabolites with histones H1 and H3 accounts for the conformation alteration. Nicotine may affect the structure, function and expression of genes of chromosome by changing the conformation of histones. 展开更多
关键词 NICOTINE HISTONE CONFORMATION genotoxicity.
原文传递
Epigenetic drug library screening reveals targeting DOT1L abrogates NAD^(+)synthesis by reprogramming H3K79 methylation in uveal melanoma 被引量:1
17
作者 Xiang Gu Yu Hua +6 位作者 Jie Yu Ludi Yang Shengfang Ge Renbing Jia Peiwei Chai Ai Zhuang Xianqun Fan 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第1期24-38,共15页
Uveal melanoma(UM)is the most frequent and life-threatening ocular malignancy in adults.Aberrant histone methylation contributes to the abnormal transcriptome during oncogenesis.However,a comprehensive understanding o... Uveal melanoma(UM)is the most frequent and life-threatening ocular malignancy in adults.Aberrant histone methylation contributes to the abnormal transcriptome during oncogenesis.However,a comprehensive understanding of histone methylation patterns and their therapeutic potential in UM remains enigmatic.Herein,using a systematic epi-drug screening and a high-throughput transcriptome profiling of histone methylation modifiers,we observed that disruptor of telomeric silencing-1-like(DOT1L),a methyltransferase of histone H3 lysine 79(H3K79),was activated in UM,especially in the high-risk group.Concordantly,a systematic epi-drug library screening revealed that DOT1L inhibitors exhibited salient tumor-selective inhibitory effects on UM cells,both in vitro and in vivo.Combining Cleavage Under Targets and Tagmentation(CUT&Tag),RNA sequencing(RNA-seq),and bioinformatics analysis,we identified that DOT1L facilitated H3K79 methylation of nicotinate phosphoribosyltransferase(NAPRT)and epigenetically activated its expression.Importantly,NAPRT served as an oncogenic accelerator by enhancing nicotinamide adenine dinucleotide(NAD^(+))synthesis.Therapeutically,DOT1L inhibition epigenetically silenced NAPRT expression through the diminishment of dimethylation of H3K79(H3K79me2)in the NAPRT promoter,thereby inhibiting the malignant behaviors of UM.Conclusively,our findings delineated an integrated picture of the histone methylation landscape in UM and unveiled a novel DOT1L/NAPRT oncogenic mechanism that bridges transcriptional addiction and metabolic reprogramming. 展开更多
关键词 Histone methylation Metabolic reprogramming Uveal melanoma Transcriptional addiction
下载PDF
Epigenetic modifications and metabolic memory in diabetic retinopathy:beyond the surface 被引量:1
18
作者 Dan-Dan Liu Chao-Yang Zhang +3 位作者 Jing-Ting Zhang Li-Min Gu Guo-Tong Xu Jing-Fa Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1441-1449,共9页
Epigenetics focuses on DNA methylation,histone modification,chromatin remodeling,noncoding RNAs,and other gene regulation mechanisms beyond the DNA sequence.In the past decade,epigenetic modifications have drawn more ... Epigenetics focuses on DNA methylation,histone modification,chromatin remodeling,noncoding RNAs,and other gene regulation mechanisms beyond the DNA sequence.In the past decade,epigenetic modifications have drawn more attention as they participate in the development and progression of diabetic retinopathy despite tight control of glucose levels.The underlying mechanisms of epigenetic modifications in diabetic retinopathy still urgently need to be elucidated.The diabetic condition facilitates epigenetic changes and influences target gene expression.In this review,we summarize the involvement of epigenetic modifications and metabolic memory in the development and progression of diabetic retinopathy and propose novel insights into the treatment of diabetic retinopathy. 展开更多
关键词 diabetic retinopathy DNA methylation EPIGENETICS histone modification metabolic memory M6A modification non-coding RNAs REVIEW
下载PDF
Genome-wide profiling of histone H3 lysine 27 trimethylation and its modification in response to chilling stress in grapevine leaves 被引量:1
19
作者 Zhenfei Zhu Qingyun Li +11 位作者 Duncan Kiragu Gichuki Yujun Hou Yuanshuang Liu Huimin Zhou Chen Xu Linchuan Fang Linzhong Gong Beibei Zheng Wei Duan Peige Fan Qingfeng Wang Haiping Xin 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第3期496-508,共13页
Histone H3 lysine 27 trimethylation(H3K27me3) is a histone modification associated with transcriptional repression. However, insights into the genome-wide pattern of H3K27me3 in grapevines are limited. Here, anti-H3K2... Histone H3 lysine 27 trimethylation(H3K27me3) is a histone modification associated with transcriptional repression. However, insights into the genome-wide pattern of H3K27me3 in grapevines are limited. Here, anti-H3K27 chromatin immunoprecipitation(ChIP), high-throughput sequencing, and transcriptome analysis were performed using leaves of Vitis amurensis. The leaves were treated at 4°C for 2 h and 24 h and used to investigate changes in H3K27me3 under chilling treatment. The results show that H3K27me3 is well-distributed both in gene regions(-50%) and in the intergenic region(-50%) in the grapevine genome(Vitis vinifera ‘Pinot Noir PN40024'). H3K27me3 was found to be localized in8 368 annotated gene regions in all detected samples(leaves at normal temperature and under chilling treatments) and mainly enriched in gene bodies with the adjacent promoter and downstream areas. The short-term chilling treatments(4°C for 2 h) induced 2 793 gains and 305losses in H3K27me3 modification. Subsequently, 97.3% of the alterations were restored to original levels after 24 h treatment. The ChIP-qPCR for five differential peaks showed similar results to the data for ChIP-seq, indicating that the chilling-induced H3K27me3 modification is reliable.Integrative analysis of transcriptome and ChIP-seq results showed that the expression of H3K27me3 target genes was significantly lower than those of non-target genes, indicating transcriptional repression of H3K27me3 in grapevine leaves. Furthermore, histone methylation alterations were detected in 82 genes and were related to either repression or activation of their expression during chilling stress. The findings provide the genome-wide H3K27me3 patterns in grapevines and shed light on uncovering its regulation in chilling stress responses. 展开更多
关键词 Vitis amurensis Histone modification H3K27me3 Chilling stress
下载PDF
Role of the histone methyltransferases Ezh2 and Suv4-20h1/Suv4-20h2 in neurogenesis
20
作者 Christopher T.Rhodes Chin-Hsing Annie Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期469-473,共5页
Mechanisms regulating neurogenesis involve broad and complex processes that represent intriguing therapeutic targets in the field of regenerative medicine.One influential factor guiding neural stem cell proliferation ... Mechanisms regulating neurogenesis involve broad and complex processes that represent intriguing therapeutic targets in the field of regenerative medicine.One influential factor guiding neural stem cell proliferation and cellular differentiation during neurogenesis are epigenetic mechanisms.We present an overview of epigenetic mechanisms including chromatin structure and histone modifications;and discuss novel roles of two histone modifiers,Ezh2 and Suv4-20h1/Suv4-20h2(collectively referred to as Suv4-20h),in neurodevelopment and neurogenesis.This review will focus on broadly reviewing epigenetic regulatory components,the roles of epigenetic components during neurogenesis,and potential applications in regenerative medicine. 展开更多
关键词 adult neurogenesis EPIGENETIC EZH2 histone co-regulation histone modification NEURODEVELOPMENT NEUROGENESIS regenerative medicine Suv4-20h
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部