By introducing some parameters and estimating the weight function, we obtain a reverse Hilbert’s type inequality with the best constant factor. As its applications, we build its equivalent form and some particular re...By introducing some parameters and estimating the weight function, we obtain a reverse Hilbert’s type inequality with the best constant factor. As its applications, we build its equivalent form and some particular results.展开更多
In this paper,a new reverse extended Hardy's integral inequality is proved by means of weight coefficients and the technique of real analysis.Some particular results are considered.
We improve the Monte-Carlo based QCD sum rules by introducing the rigorous Hoolder-inequalitydetermined sum rule window and a Breit-Wigner type parametrization for the phenomenological spectral function.In this improv...We improve the Monte-Carlo based QCD sum rules by introducing the rigorous Hoolder-inequalitydetermined sum rule window and a Breit-Wigner type parametrization for the phenomenological spectral function.In this improved sum rule analysis methodology, the sum rule analysis window can be determined without any assumptions on OPE convergence or the QCD continuum. Therefore, an unbiased prediction can be obtained for the phenomenological parameters(the hadronic mass and width etc.). We test the new approach in the ρ meson channel with re-examination and inclusion of αs corrections to dimension-4 condensates in the OPE. We obtain results highly consistent with experimental values. We also discuss the possible extension of this method to some other channels.展开更多
基金the Emphases Natural Science Foundation of Guangdong Institutions of Higher Learning,College and University (No.05Z026)
文摘By introducing some parameters and estimating the weight function, we obtain a reverse Hilbert’s type inequality with the best constant factor. As its applications, we build its equivalent form and some particular results.
基金Supported by the Natural Science Foundation of Guangdong Province (Grant No.70043344)
文摘In this paper,a new reverse extended Hardy's integral inequality is proved by means of weight coefficients and the technique of real analysis.Some particular results are considered.
基金Supported by NSFC(11175153,11205093,11347020)Open Foundation of the Most Important Subjects of Zhejiang Province+1 种基金K.C.Wong Magna Fund in Ningbo UniversitySupported by the Natural Sciences and Engineering Research Council of Canada(NSERC)
文摘We improve the Monte-Carlo based QCD sum rules by introducing the rigorous Hoolder-inequalitydetermined sum rule window and a Breit-Wigner type parametrization for the phenomenological spectral function.In this improved sum rule analysis methodology, the sum rule analysis window can be determined without any assumptions on OPE convergence or the QCD continuum. Therefore, an unbiased prediction can be obtained for the phenomenological parameters(the hadronic mass and width etc.). We test the new approach in the ρ meson channel with re-examination and inclusion of αs corrections to dimension-4 condensates in the OPE. We obtain results highly consistent with experimental values. We also discuss the possible extension of this method to some other channels.