Graphitic carbon nitride(g‐C_(3)N_(4))is a highly recognized two‐dimensional semiconductor material known for its exceptional chemical and physical stability,environmental friendliness,and pollution‐free advantages...Graphitic carbon nitride(g‐C_(3)N_(4))is a highly recognized two‐dimensional semiconductor material known for its exceptional chemical and physical stability,environmental friendliness,and pollution‐free advantages.These remarkable properties have sparked extensive research in the field of energy storage.This review paper presents the latest advances in the utilization of g‐C_(3)N_(4)in various energy storage technologies,including lithium‐ion batteries,lithium‐sulfur batteries,sodium‐ion batteries,potassium‐ion batteries,and supercapacitors.One of the key strengths of g‐C_(3)N_(4)lies in its simple preparation process along with the ease of optimizing its material structure.It possesses abundant amino and Lewis basic groups,as well as a high density of nitrogen,enabling efficient charge transfer and electrolyte solution penetration.Moreover,the graphite‐like layered structure and the presence of largeπbonds in g‐C_(3)N_(4)contribute to its versatility in preparing multifunctional materials with different dimensions,element and group doping,and conjugated systems.These characteristics open up possibilities for expanding its application in energy storage devices.This article comprehensively reviews the research progress on g‐C_(3)N_(4)in energy storage and highlights its potential for future applications in this field.By exploring the advantages and unique features of g‐C_(3)N_(4),this paper provides valuable insights into harnessing the full potential of this material for energy storage applications.展开更多
Ion beam-induced luminescence(IBIL) experiments were performed to investigate the in situ luminescence of GaN/Al_(2)O_(3) at varying ion energies,which allowed for the measurement of defects at different depths within...Ion beam-induced luminescence(IBIL) experiments were performed to investigate the in situ luminescence of GaN/Al_(2)O_(3) at varying ion energies,which allowed for the measurement of defects at different depths within the material.The energies of H^(+)were set to 500 keV,640 keV and 2 MeV,the Bragg peaks of which correspond to the GaN film,GaN/Al_(2)O_(3) heterojunction and Al_(2)O_(3) substrate,respectively.A photoluminescence measurement at 250 K was also performed for comparison,during which only near band edge(NBE) and yellow band luminescence in the GaN film were observed.The evolution of the luminescence of the NBE and yellow band in the GaN film was discussed,and both exhibited a decrease with the fluence of H^(+).Additionally,the luminescence of F centers,induced by oxygen vacancies,and Cr^(3+),resulting from the ^(2)E →^(4)A_(2) radiative transition in Al_(2)O_(3),were measured using 2 MeV H^(+).The luminescence intensity of F centers increases gradually with the fluence of H^(+).The luminescence evolution of Cr^(3+)is consistent with a yellow band center,attributed to its weak intensity,and it is situated within the emission band of the yellow band in the GaN film.Our results show that IBIL measurement can effectively detect the luminescence behavior of multilayer films by adjusting the ion energy.Luminescence measurement can be excited by various techniques,but IBIL can satisfy in situ luminescence measurement,and multilayer structural materials of tens of micrometers can be measured through IBIL by adjusting the energy of the inducing ions.The evolution of defects at different layers with ion fluence can be obtained.展开更多
Two kinds of germanate glasses singly doped with the ion concentration of 2.0mol.%Tm3+ and 2.0mol.%Ho3+, respectively, were prepared.According to McCumber theory, the absorption and stimulated emission cross-section...Two kinds of germanate glasses singly doped with the ion concentration of 2.0mol.%Tm3+ and 2.0mol.%Ho3+, respectively, were prepared.According to McCumber theory, the absorption and stimulated emission cross-sections corresponding to the 3H6←→3F4 transitions of Tm3+(at 1.8 μm) and the 5I8←→5I7 transitions of Ho3+(at 2.0 μm) were obtained, and respective gain cross-section spectra were also computed as a function of population inversion according to absorption and emission cross-sections and the ion concentrations.For Tm3+-doped germanate glasses, the maximum of the absorption, emission, and gain cross-sections reached a value higher than those reported for fluorozirconate, fluoride, and oxyfluoride glasses.For Ho3+-doped germanate glasses, the maximum of absorption, emission, and gain cross-sections reached a value higher than that reported for fluorozircoaluminate glasses.Hence, these Tm3+-doped and Ho3+-doped germanate glasses exhibited an advantage for application in mid-infrared lasers at about 1.8 and 2.0 μm wavelength.展开更多
Nanocrystal of upconversion (UC) phosphor Ho^3+, Tm^3+ , and Yb^3+ co-doped NaYF4 was prepared by the hydrothermal method in the presence of the complexing agent EDTA. Under 980 nm diode laser excitation, the imp...Nanocrystal of upconversion (UC) phosphor Ho^3+, Tm^3+ , and Yb^3+ co-doped NaYF4 was prepared by the hydrothermal method in the presence of the complexing agent EDTA. Under 980 nm diode laser excitation, the impact of different concentrations of Ho^3+ ion on the UC luminescence intensity was discussed. The law of luminescence intensity versus pump power shows that the 474 nm blue emission, 538 nm green emission, and 642 nm red emission are all due to the two-photon process, while the 450 nm blue emission is a three-photon process. The UC mechanism and processes were also analyzed. The sample was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The result shows that Ho^3+ ,Tm^3+ , and Yb^3+ co-doped NaYF4 prepared by the hydrothermal method exhibits a hexagonal nanocrystal.展开更多
Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and on...Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs.展开更多
A novel three-dimension(3D)graphene/MgO composite was synthesized through self-assembly and embedding MgO nanoparticle in reduced graphene in situ.Fourier transform infrared(FT-IR)spectroscopy,thermal gravimetric anal...A novel three-dimension(3D)graphene/MgO composite was synthesized through self-assembly and embedding MgO nanoparticle in reduced graphene in situ.Fourier transform infrared(FT-IR)spectroscopy,thermal gravimetric analysis(TGA),scanning electron microscopy(SEM),transmission electron microscope(TEM),powder X-raydiffraction(XRD)and X-rayphotoelectron spectroscopy(XPS)were employed to characterize the prepared 3D graphene/MgO composite.The adsorption performance of some metal ions on 3D graphene/MgO was investigated.The results showed that the adsorption capacity was greater than 3D graphene and the maximum adsorption capacity at 25℃was found to be 358.96 mg/g,388.4 mg/g and 169.8 mg/g for Pb^2+,Cd^2+and Cu^2+,respectively.The adsorption kinetic conformed to the pseudo-second-order kinetic model and the adsorption isotherm was well described by Langmuir model.The thermodynamic constants revealed that the sorption process was endothermic and spontaneous in nature.Based on the results of the removal of heavy metal ions from metal smelting wastewater,it can be concluded that the prepared 3D graphene/MgO composite is an effective and potential adsorbent.展开更多
The different regioselective and stereoselective products were obtained by the reduction of stigmast-4,22-dien-3,6-dione with NaBH_4-CH_3OH when different kinds of metal ions was added to the reaction.
The luminescent properties of PbWO 4∶Gd 3+ were studied. The luminescence of Gd 3+ in PbWO 4∶Gd 3+ was quenched. It is possible that the excitation states of Gd 3+ locate in the conduction band...The luminescent properties of PbWO 4∶Gd 3+ were studied. The luminescence of Gd 3+ in PbWO 4∶Gd 3+ was quenched. It is possible that the excitation states of Gd 3+ locate in the conduction band of PbWO 4 crystal. The luminescent intensity of the green and the blue band of PbWO 4 emission increases by doping with about 0 005% and 0 01% (molar fraction) Gd 3+ respectively. Mechanism of this enhancement of PbWO 4∶Gd 3+ luminescence is probably due to energy transfer from Gd 3+ to PbWO 4 host in the crystal. The PbWO 4 doped with low concentration of Gd (about 0 005%~0 01%) is a good scintillating material.展开更多
Oxy-fluoride glasses with composition of 25SiO2-65PbF2-9.4AlF3-0.1HoF3-0.5YbF3 were prepared. Their up-conversion fluorescence characteristics were investigated by 980 nm laser. Two emission peaks were observed at 540...Oxy-fluoride glasses with composition of 25SiO2-65PbF2-9.4AlF3-0.1HoF3-0.5YbF3 were prepared. Their up-conversion fluorescence characteristics were investigated by 980 nm laser. Two emission peaks were observed at 540 and 650 nm. The up-conversion mechanism and processes were analyzed. The relationship between pumping power and relative intensity of emissions was discussed. From the dependence, it is known that the emissions centered at 540 and 650 nm are both attributed to two-photon process.展开更多
Extractability and extraction mechanism of lanthanide ions were investigated by using a new extractant,N,Nn,N′,N′-tetrabutyl-3-oxa-diglycolamide(TBDGA),in toluene from nitric acid media.The effects of HNO_3 and TBDG...Extractability and extraction mechanism of lanthanide ions were investigated by using a new extractant,N,Nn,N′,N′-tetrabutyl-3-oxa-diglycolamide(TBDGA),in toluene from nitric acid media.The effects of HNO_3 and TBDGA concentrations,and temperature,on extraction of lanthanide ions were studied.Stoichiometrics of the main extracted species were HNO_3·TBDGA and M(NO_3)_3-3TBDGA(M = Er,Dy,Tb,Gd,La,Ce,Nd,Sm and Eu).The extracted species for metal ions were established to be ionic complex.In this complex,nitrate anion was not coordinated to the central ion.The extraction pattern increased gradually across the lanthanide ions series,showing enhanced affinity of TBDGA toward heavy lanthanide ions.Thermodynamic parameters were investigated for the exothermic extraction reaction.展开更多
Metal–organic frameworks(MOFs)with angstrom-sized pores are promising functional nanomaterials for the fabrication of cation permselective membranes(MOF-CPMs).However,only a few research reports show successful prepa...Metal–organic frameworks(MOFs)with angstrom-sized pores are promising functional nanomaterials for the fabrication of cation permselective membranes(MOF-CPMs).However,only a few research reports show successful preparation of the MOF-CPMs with good cation separation performance due to several inherent problems in MOFs,such as arduous selfassembly,poor water resistance,and tedious fabrication strategies.Besides,low cation permeation flux due to the absence of the cation permeation assisting functionalities in MOFs is another big issue,which limits their widespread use in membrane technology.Therefore,it is necessary to fabricate functional MOF-CPMs using simplistic strategies to improve cation permeation.In this context,we report a facile in situ smart growth strategy to successfully produce ultrathin(<600 nm)and leaflike UiO-66-SO3H membranes at the surface of anodic alumina oxide.The physicochemical characterizations confirm that sulfonated angstrom-sized ion transport channels exist in the as-prepared UiO-66-SO3H membranes,which accelerate the cation permeation(~3×faster than non-functionalized UiO-66 membrane)and achieve a high ion selectivity(Na^+/Mg^2+>140).The outstanding cation separation performance validates the importance of introducing sulfonic acid groups in MOF-CPMs.展开更多
V_(3)O_(7)·H_(2)O(VO)is a high capacity cathode material in the field of aqueous zinc ion batteries(AZIBs),but it is limited by slow ion migration and low electrical conductivity.In this paper,polypyridine(PPyd)i...V_(3)O_(7)·H_(2)O(VO)is a high capacity cathode material in the field of aqueous zinc ion batteries(AZIBs),but it is limited by slow ion migration and low electrical conductivity.In this paper,polypyridine(PPyd)intercalated VO with nanoribbon structure was prepared by a simple in-situ pre-intercalation,which is noted VO-PPyd.The total density of states(TDOS)shows that after the pre-intercalation of PPyd,an intermediate energy level appears between the valence band and conduction band,which provides a step that can effectively reduce the band gap and enhance the electron conductivity.Furthermore,the density functional theory(DFT)results found that Zn^(2+)is more easily de-intercalated from the V-O skeleton,which proves that the embeddedness of PPyd improves the diffusion kinetics of Zn^(2+).Electrochemical studies have shown that VO-PPyd cathode materials exhibit excellent rate performance(high specific capacity of 465 and 192 mA h g^(-1)at 0.2 and 10 A g^(-1),respectively)and long-term cycling performance(92.7%capacity retention rate after 5300 cycles),due to their advantages in structure and composition.More importantly,the energy density of VO-PPyd//Zn at 581 and 5806 W kg^(-1)is 375 and 247 W h kg^(-1),respectively.VO-PPyd exhibits excellent electrochemical properties compared to previously reported vanadium based cathodes,which makes it highly competitive in the field of high-performance cathode materials of AZIBs.展开更多
Ca1-xRxCu3Ti4O12(R=La,Y,Gd;x=0,0.1,0.2,0.3) electronic ceramics were fabricated by conventional solid-state reaction method.The microstructure and dielectric properties as well as impedance behavior were carefully inv...Ca1-xRxCu3Ti4O12(R=La,Y,Gd;x=0,0.1,0.2,0.3) electronic ceramics were fabricated by conventional solid-state reaction method.The microstructure and dielectric properties as well as impedance behavior were carefully investigated.XRD results showed that the secondary phases with the general formula R2Ti2O7 existed at grain boundaries of rare earth doped ceramics,which inhibited abnormal grain growth.The dielectric constant decreased from 4×105 in pure CaCu3Ti4O12(CCTO) ceramics to 2×103 with rare earth doping....展开更多
Octahedral Mn_(3)O_(4)nanoparticles with an Ag-doping and nanoporous Ag(NPS)framework was simply fabricated through an alloying-etching engineering.The dual-modified Mn_(3)O_(4)(denoted as Ag−Mn_(3)O_(4)/NPS)consists ...Octahedral Mn_(3)O_(4)nanoparticles with an Ag-doping and nanoporous Ag(NPS)framework was simply fabricated through an alloying-etching engineering.The dual-modified Mn_(3)O_(4)(denoted as Ag−Mn_(3)O_(4)/NPS)consists of Ag-doped Mn_(3)O_(4)nanoparticles crosslinked with three dimensional nanoporous Ag framework.The incorporated Ag dopant is effective in improving the intrinsic ionic and electronic conductivities of Mn_(3)O_(4),while the NPS framework is introduced to improve the electron/mass transfer across the entire electrode.Profiting from the dual-modification strategy,the Ag−Mn_(3)O_(4)/NPS exhibits admirable rate capability and cycling stability.A high reversible capacity of 88.7 mA·h/g can still be retained for over 1000 cycles at a current density of 1 A/g.Moreover,a series of ex-situ experimental techniques indicate that for Ag−Mn_(3)O_(4)/NPS electrode during the zinc ion storage,Mn_(3)O_(4)is electrochemically oxidized into various MnOx(e.g.,Mn_(2)O_(3),MnO2)species in the initial charging,and the subsequent battery reaction is actually the intercalation/deintercalation of H+and Zn2+into MnOx.展开更多
In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_...In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_(4))_(3) to Na_(4)V_(2)(PO_(4))_(3),Na ions insert into M1,M2 and M3 sites simultaneously.Afterwards,during the transition of Na_(4)V_(2)(PO_(4))_(3)to Na_(5)V_(2)(PO_(4))_(3),Na ions mainly insert into M3 site.展开更多
Thermodynamic models of calculating mass action concentrations for structural units or ion couples in RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions were developed based on the ion and...Thermodynamic models of calculating mass action concentrations for structural units or ion couples in RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions were developed based on the ion and molecule coexistence theory at 298.15 K.A transformation coefficient is needed to compare the calculated mass action concentration and the reported activity because they are obtained at different standard states and concentration units.The results show that the transformation coefficients between the calculated mass action concentrations and the reported activities of the same structural units or ion couples in RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions change in a very narrow range.The transformed mass action concentrations of structural units or ion couples in RbCl-H2O binary system are in good agreement with the reported activities. The transformed mass action concentrations of RbCl and RbNO3 in RbCl-RbNO3-H2O ternary solution are also in good agreement with the reported activities,aRbCl and 3RbNOa,with different total ionic strengths as 0.01,0.05,0.1,0.5,1.0,1.5,2.0,3.0 and 3.5 mol/kg,respectively.All those results mean the developed thermodynamic model of strong electrolyte aqueous solutions can reflect structural characteristics of RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions and the mass action concentration also strictly follows the mass action law.展开更多
Single-crystal Fe_3 O_4 with monodisperse microspheres structure has been used for individual electrochemical detection of heavy metal ions. Morphology and structure of the as-prepared Fe_3 O_4 microspheres were chara...Single-crystal Fe_3 O_4 with monodisperse microspheres structure has been used for individual electrochemical detection of heavy metal ions. Morphology and structure of the as-prepared Fe_3 O_4 microspheres were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM) and X-ray diffraction(XRD). Meanwhile the electrochemical properties of the Fe_3 O_4 microspheres modified glass carbon electrodes(GCE) were characterized by cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS), and the enhanced electrochemical response in stripping voltammetry for individual detection of Pb(Ⅱ), Hg(Ⅱ), Cu(Ⅱ), and Cd(Ⅱ) was evaluated using square wave anodic stripping voltammetry(SWASV). With high specific surface area and excellent catalytic activity toward heavy metal ions, the as-prepared monodisperse and single-crystal Fe_3 O_4 microspheres show a preferable sensing sensitivity(22.2 μA/μM) and limit of detection(0.0699 μM) toward Pb(Ⅱ). Furthermore, the electrochemical sensor of Fe_3 O_4 microspheres exhibits excellent stability and it also offers potential practical applicability for the determination of heavy metal ions in real water samples. This study provides a potential simple and low cost iron oxide for the construction of sensitive electrochemical sensors applied to monitor and control the pollution of toxic metal ions.展开更多
基金Science Development Foundation of Hubei University of Science&Technology,Grant/Award Numbers:2021F005,2021ZX14,2020TD01,2021ZX0Xianning City Program of Science&Technology,Grant/Award Number:2022ZRKX051Hubei University of Science and Technology Doctoral Research Initiation Project,Grant/Award Number:BK202217。
文摘Graphitic carbon nitride(g‐C_(3)N_(4))is a highly recognized two‐dimensional semiconductor material known for its exceptional chemical and physical stability,environmental friendliness,and pollution‐free advantages.These remarkable properties have sparked extensive research in the field of energy storage.This review paper presents the latest advances in the utilization of g‐C_(3)N_(4)in various energy storage technologies,including lithium‐ion batteries,lithium‐sulfur batteries,sodium‐ion batteries,potassium‐ion batteries,and supercapacitors.One of the key strengths of g‐C_(3)N_(4)lies in its simple preparation process along with the ease of optimizing its material structure.It possesses abundant amino and Lewis basic groups,as well as a high density of nitrogen,enabling efficient charge transfer and electrolyte solution penetration.Moreover,the graphite‐like layered structure and the presence of largeπbonds in g‐C_(3)N_(4)contribute to its versatility in preparing multifunctional materials with different dimensions,element and group doping,and conjugated systems.These characteristics open up possibilities for expanding its application in energy storage devices.This article comprehensively reviews the research progress on g‐C_(3)N_(4)in energy storage and highlights its potential for future applications in this field.By exploring the advantages and unique features of g‐C_(3)N_(4),this paper provides valuable insights into harnessing the full potential of this material for energy storage applications.
文摘Ion beam-induced luminescence(IBIL) experiments were performed to investigate the in situ luminescence of GaN/Al_(2)O_(3) at varying ion energies,which allowed for the measurement of defects at different depths within the material.The energies of H^(+)were set to 500 keV,640 keV and 2 MeV,the Bragg peaks of which correspond to the GaN film,GaN/Al_(2)O_(3) heterojunction and Al_(2)O_(3) substrate,respectively.A photoluminescence measurement at 250 K was also performed for comparison,during which only near band edge(NBE) and yellow band luminescence in the GaN film were observed.The evolution of the luminescence of the NBE and yellow band in the GaN film was discussed,and both exhibited a decrease with the fluence of H^(+).Additionally,the luminescence of F centers,induced by oxygen vacancies,and Cr^(3+),resulting from the ^(2)E →^(4)A_(2) radiative transition in Al_(2)O_(3),were measured using 2 MeV H^(+).The luminescence intensity of F centers increases gradually with the fluence of H^(+).The luminescence evolution of Cr^(3+)is consistent with a yellow band center,attributed to its weak intensity,and it is situated within the emission band of the yellow band in the GaN film.Our results show that IBIL measurement can effectively detect the luminescence behavior of multilayer films by adjusting the ion energy.Luminescence measurement can be excited by various techniques,but IBIL can satisfy in situ luminescence measurement,and multilayer structural materials of tens of micrometers can be measured through IBIL by adjusting the energy of the inducing ions.The evolution of defects at different layers with ion fluence can be obtained.
基金supported by the National Natural Science Foundation of China (Grant 60777030)the Open Foundation of the Key Laboratory of Ningbo City (2007A22010) K.C.Wong Magna Fund in Ningbo University
文摘Two kinds of germanate glasses singly doped with the ion concentration of 2.0mol.%Tm3+ and 2.0mol.%Ho3+, respectively, were prepared.According to McCumber theory, the absorption and stimulated emission cross-sections corresponding to the 3H6←→3F4 transitions of Tm3+(at 1.8 μm) and the 5I8←→5I7 transitions of Ho3+(at 2.0 μm) were obtained, and respective gain cross-section spectra were also computed as a function of population inversion according to absorption and emission cross-sections and the ion concentrations.For Tm3+-doped germanate glasses, the maximum of the absorption, emission, and gain cross-sections reached a value higher than those reported for fluorozirconate, fluoride, and oxyfluoride glasses.For Ho3+-doped germanate glasses, the maximum of absorption, emission, and gain cross-sections reached a value higher than that reported for fluorozircoaluminate glasses.Hence, these Tm3+-doped and Ho3+-doped germanate glasses exhibited an advantage for application in mid-infrared lasers at about 1.8 and 2.0 μm wavelength.
基金Project supported bythe Key Laboratory of Rare Earth Chemistry and Physics ,ChangchunInstitute of Applied Chemistry ,Chinese Academy of Sciences (R020202K)
文摘Nanocrystal of upconversion (UC) phosphor Ho^3+, Tm^3+ , and Yb^3+ co-doped NaYF4 was prepared by the hydrothermal method in the presence of the complexing agent EDTA. Under 980 nm diode laser excitation, the impact of different concentrations of Ho^3+ ion on the UC luminescence intensity was discussed. The law of luminescence intensity versus pump power shows that the 474 nm blue emission, 538 nm green emission, and 642 nm red emission are all due to the two-photon process, while the 450 nm blue emission is a three-photon process. The UC mechanism and processes were also analyzed. The sample was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The result shows that Ho^3+ ,Tm^3+ , and Yb^3+ co-doped NaYF4 prepared by the hydrothermal method exhibits a hexagonal nanocrystal.
基金National Natural Science Foundation of China,Grant/Award Numbers:21972108,U20A20249,U22A20438Changzhou Science and Technology Bureau,Grant/Award Number:CM20223017Innovation and Technology Commission(ITC)of Hong Kong,The Innovation&Technology Fund(ITF)with Project No.ITS/126/21。
文摘Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs.
基金Projects(21571191,51674292) supported by the National Natural Science Foundation of ChinaProject(2016JJ1023) supported by the Natural Science Foundation of Hunan Province,ChinaProject(2018TP1003) supported by the Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety,China
文摘A novel three-dimension(3D)graphene/MgO composite was synthesized through self-assembly and embedding MgO nanoparticle in reduced graphene in situ.Fourier transform infrared(FT-IR)spectroscopy,thermal gravimetric analysis(TGA),scanning electron microscopy(SEM),transmission electron microscope(TEM),powder X-raydiffraction(XRD)and X-rayphotoelectron spectroscopy(XPS)were employed to characterize the prepared 3D graphene/MgO composite.The adsorption performance of some metal ions on 3D graphene/MgO was investigated.The results showed that the adsorption capacity was greater than 3D graphene and the maximum adsorption capacity at 25℃was found to be 358.96 mg/g,388.4 mg/g and 169.8 mg/g for Pb^2+,Cd^2+and Cu^2+,respectively.The adsorption kinetic conformed to the pseudo-second-order kinetic model and the adsorption isotherm was well described by Langmuir model.The thermodynamic constants revealed that the sorption process was endothermic and spontaneous in nature.Based on the results of the removal of heavy metal ions from metal smelting wastewater,it can be concluded that the prepared 3D graphene/MgO composite is an effective and potential adsorbent.
基金Supported by the National Natural Science Foundation of China( No.2 993 2 0 3 0 ),Natural Science Foundation ofGuangdong Province( No.970 15 4)
文摘The different regioselective and stereoselective products were obtained by the reduction of stigmast-4,22-dien-3,6-dione with NaBH_4-CH_3OH when different kinds of metal ions was added to the reaction.
文摘The luminescent properties of PbWO 4∶Gd 3+ were studied. The luminescence of Gd 3+ in PbWO 4∶Gd 3+ was quenched. It is possible that the excitation states of Gd 3+ locate in the conduction band of PbWO 4 crystal. The luminescent intensity of the green and the blue band of PbWO 4 emission increases by doping with about 0 005% and 0 01% (molar fraction) Gd 3+ respectively. Mechanism of this enhancement of PbWO 4∶Gd 3+ luminescence is probably due to energy transfer from Gd 3+ to PbWO 4 host in the crystal. The PbWO 4 doped with low concentration of Gd (about 0 005%~0 01%) is a good scintillating material.
文摘Oxy-fluoride glasses with composition of 25SiO2-65PbF2-9.4AlF3-0.1HoF3-0.5YbF3 were prepared. Their up-conversion fluorescence characteristics were investigated by 980 nm laser. Two emission peaks were observed at 540 and 650 nm. The up-conversion mechanism and processes were analyzed. The relationship between pumping power and relative intensity of emissions was discussed. From the dependence, it is known that the emissions centered at 540 and 650 nm are both attributed to two-photon process.
基金supported by the National Natural Science Foundation of China(21077044)Natural Science Foundation of Shandong Province(ZR2015BM030)
文摘Extractability and extraction mechanism of lanthanide ions were investigated by using a new extractant,N,Nn,N′,N′-tetrabutyl-3-oxa-diglycolamide(TBDGA),in toluene from nitric acid media.The effects of HNO_3 and TBDGA concentrations,and temperature,on extraction of lanthanide ions were studied.Stoichiometrics of the main extracted species were HNO_3·TBDGA and M(NO_3)_3-3TBDGA(M = Er,Dy,Tb,Gd,La,Ce,Nd,Sm and Eu).The extracted species for metal ions were established to be ionic complex.In this complex,nitrate anion was not coordinated to the central ion.The extraction pattern increased gradually across the lanthanide ions series,showing enhanced affinity of TBDGA toward heavy lanthanide ions.Thermodynamic parameters were investigated for the exothermic extraction reaction.
基金funding supported by the National Natural Science Foundation of China(Nos.21490581,91534203,21878282,and 21606215)
文摘Metal–organic frameworks(MOFs)with angstrom-sized pores are promising functional nanomaterials for the fabrication of cation permselective membranes(MOF-CPMs).However,only a few research reports show successful preparation of the MOF-CPMs with good cation separation performance due to several inherent problems in MOFs,such as arduous selfassembly,poor water resistance,and tedious fabrication strategies.Besides,low cation permeation flux due to the absence of the cation permeation assisting functionalities in MOFs is another big issue,which limits their widespread use in membrane technology.Therefore,it is necessary to fabricate functional MOF-CPMs using simplistic strategies to improve cation permeation.In this context,we report a facile in situ smart growth strategy to successfully produce ultrathin(<600 nm)and leaflike UiO-66-SO3H membranes at the surface of anodic alumina oxide.The physicochemical characterizations confirm that sulfonated angstrom-sized ion transport channels exist in the as-prepared UiO-66-SO3H membranes,which accelerate the cation permeation(~3×faster than non-functionalized UiO-66 membrane)and achieve a high ion selectivity(Na^+/Mg^2+>140).The outstanding cation separation performance validates the importance of introducing sulfonic acid groups in MOF-CPMs.
基金supported by the National Natural Science Foundation of China (21676036)the Natural Science Foundation of Chongqing (CSTB2023NSCQ-MSX0580)the Graduate Research and Innovation Foundation of Chongqing (CYB22043 and CYS22073)。
文摘V_(3)O_(7)·H_(2)O(VO)is a high capacity cathode material in the field of aqueous zinc ion batteries(AZIBs),but it is limited by slow ion migration and low electrical conductivity.In this paper,polypyridine(PPyd)intercalated VO with nanoribbon structure was prepared by a simple in-situ pre-intercalation,which is noted VO-PPyd.The total density of states(TDOS)shows that after the pre-intercalation of PPyd,an intermediate energy level appears between the valence band and conduction band,which provides a step that can effectively reduce the band gap and enhance the electron conductivity.Furthermore,the density functional theory(DFT)results found that Zn^(2+)is more easily de-intercalated from the V-O skeleton,which proves that the embeddedness of PPyd improves the diffusion kinetics of Zn^(2+).Electrochemical studies have shown that VO-PPyd cathode materials exhibit excellent rate performance(high specific capacity of 465 and 192 mA h g^(-1)at 0.2 and 10 A g^(-1),respectively)and long-term cycling performance(92.7%capacity retention rate after 5300 cycles),due to their advantages in structure and composition.More importantly,the energy density of VO-PPyd//Zn at 581 and 5806 W kg^(-1)is 375 and 247 W h kg^(-1),respectively.VO-PPyd exhibits excellent electrochemical properties compared to previously reported vanadium based cathodes,which makes it highly competitive in the field of high-performance cathode materials of AZIBs.
基金supported by the National Basic Research Program of China (973) (2007CB31407)Foundation for Innovative Research Groups of the NSFC (60721001)+1 种基金the Young Fund of Sichuan Province (08ZQ026-013)the National Natural Science Foundation of China (50972023, 50872078)
文摘Ca1-xRxCu3Ti4O12(R=La,Y,Gd;x=0,0.1,0.2,0.3) electronic ceramics were fabricated by conventional solid-state reaction method.The microstructure and dielectric properties as well as impedance behavior were carefully investigated.XRD results showed that the secondary phases with the general formula R2Ti2O7 existed at grain boundaries of rare earth doped ceramics,which inhibited abnormal grain growth.The dielectric constant decreased from 4×105 in pure CaCu3Ti4O12(CCTO) ceramics to 2×103 with rare earth doping....
基金financially supported by the Natural Science Foundation of Shandong Province,China (Nos.ZR2023ME155,ZR2023ME085)the National Natural Science Foundation of China (No.52201254)+1 种基金the Project of“20 Items of University”of Jinan,China (No.202228046)the Taishan Scholar Project of Shandong Province,China (No.tsqn202306226)。
文摘Octahedral Mn_(3)O_(4)nanoparticles with an Ag-doping and nanoporous Ag(NPS)framework was simply fabricated through an alloying-etching engineering.The dual-modified Mn_(3)O_(4)(denoted as Ag−Mn_(3)O_(4)/NPS)consists of Ag-doped Mn_(3)O_(4)nanoparticles crosslinked with three dimensional nanoporous Ag framework.The incorporated Ag dopant is effective in improving the intrinsic ionic and electronic conductivities of Mn_(3)O_(4),while the NPS framework is introduced to improve the electron/mass transfer across the entire electrode.Profiting from the dual-modification strategy,the Ag−Mn_(3)O_(4)/NPS exhibits admirable rate capability and cycling stability.A high reversible capacity of 88.7 mA·h/g can still be retained for over 1000 cycles at a current density of 1 A/g.Moreover,a series of ex-situ experimental techniques indicate that for Ag−Mn_(3)O_(4)/NPS electrode during the zinc ion storage,Mn_(3)O_(4)is electrochemically oxidized into various MnOx(e.g.,Mn_(2)O_(3),MnO2)species in the initial charging,and the subsequent battery reaction is actually the intercalation/deintercalation of H+and Zn2+into MnOx.
基金supported by grants from the National Natural Science Foundation of China(No.22272055)multifunctional platform for innovation of ECNU(EPR).
文摘In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_(4))_(3) to Na_(4)V_(2)(PO_(4))_(3),Na ions insert into M1,M2 and M3 sites simultaneously.Afterwards,during the transition of Na_(4)V_(2)(PO_(4))_(3)to Na_(5)V_(2)(PO_(4))_(3),Na ions mainly insert into M3 site.
基金Project supported by Publication Foundation of National Science and Technology Academic Books of China
文摘Thermodynamic models of calculating mass action concentrations for structural units or ion couples in RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions were developed based on the ion and molecule coexistence theory at 298.15 K.A transformation coefficient is needed to compare the calculated mass action concentration and the reported activity because they are obtained at different standard states and concentration units.The results show that the transformation coefficients between the calculated mass action concentrations and the reported activities of the same structural units or ion couples in RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions change in a very narrow range.The transformed mass action concentrations of structural units or ion couples in RbCl-H2O binary system are in good agreement with the reported activities. The transformed mass action concentrations of RbCl and RbNO3 in RbCl-RbNO3-H2O ternary solution are also in good agreement with the reported activities,aRbCl and 3RbNOa,with different total ionic strengths as 0.01,0.05,0.1,0.5,1.0,1.5,2.0,3.0 and 3.5 mol/kg,respectively.All those results mean the developed thermodynamic model of strong electrolyte aqueous solutions can reflect structural characteristics of RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions and the mass action concentration also strictly follows the mass action law.
文摘Single-crystal Fe_3 O_4 with monodisperse microspheres structure has been used for individual electrochemical detection of heavy metal ions. Morphology and structure of the as-prepared Fe_3 O_4 microspheres were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM) and X-ray diffraction(XRD). Meanwhile the electrochemical properties of the Fe_3 O_4 microspheres modified glass carbon electrodes(GCE) were characterized by cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS), and the enhanced electrochemical response in stripping voltammetry for individual detection of Pb(Ⅱ), Hg(Ⅱ), Cu(Ⅱ), and Cd(Ⅱ) was evaluated using square wave anodic stripping voltammetry(SWASV). With high specific surface area and excellent catalytic activity toward heavy metal ions, the as-prepared monodisperse and single-crystal Fe_3 O_4 microspheres show a preferable sensing sensitivity(22.2 μA/μM) and limit of detection(0.0699 μM) toward Pb(Ⅱ). Furthermore, the electrochemical sensor of Fe_3 O_4 microspheres exhibits excellent stability and it also offers potential practical applicability for the determination of heavy metal ions in real water samples. This study provides a potential simple and low cost iron oxide for the construction of sensitive electrochemical sensors applied to monitor and control the pollution of toxic metal ions.