Numerical research on the dilute particles movement and deposition characteristics in the vicinity of converging slot-hole(console) was carried out, and the effect of hole shape on the particle deposition characterist...Numerical research on the dilute particles movement and deposition characteristics in the vicinity of converging slot-hole(console) was carried out, and the effect of hole shape on the particle deposition characteristics was investigated. The EI-Batsh deposition model was used to predict the particle deposition characteristics. The results show that the console hole has an obvious advantage in reducing particle deposition in comparison with cylindrical hole, especially under higher blowing ratio. The coolant jet from console holes can cover the wall well. Furthermore, the rotation direction of vortices near console hole is contrary to that near cylindrical hole. For console holes, particle deposition mainly takes place in the upstream area of the holes.展开更多
We study a two-stream backward-wave oscillator with a slot-hole structure at short millimeter waves with the help of a three-dimensional particle-in-cell simulation. In order to increase the interaction region of the ...We study a two-stream backward-wave oscillator with a slot-hole structure at short millimeter waves with the help of a three-dimensional particle-in-cell simulation. In order to increase the interaction region of the electron beam, the efficiency and the output power, a slot-hole loaded rectangular waveguide structure used as the high-frequency system is proposed. Based on the mechanism of the backward-wave oscillator, a slow-wave oscillator with a frequency of 0.14 THz is designed. The simulations show that the output power and the efficiency of the oscillator can be enhanced due to the coupling between the two beams through the slot holes. The interaction efficiency is 5.18%, and the starting current density is below 5 A. cm^-2 for the two beams. These attractive results indicate that, based on the two-stream backward-wave oscillator, we can get short millimeter wave sources with high power and low current density.展开更多
基金Project(51276090) supported by the National Natural Science Foundation of ChinaProject(CXLX13_166) supported by Funding of Jiangsu Innovation Program for Graduate EducationProject supported by the Fundamental Research Funds for the Central Universities,China
文摘Numerical research on the dilute particles movement and deposition characteristics in the vicinity of converging slot-hole(console) was carried out, and the effect of hole shape on the particle deposition characteristics was investigated. The EI-Batsh deposition model was used to predict the particle deposition characteristics. The results show that the console hole has an obvious advantage in reducing particle deposition in comparison with cylindrical hole, especially under higher blowing ratio. The coolant jet from console holes can cover the wall well. Furthermore, the rotation direction of vortices near console hole is contrary to that near cylindrical hole. For console holes, particle deposition mainly takes place in the upstream area of the holes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11075032 and 10975031)
文摘We study a two-stream backward-wave oscillator with a slot-hole structure at short millimeter waves with the help of a three-dimensional particle-in-cell simulation. In order to increase the interaction region of the electron beam, the efficiency and the output power, a slot-hole loaded rectangular waveguide structure used as the high-frequency system is proposed. Based on the mechanism of the backward-wave oscillator, a slow-wave oscillator with a frequency of 0.14 THz is designed. The simulations show that the output power and the efficiency of the oscillator can be enhanced due to the coupling between the two beams through the slot holes. The interaction efficiency is 5.18%, and the starting current density is below 5 A. cm^-2 for the two beams. These attractive results indicate that, based on the two-stream backward-wave oscillator, we can get short millimeter wave sources with high power and low current density.