期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Simulation study of blue InGaN multiple quantum well light-emitting diodes with different hole injection layers 被引量:4
1
作者 仵乐娟 李述体 +8 位作者 刘超 王海龙 卢太平 张康 肖国伟 周玉刚 郑树文 尹以安 杨孝东 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第6期583-587,共5页
InGaN-based light-emitting diodes with p-GaN and p-A1GaN hole injection layers are numerically studied using the APSYS simulation software. The simulation results indicate that light-emitting diodes with p-A1GaN hole ... InGaN-based light-emitting diodes with p-GaN and p-A1GaN hole injection layers are numerically studied using the APSYS simulation software. The simulation results indicate that light-emitting diodes with p-A1GaN hole injection layers show superior optical and electrical performance, such as an increase in light output power, a reduction in current leakage and alleviation of efficiency droop. These improvements can be attributed to the p-A1GaN serving as hole injection layers, which can alleviate the band bending induced by the polarization field, thereby improving both the hole injection efficiency and the electron blocking efficiency. 展开更多
关键词 GaN-based light-emitting diodes hole injection layer injection efficiency
下载PDF
Improvement of Performance of Organic Light-Emitting Diodes with Both a MoO3 Hole Injection Layer and a MoO3 Doped Hole Transport Layer
2
作者 刘伟 刘国红 +2 位作者 刘勇 李宝军 周翔 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第7期160-163,共4页
We improve the performance of organic light-emitting diodes (OLEDs) with both a MoO3 hole injection layer (HIL) and a MoO3 doped hole transport layer (HTL), and present a systematical and comparative investigati... We improve the performance of organic light-emitting diodes (OLEDs) with both a MoO3 hole injection layer (HIL) and a MoO3 doped hole transport layer (HTL), and present a systematical and comparative investigation on these devices. Compared with OLEDs with only MoO3 HIL or MoO3 doped HTL, OLEDs with both MoO3 HIL and MoO3 doped HTL show superior performance in driving voltage, power efficiency, and stability. Based on the typical NPB/Alq3 heterojunction structure, OLEDs with both MoO3 HIL and MoO3 doped HTL show a driving voltage of 5.4 V and a power efficiency of 1.41 lm/W for 1000 cd/m2, and a lifetime of around 0. 88 h with an initial luminance of 5268 cd/m2 under a constant current of 190 mA/cm2 operation in air without encapsulation. While OLEDs with only MoO3 HIL or MoO3 doped HTL show higher driving voltages of 6.4 V or 5.8 V and lower power efficiencies of 1.201m/W or 1.341m/W for 1000cd/m2, and a shorter lifetime of 0.33 or 0.60h with an initial luminance of around 5122 or 5300cd/m2 under a constant current of 200 or 216mA/cm2 operation. Our results demonstrate clearly that using both MoO3 HIL and MoO3 doped HTL is a simple and effective approach to simultaneoasly improve both the hole injection and transport efficiency, resulting from the lowered energy barrier at the anode interface and the increased hole carrier density in MoO3 doped HTL. 展开更多
关键词 NPB HTL HIL OLEDs Improvement of Performance of Organic Light-Emitting Diodes with Both a MoO3 hole injection layer and a MoO3 Doped hole Transport layer
下载PDF
Performance improvement of GaN-based light-emitting diode with a p-InAlGaN hole injection layer
3
作者 喻晓鹏 范广涵 +4 位作者 丁彬彬 熊建勇 肖瑶 张涛 郑树文 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第2期557-560,共4页
The characteristics of a blue light-emitting diode (LED) with a p-InA1GaN hole injection layer (HIL) is analyzed numerically. The simulation results indicate that the newly designed structure presents superior opt... The characteristics of a blue light-emitting diode (LED) with a p-InA1GaN hole injection layer (HIL) is analyzed numerically. The simulation results indicate that the newly designed structure presents superior optical and electrical performance such as an increase in light output power, a reduction in current leakage and alleviation of efficiency droop. These improvements can be attributed to the p-InA1GaN serving as hole injection layers, which can alleviate the band bending induced by the polarization field, thereby improving both the hole injection efficiency and the electron blocking efficiency. 展开更多
关键词 InGaN light-emitting diodes (LEDs) p-InA1GaN hole injection layer (HIL) numerical simulation
下载PDF
Increased work function in PEDOT:PSS film under ultraviolet irradiation
4
作者 邢英杰 钱旻昉 +1 位作者 郭等柱 张耿民 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期630-635,共6页
An increase of work function (0.3 eV) is achieved by irradiating poly(3,4-ethylenedioxythiophene):poly(styrene sul- fonate) (PEDOT:PSS) film in vacuum with 254-nm ultraviolet (UV) light. The mechanism for ... An increase of work function (0.3 eV) is achieved by irradiating poly(3,4-ethylenedioxythiophene):poly(styrene sul- fonate) (PEDOT:PSS) film in vacuum with 254-nm ultraviolet (UV) light. The mechanism for such an improvement is investigated by photoelectron yield spectroscopy, X-ray photo electron energy spectrum, and field emission technique. Sur- face oxidation and composition change are found as the reasons for work function increase. The UV-treated PEDOT:PSS film is used as the hole injection layer in a hole-only device. Hole injection is improved by UV-treated PEDOT:PSS film without baring the enlargement of film resistance. Our result demonstrates that UV treatment is more suitable for modifying the injection barrier than UV ozone exposure. 展开更多
关键词 poly(3 4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) film work function ul- traviolet hole injection layer
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部