In this paper, we mainly considered the dynamical behavior of a predator-prey system with Holling type II functional response and Allee-like effect on predator, including stability analysis of equilibria and Hopf bifu...In this paper, we mainly considered the dynamical behavior of a predator-prey system with Holling type II functional response and Allee-like effect on predator, including stability analysis of equilibria and Hopf bifurcation. Firstly, we gave some sufficient conditions to guarantee the existence, the local and global stability of equilibria as well as non-existence of limit cycles. By using the cobweb model, some cases about the existence of interior equilibrium are also illustrated with numerical outcomes. These existence and stability conclusions of interior equilibrium are also suitable in corresponding homogeneous reaction-diffusion system subject to the Neumann boundary conditions. Secondly, we theoretically deduced that our system has saddle-node bifurcation, transcritical bifurcation and Hopf bifurcation under certain conditions. Finally, for the Hopf bifurcation, we choose d as the bifurcation parameter and presented some numerical simulations to verify feasibility and effectiveness of the theoretical derivation corresponding to the existence of yk, respectively. The Hopf bifurcations are supercritical and limit cycles generated by the critical points are stable.展开更多
In this paper we analytically and numerically consider the dynamical behavior of a certain predator-prey system with Holling type II functional response, including local and global stability analysis, existence of lim...In this paper we analytically and numerically consider the dynamical behavior of a certain predator-prey system with Holling type II functional response, including local and global stability analysis, existence of limit cycles, transcritical and Hopf bifurcations. Mathematical theory derivation mainly focuses on the existence and stability of equilibrium point as well as threshold conditions for transcritical and Hopf bifurcation, which can in turn provide a theoretical support for numerical simulation. Numerical analysis indicates that theoretical derivation results are correct and feasible. In addition, it is successful to show that the dynamical behavior of this predator-prey system mainly depends on some critical parameters and mathematical relationships. All these results are expected to be meaningful in the study of the dynamic complexity of predatory ecosystem.展开更多
In this paper, we considered a homogeneous reaction-diffusion predator-prey system with Holling type II functional response subject to Neumann boundary conditions. Some new sufficient conditions were analytically esta...In this paper, we considered a homogeneous reaction-diffusion predator-prey system with Holling type II functional response subject to Neumann boundary conditions. Some new sufficient conditions were analytically established to ensure that this system has globally asymptotically stable equilibria and Hopf bifurcation surrounding interior equilibrium. In the analysis of Hopf bifurcation, based on the phenomenon of Turing instability and well-done conditions, the system undergoes a Hopf bifurcation and an example incorporating with numerical simulations to support the existence of Hopf bifurcation is presented. We also derived a useful algorithm for determining direction of Hopf bifurcation and stability of bifurcating periodic solutions correspond to j ≠0 and j = 0, respectively. Finally, all these theoretical results are expected to be useful in the future study of dynamical complexity of ecological environment.展开更多
The main purpose of this paper is to study the persistence of the general multispecies competition predator-pray system with Holling Ⅲ type functional response. In this system, the competition among predator species ...The main purpose of this paper is to study the persistence of the general multispecies competition predator-pray system with Holling Ⅲ type functional response. In this system, the competition among predator species and among prey species are simultaneously considered. By using the comparison theory and qualitative analysis, the sufficient conditions for uniform strong persistence are obtained.展开更多
In recent years,rumor spreading has caused widespread public panic and affected the whole social harmony and stability.Consequently,how to control the rumor spreading effectively and reduce its negative influence urge...In recent years,rumor spreading has caused widespread public panic and affected the whole social harmony and stability.Consequently,how to control the rumor spreading effectively and reduce its negative influence urgently needs people to pay much attention.In this paper,we mainly study the near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters.Firstly,the science knowledge propagation and the refutation mechanism as the control strategies are introduced into a stochastic rumor spreading model.Then,some sufficient and necessary conditions for the near-optimal control of the stochastic rumor spreading model are discussed respectively.Finally,through some numerical simulations,the validity and availability of theoretical analysis is verified.Meanwhile,it shows the significance and effectiveness of the proposed control strategies on controlling rumor spreading,and demonstrates the influence of stochastic disturbance and imprecise parameters on the process of rumor spreading.展开更多
A predator-prey model with linear capture term Holling-II functional response was studied by using differential equation theory. The existence and the stabilities of non-negative equilibrium points of the model were d...A predator-prey model with linear capture term Holling-II functional response was studied by using differential equation theory. The existence and the stabilities of non-negative equilibrium points of the model were discussed. The results show that under certain limited conditions, these two groups can maintain a balanced position, which provides a theoretical reference for relevant departments to make decisions on ecological protection.展开更多
文摘In this paper, we mainly considered the dynamical behavior of a predator-prey system with Holling type II functional response and Allee-like effect on predator, including stability analysis of equilibria and Hopf bifurcation. Firstly, we gave some sufficient conditions to guarantee the existence, the local and global stability of equilibria as well as non-existence of limit cycles. By using the cobweb model, some cases about the existence of interior equilibrium are also illustrated with numerical outcomes. These existence and stability conclusions of interior equilibrium are also suitable in corresponding homogeneous reaction-diffusion system subject to the Neumann boundary conditions. Secondly, we theoretically deduced that our system has saddle-node bifurcation, transcritical bifurcation and Hopf bifurcation under certain conditions. Finally, for the Hopf bifurcation, we choose d as the bifurcation parameter and presented some numerical simulations to verify feasibility and effectiveness of the theoretical derivation corresponding to the existence of yk, respectively. The Hopf bifurcations are supercritical and limit cycles generated by the critical points are stable.
文摘In this paper we analytically and numerically consider the dynamical behavior of a certain predator-prey system with Holling type II functional response, including local and global stability analysis, existence of limit cycles, transcritical and Hopf bifurcations. Mathematical theory derivation mainly focuses on the existence and stability of equilibrium point as well as threshold conditions for transcritical and Hopf bifurcation, which can in turn provide a theoretical support for numerical simulation. Numerical analysis indicates that theoretical derivation results are correct and feasible. In addition, it is successful to show that the dynamical behavior of this predator-prey system mainly depends on some critical parameters and mathematical relationships. All these results are expected to be meaningful in the study of the dynamic complexity of predatory ecosystem.
文摘In this paper, we considered a homogeneous reaction-diffusion predator-prey system with Holling type II functional response subject to Neumann boundary conditions. Some new sufficient conditions were analytically established to ensure that this system has globally asymptotically stable equilibria and Hopf bifurcation surrounding interior equilibrium. In the analysis of Hopf bifurcation, based on the phenomenon of Turing instability and well-done conditions, the system undergoes a Hopf bifurcation and an example incorporating with numerical simulations to support the existence of Hopf bifurcation is presented. We also derived a useful algorithm for determining direction of Hopf bifurcation and stability of bifurcating periodic solutions correspond to j ≠0 and j = 0, respectively. Finally, all these theoretical results are expected to be useful in the future study of dynamical complexity of ecological environment.
基金Supported by the National Natural Science Foundation of China (10701020)
文摘The main purpose of this paper is to study the persistence of the general multispecies competition predator-pray system with Holling Ⅲ type functional response. In this system, the competition among predator species and among prey species are simultaneously considered. By using the comparison theory and qualitative analysis, the sufficient conditions for uniform strong persistence are obtained.
基金Project supported by the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learningthe Project for the Natural Science Foundation of Shanghai,China(Grant No.21ZR1444100)the Project for the National Natural Science Foundation of China(Grant Nos.72174121,71774111,71871144,and 71804047)。
文摘In recent years,rumor spreading has caused widespread public panic and affected the whole social harmony and stability.Consequently,how to control the rumor spreading effectively and reduce its negative influence urgently needs people to pay much attention.In this paper,we mainly study the near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters.Firstly,the science knowledge propagation and the refutation mechanism as the control strategies are introduced into a stochastic rumor spreading model.Then,some sufficient and necessary conditions for the near-optimal control of the stochastic rumor spreading model are discussed respectively.Finally,through some numerical simulations,the validity and availability of theoretical analysis is verified.Meanwhile,it shows the significance and effectiveness of the proposed control strategies on controlling rumor spreading,and demonstrates the influence of stochastic disturbance and imprecise parameters on the process of rumor spreading.
文摘A predator-prey model with linear capture term Holling-II functional response was studied by using differential equation theory. The existence and the stabilities of non-negative equilibrium points of the model were discussed. The results show that under certain limited conditions, these two groups can maintain a balanced position, which provides a theoretical reference for relevant departments to make decisions on ecological protection.