A predator-prey model with linear capture term Holling-II functional response was studied by using differential equation theory. The existence and the stabilities of non-negative equilibrium points of the model were d...A predator-prey model with linear capture term Holling-II functional response was studied by using differential equation theory. The existence and the stabilities of non-negative equilibrium points of the model were discussed. The results show that under certain limited conditions, these two groups can maintain a balanced position, which provides a theoretical reference for relevant departments to make decisions on ecological protection.展开更多
文摘A predator-prey model with linear capture term Holling-II functional response was studied by using differential equation theory. The existence and the stabilities of non-negative equilibrium points of the model were discussed. The results show that under certain limited conditions, these two groups can maintain a balanced position, which provides a theoretical reference for relevant departments to make decisions on ecological protection.