期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Hollow Carbon Microspheres/MnO_2 Nanosheets Composites:Hydrothermal Synthesis and Electrochemical Behaviors 被引量:4
1
作者 Hui-li Fan Fen Ran +4 位作者 Xuan-xuan Zhang Hai-ming Song Xiao-qin Niu Ling-bin Kong Long Kang 《Nano-Micro Letters》 SCIE EI CAS 2015年第1期59-67,共9页
This article reported the electrochemical behaviors of a novel hollow carbon microspheres/manganese dioxide nanosheets(micro-HC/nano-MnO2) composite prepared by an in situ self-limiting deposition method under hydroth... This article reported the electrochemical behaviors of a novel hollow carbon microspheres/manganese dioxide nanosheets(micro-HC/nano-MnO2) composite prepared by an in situ self-limiting deposition method under hydrothermal condition. The results of scanning electron microscopy reveal that MnO2 nanosheets homogeneously grow onto the surface of micro-HC to form a loose-packed microstructure. The quantity of MnO2 required in the electrode layer has thereby been reduced significantly, and higher specific capacitances have been achieved. The micro-HC/nano-MnO2 electrode presents a high capacitance of 239.0 F g-1 at a current density of 5 m A cm-2, which is a strong promise for high-rate electrochemical capacitive energy storage applications. 展开更多
关键词 Manganese oxide hollow carbon microspheres Composite electrode SUPERCAPACITOR
下载PDF
In-situ synthesis of N, S co-doped hollow carbon microspheres for efficient catalytic oxidation of organic contaminants
2
作者 Yongbing Xie Ya Liu +3 位作者 Yujie Yao Yanchun Shi Binran Zhao Yuxian Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第3期1298-1302,共5页
Metal-free heteroatom doped nanocarbons are promising alternatives to the metal-based materials in catalytic ozonation for destruction of aqueous organic contaminants. In this study, N, S co-doped hollow carbon micros... Metal-free heteroatom doped nanocarbons are promising alternatives to the metal-based materials in catalytic ozonation for destruction of aqueous organic contaminants. In this study, N, S co-doped hollow carbon microspheres (NSCs) were synthesized from the polymerization products during persulfate wet air oxidation of benzothiazole. The contents of doped N and S as well as the structural stability were maneuvered by adjusting the subsequent N_(2)-annealing temperature. Compared with the prevailing single-walled carbon nanotubes, the N_(2)-annealed NSCs demonstrated a higher catalytic ozonation activity for benzimidazole degradation. According to the quantitative structure-activity relationship (QSAR) analysis, the synergistic effect between the graphitic N and the thiophene-S which redistributed the charge distribution of the carbon basal plane contributed to the activity enhancement of the N_(2)-annealed NSCs. Additionally, the hollow structure within the microspheres served as the microreactor to boost the mass transfer and reaction kinetics via the nanoconfinement effects. Quenching and electron paramagnetic resonance (EPR) tests revealed that benzimidazole degradation was dominated by the produced singlet oxygen (^(1)O_(2)) species, while hydroxyl radicals (^(·)OH) were also generated and participated. This study puts forward a novel strategy for synthesis of heteroatom-doped nanocarbons and sheds a light on the relationship between the active sites on the doped nanocarbons and the catalytic performance. 展开更多
关键词 Metal-free catalysis hollow carbon microspheres N S co-doping Catalytic ozonation Singlet oxygen(1O_(2))
原文传递
Effect of Ultrasonication on the Properties of Multi-walled Carbon Nanotubes/Hollow Glass Microspheres/Epoxy Syntactic Foam 被引量:1
3
作者 亚斌 ZHOU Bingwen +4 位作者 YIN Shijian HUANG Bingkun PEI Leizhen JIA Fei 张兴国 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第3期709-712,共4页
Multi-walled carbon nanotubes(MWCNTs) reinforced hollow glass microspheres(HGMs)/epoxy syntactic foam was fabricated. The effects of ultrasonication on the density, compression strength, and water absorption prope... Multi-walled carbon nanotubes(MWCNTs) reinforced hollow glass microspheres(HGMs)/epoxy syntactic foam was fabricated. The effects of ultrasonication on the density, compression strength, and water absorption properties were studied. Better dispersed MWCNTs can be obtained after ultrasonication treatment, but an increasing viscosity will lead to a larger amount of voids during syntactic foam preparation especially when the content of HGMs is more than 70 vol%. The existing voids will decrease the density of epoxy syntactic foam. However, the ultrasonication does not change the compression strength much. Ultrasonication treatment will decrease the water absorption content due to the better dispersion and hydrophobic properties of MWCNTs. But a significant increase of water absorption content occurs when HGMs is more than 70 vol%, which is attributed to the higher viscosity and larger amount of voids. 展开更多
关键词 carbon nanotubes hollow glass microspheres syntactic foam ultrasonication
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部