In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strateg...In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strategy to a famous Yau conjecture with a co-homogeneity one geometry.展开更多
k holomorphic functions are a type of generation of holomorphic functions.In this paper,a nonlinear boundary value problem for k holomorphic functions is primarily discussed on generalized polycylinders in C^(2).The e...k holomorphic functions are a type of generation of holomorphic functions.In this paper,a nonlinear boundary value problem for k holomorphic functions is primarily discussed on generalized polycylinders in C^(2).The existence of the solution for the problem is studied in detail with the help of the boundary properties of Cauchy type singular integral operators with a k holomorphic kernel.Furthermore,the integral representation for the solution is obtained.展开更多
We obtain the expressions for sectional curvature, holomorphic sectional curvature and holomorphic bisectional curvature of a GCR-lightlike submanifold of an indefinite nearly Kahler manifold and obtain characterizati...We obtain the expressions for sectional curvature, holomorphic sectional curvature and holomorphic bisectional curvature of a GCR-lightlike submanifold of an indefinite nearly Kahler manifold and obtain characterization theorems for holo- morphic sectional and holomorphic bisectional curvature. We also establish a condi- tion for a GCR-lightlike submanifold of an indefinite complex space form to be a null holomorphically fiat.展开更多
In this paper,we extend the concept of holomorphic curves sharing hyperplanes and introduce definitions of restricted hyperplanes and partial shared hypersurfaces.Then,we prove several normal criteria of the family of...In this paper,we extend the concept of holomorphic curves sharing hyperplanes and introduce definitions of restricted hyperplanes and partial shared hypersurfaces.Then,we prove several normal criteria of the family of holomorphic curves and holomorphic mappings that concern restricted hyperplanes and partial shared hypersurfaces.These results generalize the Montel-type normal criterion of holomorphic curves.展开更多
In this paper, we investigate normal families of meromorphic functions, prove some theorems of normal families sharing a holomorphic function, and give a counterex- ample to the converse of the Bloch principle based o...In this paper, we investigate normal families of meromorphic functions, prove some theorems of normal families sharing a holomorphic function, and give a counterex- ample to the converse of the Bloch principle based on the theorems.展开更多
Let F be a family of holomorphic functions in a domain D, k be a positive integer, a, b(≠0), c(≠0) and d be finite complex numbers. If, for each f∈F, all zeros of f-d have multiplicity at least k, f^(k) = a w...Let F be a family of holomorphic functions in a domain D, k be a positive integer, a, b(≠0), c(≠0) and d be finite complex numbers. If, for each f∈F, all zeros of f-d have multiplicity at least k, f^(k) = a whenever f=0, and f=c whenever f^(k) = b, then F is normal in D. This result extends the well-known normality criterion of Miranda and improves some results due to Chen-Fang, Pang and Xu. Some examples are provided to show that our result is sharp.展开更多
In this paper, Schwarz-Pick estimates for high order Fr′echet derivatives of bounded holomorphic functions on three kinds of classical domains are presented. We generalize the early work on Schwarz-Pick estimates of ...In this paper, Schwarz-Pick estimates for high order Fr′echet derivatives of bounded holomorphic functions on three kinds of classical domains are presented. We generalize the early work on Schwarz-Pick estimates of higher order partial derivatives for bounded holomorphic functions on the disk and unit ball.展开更多
In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-t x C-x(n). Under certain assumptions, they prove the existence and uniqueness of holomorphic solution n...In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-t x C-x(n). Under certain assumptions, they prove the existence and uniqueness of holomorphic solution near origin of C-t x C-x(n).展开更多
Some previous results on convergence of Taylor series in C^n [3] are improved by indicating outside the domain of convergence the points where the series diverges and simplifying some proofs. These results contain the...Some previous results on convergence of Taylor series in C^n [3] are improved by indicating outside the domain of convergence the points where the series diverges and simplifying some proofs. These results contain the Cauchy-Hadamard theorem in C. Some Cauchy integral formulas of a holomorphic function on a closed ball in C^n are constructed and the Taylor series expansion is deduced.展开更多
In this note, we consider a holomorphic mapping f from the unit disk C in C to p-ball B^p = {z∈C^n;i=1∑n|zi|p〈1,1〈p〈+∞. It is proved that for such f,| | |f||(z)|≤1-||f(z)||^2/1-|z|^2,z∈D. Th...In this note, we consider a holomorphic mapping f from the unit disk C in C to p-ball B^p = {z∈C^n;i=1∑n|zi|p〈1,1〈p〈+∞. It is proved that for such f,| | |f||(z)|≤1-||f(z)||^2/1-|z|^2,z∈D. The extremal problem is also discussed when p is an even number. This result extends some related results on Schwarz lemma.展开更多
This article proves the existence of Julia directions of value distribution of holomorphic mapping f from the unit disk into the n-dimensional complex projective spacePn(C) under the assumption limsupT(r,f)/log 1/...This article proves the existence of Julia directions of value distribution of holomorphic mapping f from the unit disk into the n-dimensional complex projective spacePn(C) under the assumption limsupT(r,f)/log 1/1-r = +∞ for hypersurfaces in general position. A heuristic principle concerning the existence of Julia directions of holomorphic mappings from the unit disk into Pn(C) is given also.展开更多
In this article, we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on some subdomains of C^n+l, so-called complex holomorphic Cli...In this article, we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on some subdomains of C^n+l, so-called complex holomorphic Cliffordian functions. We define the complex holomorphic Cliffordian functions, study polynomial and singular solutions of the equation D△^mf= 0, obtain the integral representation formula for the complex holo-morphic Cliffordian functions with values in a complex Clifford algebra defined on some submanifolds of C^n+1, deduce the Taylor expansion and the Laurent expansion for them and prove an invariance under an action of Lie group for them.展开更多
This article proves the existence of singular directions of value distribution theory for some transcendental holomorphic curves in the n-dimensional complex projective space P^n(C).. An example is given to compleme...This article proves the existence of singular directions of value distribution theory for some transcendental holomorphic curves in the n-dimensional complex projective space P^n(C).. An example is given to complement these results.展开更多
In this paper,we derive some∂∂^(-)-Bochner formulas for holomorphic maps between Hermitian manifolds.As applications,we prove some Schwarz lemma type estimates,and some rigidity and degeneracy theorems.For instance,we...In this paper,we derive some∂∂^(-)-Bochner formulas for holomorphic maps between Hermitian manifolds.As applications,we prove some Schwarz lemma type estimates,and some rigidity and degeneracy theorems.For instance,we show that there is no non-constant holomorphic map from a compact Hermitian manifold with positive(resp.non-negative)ℓ-second Ricci curvature to a Hermitian manifold with non-positive(resp.negative)real bisectional curvature.These theorems generalize the results[5,6]proved recently by L.Ni on Kähler manifolds to Hermitian manifolds.We also derive an integral inequality for a holomorphic map between Hermitian manifolds.展开更多
In this paper we prove a Schwarz-Pick lemma for the modulus of holomorphic mappings from the polydisk into the unit ball. This result extends some related results.
In this article we bounded symmetric domains study holomorphic isometries of the Poincare disk into Earlier we solved the problem of analytic continuation of germs of holomorphic maps between bounded domains which a...In this article we bounded symmetric domains study holomorphic isometries of the Poincare disk into Earlier we solved the problem of analytic continuation of germs of holomorphic maps between bounded domains which are isometrics up to normalizing constants with respect to the Bergman metric, showing in particular that the graph 170 of any germ of holomorphic isometry of the Poincar6 disk A into an irreducible bounded symmetric domain Ω belong to C^N in its Harish-Chandra realization must extend to an affinealgebraic subvariety V belong to C × C^N = C^N+1, and that the irreducible component of V ∩ (△ × Ω) containing V0 is the graph of a proper holomorphic isometric embedding F : A→ Ω. In this article we study holomorphie isometric embeddings which are asymptotically geodesic at a general boundary point b ∈ δ△. Starting with the structural equation for holomorphic isometrics arising from the Gauss equation, we obtain by covariant differentiation an identity relating certain holomorphic bisectional curvatures to the boundary behavior of the second fundamental form σ of the holomorphie isometric embedding. Using the nonpositivity of holomorphic bisectional curvatures on a bounded symmetric domain, we prove that ‖σ‖ must vanish at a general boundary point either to the order 1 or to the order 1/2, called a holomorphie isometry of the first resp. second kind. We deal with special cases of non-standard holomorphic isometric embeddings of such maps, showing that they must be asymptotically totally geodesic at a general boundary point and in fact of the first kind whenever the target domain is a Cartesian product of complex unit balls. We also study the boundary behavior of an example of holomorphic isometric embedding from the Poincare disk into a Siegel upper half-plane by an explicit determination of the boundary behavior of holomorphic sectional curvatures in the directions tangent to the embedded Poincare disk, showing that the map is indeed asymptotically totally geodesic at a general boundary point and of the first kind. For the metric computation we make use of formulas for symplectic geometry on Siegel upper half-planes.展开更多
This article gives a normal criterion for families of holomorphic mappings of several complex variables into P N(C)for moving hypersurfaces in pointwise general position,related to an Eremenko’s theorem.
In this article, it is proved that there doesn’t exist any nonsingular holomorphic sphere in complex Grassmann manifold G(2, 5) with constant curvature k = 4/7, 1/2, 4/9. Thus, from [7] it follows that if φ : S2 ...In this article, it is proved that there doesn’t exist any nonsingular holomorphic sphere in complex Grassmann manifold G(2, 5) with constant curvature k = 4/7, 1/2, 4/9. Thus, from [7] it follows that if φ : S2 → G(2, 5) is a nonsingular holomorphic curve with constant curvature K, then, K = 4, 2, 4/3, 1 or 4/5.展开更多
Given an admissible weight w and 0<p<∞, the estimate∫ D|f(z)| pw(z)dm(z)~|f(0)| p+∫ D|f′(z)| p ψ p(z)w(z)dm(z)is valid for all holomorphic functions f in the unit disc D. Here,ψ(r)=∫ 1 rw(t)dtw(r...Given an admissible weight w and 0<p<∞, the estimate∫ D|f(z)| pw(z)dm(z)~|f(0)| p+∫ D|f′(z)| p ψ p(z)w(z)dm(z)is valid for all holomorphic functions f in the unit disc D. Here,ψ(r)=∫ 1 rw(t)dtw(r) is the distortion of w. As an application of the above estimate, it is proved that the Cesàro operator C[·] is bounded on the weighted Bergman spaces L p a,w (D).展开更多
文摘In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strategy to a famous Yau conjecture with a co-homogeneity one geometry.
基金the NSF of China(11571089,11871191)the NSF of Henan Province(222300420397)+1 种基金the NSF of Hebei Province(A2022208007)the Key Foundation of Hebei Normal University(L2018Z01)。
文摘k holomorphic functions are a type of generation of holomorphic functions.In this paper,a nonlinear boundary value problem for k holomorphic functions is primarily discussed on generalized polycylinders in C^(2).The existence of the solution for the problem is studied in detail with the help of the boundary properties of Cauchy type singular integral operators with a k holomorphic kernel.Furthermore,the integral representation for the solution is obtained.
文摘We obtain the expressions for sectional curvature, holomorphic sectional curvature and holomorphic bisectional curvature of a GCR-lightlike submanifold of an indefinite nearly Kahler manifold and obtain characterization theorems for holo- morphic sectional and holomorphic bisectional curvature. We also establish a condi- tion for a GCR-lightlike submanifold of an indefinite complex space form to be a null holomorphically fiat.
基金The second author was supported by the National Natural Science Foundation of China(11501127)Foundation for Distinguished Young Talents in Higher Education of Guangdong Province(2014KQNCX068)The third author was supported by the Foundation of Guangzhou Civil Aviation College(18X0428).
文摘In this paper,we extend the concept of holomorphic curves sharing hyperplanes and introduce definitions of restricted hyperplanes and partial shared hypersurfaces.Then,we prove several normal criteria of the family of holomorphic curves and holomorphic mappings that concern restricted hyperplanes and partial shared hypersurfaces.These results generalize the Montel-type normal criterion of holomorphic curves.
文摘In this paper, we investigate normal families of meromorphic functions, prove some theorems of normal families sharing a holomorphic function, and give a counterex- ample to the converse of the Bloch principle based on the theorems.
基金The first author is supported in part by the Post Doctoral Fellowship at Shandong University.The second author is supported by the national Nature Science Foundation of China (10371065).
文摘Let F be a family of holomorphic functions in a domain D, k be a positive integer, a, b(≠0), c(≠0) and d be finite complex numbers. If, for each f∈F, all zeros of f-d have multiplicity at least k, f^(k) = a whenever f=0, and f=c whenever f^(k) = b, then F is normal in D. This result extends the well-known normality criterion of Miranda and improves some results due to Chen-Fang, Pang and Xu. Some examples are provided to show that our result is sharp.
基金supported by National Natural Science Foundation of China (10871145 10926066)+1 种基金Doctoral Program Foundation of the Ministry of Education of China (20090072110053)Natural Science Foundation of Zhejiang Province (Y6100007)
文摘In this paper, Schwarz-Pick estimates for high order Fr′echet derivatives of bounded holomorphic functions on three kinds of classical domains are presented. We generalize the early work on Schwarz-Pick estimates of higher order partial derivatives for bounded holomorphic functions on the disk and unit ball.
文摘In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-t x C-x(n). Under certain assumptions, they prove the existence and uniqueness of holomorphic solution near origin of C-t x C-x(n).
文摘Some previous results on convergence of Taylor series in C^n [3] are improved by indicating outside the domain of convergence the points where the series diverges and simplifying some proofs. These results contain the Cauchy-Hadamard theorem in C. Some Cauchy integral formulas of a holomorphic function on a closed ball in C^n are constructed and the Taylor series expansion is deduced.
基金supported by National Natural Science Foundations of China(11011373,11201199,11271333)Zhejiang Provincial Natural Science Foundation of China(LY14A010008)
文摘In this note, we consider a holomorphic mapping f from the unit disk C in C to p-ball B^p = {z∈C^n;i=1∑n|zi|p〈1,1〈p〈+∞. It is proved that for such f,| | |f||(z)|≤1-||f(z)||^2/1-|z|^2,z∈D. The extremal problem is also discussed when p is an even number. This result extends some related results on Schwarz lemma.
基金project supported in part by the National Natural Science Foundation of China(10971156)
文摘This article proves the existence of Julia directions of value distribution of holomorphic mapping f from the unit disk into the n-dimensional complex projective spacePn(C) under the assumption limsupT(r,f)/log 1/1-r = +∞ for hypersurfaces in general position. A heuristic principle concerning the existence of Julia directions of holomorphic mappings from the unit disk into Pn(C) is given also.
基金Supported by NNSF of China (6087349, 10871150)863Project of China (2008AA01Z419)+1 种基金RFDP of Higher Education (20060486001)Post-Doctor Foundation ofChina (20090460316)
文摘In this article, we mainly develop the foundation of a new function theory of several complex variables with values in a complex Clifford algebra defined on some subdomains of C^n+l, so-called complex holomorphic Cliffordian functions. We define the complex holomorphic Cliffordian functions, study polynomial and singular solutions of the equation D△^mf= 0, obtain the integral representation formula for the complex holo-morphic Cliffordian functions with values in a complex Clifford algebra defined on some submanifolds of C^n+1, deduce the Taylor expansion and the Laurent expansion for them and prove an invariance under an action of Lie group for them.
基金The project supported in part by the National Natural Science Foundation of China (10371091)
文摘This article proves the existence of singular directions of value distribution theory for some transcendental holomorphic curves in the n-dimensional complex projective space P^n(C).. An example is given to complement these results.
基金supported by National Natural Science Foundation of China(12001490)Natural Science Foundation of Zhejiang Province(LQ20A010005).
文摘In this paper,we derive some∂∂^(-)-Bochner formulas for holomorphic maps between Hermitian manifolds.As applications,we prove some Schwarz lemma type estimates,and some rigidity and degeneracy theorems.For instance,we show that there is no non-constant holomorphic map from a compact Hermitian manifold with positive(resp.non-negative)ℓ-second Ricci curvature to a Hermitian manifold with non-positive(resp.negative)real bisectional curvature.These theorems generalize the results[5,6]proved recently by L.Ni on Kähler manifolds to Hermitian manifolds.We also derive an integral inequality for a holomorphic map between Hermitian manifolds.
基金supported by the National Natural Science Foundation of China(11201199)the Scientific Research Foundation of Jinling Institute of Technology(Jit-b-201221)Qing Lan Project
文摘In this paper we prove a Schwarz-Pick lemma for the modulus of holomorphic mappings from the polydisk into the unit ball. This result extends some related results.
基金supported by the CERG grant HKU701803 of the Research Grants Council, Hong Kong
文摘In this article we bounded symmetric domains study holomorphic isometries of the Poincare disk into Earlier we solved the problem of analytic continuation of germs of holomorphic maps between bounded domains which are isometrics up to normalizing constants with respect to the Bergman metric, showing in particular that the graph 170 of any germ of holomorphic isometry of the Poincar6 disk A into an irreducible bounded symmetric domain Ω belong to C^N in its Harish-Chandra realization must extend to an affinealgebraic subvariety V belong to C × C^N = C^N+1, and that the irreducible component of V ∩ (△ × Ω) containing V0 is the graph of a proper holomorphic isometric embedding F : A→ Ω. In this article we study holomorphie isometric embeddings which are asymptotically geodesic at a general boundary point b ∈ δ△. Starting with the structural equation for holomorphic isometrics arising from the Gauss equation, we obtain by covariant differentiation an identity relating certain holomorphic bisectional curvatures to the boundary behavior of the second fundamental form σ of the holomorphie isometric embedding. Using the nonpositivity of holomorphic bisectional curvatures on a bounded symmetric domain, we prove that ‖σ‖ must vanish at a general boundary point either to the order 1 or to the order 1/2, called a holomorphie isometry of the first resp. second kind. We deal with special cases of non-standard holomorphic isometric embeddings of such maps, showing that they must be asymptotically totally geodesic at a general boundary point and in fact of the first kind whenever the target domain is a Cartesian product of complex unit balls. We also study the boundary behavior of an example of holomorphic isometric embedding from the Poincare disk into a Siegel upper half-plane by an explicit determination of the boundary behavior of holomorphic sectional curvatures in the directions tangent to the embedded Poincare disk, showing that the map is indeed asymptotically totally geodesic at a general boundary point and of the first kind. For the metric computation we make use of formulas for symplectic geometry on Siegel upper half-planes.
基金supported in part by the National Natural Science Foundation of China(10371091)
文摘This article gives a normal criterion for families of holomorphic mappings of several complex variables into P N(C)for moving hypersurfaces in pointwise general position,related to an Eremenko’s theorem.
基金Supported by the National Natural Science Foundation of China (10531090)Knowledge Innovation Funds of CAS (KJCX3-SYW-S03)
文摘In this article, it is proved that there doesn’t exist any nonsingular holomorphic sphere in complex Grassmann manifold G(2, 5) with constant curvature k = 4/7, 1/2, 4/9. Thus, from [7] it follows that if φ : S2 → G(2, 5) is a nonsingular holomorphic curve with constant curvature K, then, K = 4, 2, 4/3, 1 or 4/5.
基金the1 5 1 Projection and the Natural Science Foundation of Zhejiang Province( M1 0 31 0 4 )
文摘Given an admissible weight w and 0<p<∞, the estimate∫ D|f(z)| pw(z)dm(z)~|f(0)| p+∫ D|f′(z)| p ψ p(z)w(z)dm(z)is valid for all holomorphic functions f in the unit disc D. Here,ψ(r)=∫ 1 rw(t)dtw(r) is the distortion of w. As an application of the above estimate, it is proved that the Cesàro operator C[·] is bounded on the weighted Bergman spaces L p a,w (D).