Copper,one of the most prolific transition metals in the body,is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations.Copper homeostasis is...Copper,one of the most prolific transition metals in the body,is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations.Copper homeostasis is meticulously maintained through a complex network of copper-dependent proteins,including copper transporters(CTR1 and CTR2),the two copper ion transporters the Cu-transporting ATPase 1(ATP7A)and Cu-transporting beta(ATP7B),and the three copper chaperones ATOX1,CCS,and COX17.Disruptions in copper homeostasis can lead to either the deficiency or accumulation of copper in brain tissue.Emerging evidence suggests that abnormal copper metabolism or copper binding to various proteins,including ceruloplasmin and metallothionein,is involved in the pathogenesis of neurodegenerative disorders.However,the exact mechanisms underlying these processes are not known.Copper is a potent oxidant that increases reactive oxygen species production and promotes oxidative stress.Elevated reactive oxygen species levels may further compromise mitochondrial integrity and cause mitochondrial dysfunction.Reactive oxygen species serve as key signaling molecules in copper-induced neuroinflammation,with elevated levels activating several critical inflammatory pathways.Additionally,copper can bind aberrantly to several neuronal proteins,including alphasynuclein,tau,superoxide dismutase 1,and huntingtin,thereby inducing neurotoxicity and ultimately cell death.This study focuses on the latest literature evaluating the role of copper in neurodegenerative diseases,with a particular focus on copper-containing metalloenzymes and copper-binding proteins in the regulation of copper homeostasis and their involvement in neurodegenerative disease pathogenesis.By synthesizing the current findings on the functions of copper in oxidative stress,neuroinflammation,mitochondrial dysfunction,and protein misfolding,we aim to elucidate the mechanisms by which copper contributes to a wide range of hereditary and neuronal disorders,such as Wilson's disease,Menkes'disease,Alzheimer's disease,Parkinson's disease,amyotrophic lateral sclerosis,Huntington's disease,and multiple sclerosis.Potential clinically significant therapeutic targets,including superoxide dismutase 1,D-penicillamine,and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline,along with their associated therapeutic agents,are further discussed.Ultimately,we collate evidence that copper homeostasis may function in the underlying etiology of several neurodegenerative diseases and offer novel insights into the potential prevention and treatment of these diseases based on copper homeostasis.展开更多
Mitochondria play an essential role in neural function,such as supporting normal energy metabolism,regulating reactive oxygen species,buffering physiological calcium loads,and maintaining the balance of morphology,sub...Mitochondria play an essential role in neural function,such as supporting normal energy metabolism,regulating reactive oxygen species,buffering physiological calcium loads,and maintaining the balance of morphology,subcellular distribution,and overall health through mitochondrial dynamics.Given the recent technological advances in the assessment of mitochondrial structure and functions,mitochondrial dysfunction has been regarded as the early and key pathophysiological mechanism of cognitive disorders such as Alzheimer’s disease,Parkinson’s disease,Huntington’s disease,mild cognitive impairment,and postoperative cognitive dysfunction.This review will focus on the recent advances in mitochondrial medicine and research methodology in the field of cognitive sciences,from the perspectives of energy metabolism,oxidative stress,calcium homeostasis,and mitochondrial dynamics(including fission-fusion,transport,and mitophagy).展开更多
The inflammatory microenvironment and neurotoxicity can hinder neuronal regeneration and functional recovery after spinal cord injury.Ruxolitinib,a JAK-STAT inhibitor,exhibits effectiveness in autoimmune diseases,arth...The inflammatory microenvironment and neurotoxicity can hinder neuronal regeneration and functional recovery after spinal cord injury.Ruxolitinib,a JAK-STAT inhibitor,exhibits effectiveness in autoimmune diseases,arthritis,and managing inflammatory cytokine storms.Although studies have shown the neuroprotective potential of ruxolitinib in neurological trauma,the exact mechanism by which it enhances functional recovery after spinal cord injury,particularly its effect on astrocytes,remains unclear.To address this gap,we established a mouse model of T10 spinal cord contusion and found that ruxolitinib effectively improved hindlimb motor function and reduced the area of spinal cord injury.Transcriptome sequencing analysis showed that ruxolitinib alleviated inflammation and immune response after spinal cord injury,restored EAAT2 expression,reduced glutamate levels,and alleviated excitatory toxicity.Furthermore,ruxolitinib inhibited the phosphorylation of JAK2 and STAT3 in the injured spinal cord and decreased the phosphorylation level of nuclear factor kappa-B and the expression of inflammatory factors interleukin-1β,interleukin-6,and tumor necrosis factor-α.Additionally,in glutamate-induced excitotoxicity astrocytes,ruxolitinib restored EAAT2 expression and increased glutamate uptake by inhibiting the activation of STAT3,thereby reducing glutamate-induced neurotoxicity,calcium influx,oxidative stress,and cell apoptosis,and increasing the complexity of dendritic branching.Collectively,these results indicate that ruxolitinib restores glutamate homeostasis by rescuing the expression of EAAT2 in astrocytes,reduces neurotoxicity,and effectively alleviates inflammatory and immune responses after spinal cord injury,thereby promoting functional recovery after spinal cord injury.展开更多
Regulation of iron homeostasis in maize remains unclear,despite the known roles of FER-Like Fe deficiency-induced transcription factor(FIT)in Arabidopsis and rice.ZmFIT,like At FIT and Os FIT,interacts with iron-relat...Regulation of iron homeostasis in maize remains unclear,despite the known roles of FER-Like Fe deficiency-induced transcription factor(FIT)in Arabidopsis and rice.ZmFIT,like At FIT and Os FIT,interacts with iron-related transcription factors 2(ZmIRO2).Here,we investigate the involvement of ZmFIT in iron homeostasis.Mutant ZmFIT lines exhibiting symptoms of Fe deficiency had reduced shoot iron content.Transcriptome analysis revealed downregulation of Fe deficiency-responsive genes in the roots of a Zmfit mutant.ZmFIT facilitates the nuclear translocation of ZmIRO2 to activate transcription of downstream genes under Fe-deficient conditions.Our findings suggest that ZmFIT,by interaction with ZmIRO2,mediates iron homeostasis in maize.Notably,the binding and activation mechanisms of ZmFIT resemble those in Arabidopsis but differ from those in rice,whereas downstream genes regulated by ZmFIT show similarities to rice but differences from Arabidopsis.In brief,ZmFIT,orthgologs of Os FIT and At FIT in rice and maize,respectively,regulates iron uptake and homeostasis in maize,but with variations.展开更多
Brain homeostasis refe rs to the normal working state of the brain in a certain period,which is impo rtant for overall health and normal life activities.Currently,there is a lack of effective treatment methods for the...Brain homeostasis refe rs to the normal working state of the brain in a certain period,which is impo rtant for overall health and normal life activities.Currently,there is a lack of effective treatment methods for the adverse consequences caused by brain homeostasis imbalance.Snapin is a protein that assists in the formation of neuronal synapses and plays a crucial role in the normal growth and development of synapses.Recently,many researchers have reported the association between snapin and neurologic and psychiatric disorders,demonstrating that snapin can improve brain homeostasis.Clinical manifestations of brain disease often involve imbalances in brain homeostasis and may lead to neurological and behavioral sequelae.This article aims to explo re the role of snapin in restoring brain homeostasis after injury or diseases,highlighting its significance in maintaining brain homeostasis and treating brain diseases.Additionally,it comprehensively discusses the implications of snapin in other extracerebral diseases such as diabetes and viral infections,with the objective of determining the clinical potential of snapin in maintaining brain homeostasis.展开更多
Background Cold stress has negative effects on the growth and health of mammals, and has become a factor restricting livestock development at high latitudes and on plateaus. The gut-liver axis is central to energy met...Background Cold stress has negative effects on the growth and health of mammals, and has become a factor restricting livestock development at high latitudes and on plateaus. The gut-liver axis is central to energy metabolism, and the mechanisms by which it regulates host energy metabolism at cold temperatures have rarely been illustrated. In this study, we evaluated the status of glycolipid metabolism and oxidative stress in pigs based on the gut-liver axis and propose that AMP-activated protein kinase(AMPK) is a key target for alleviating energy stress at cold temperatures by dietary fat supplementation.Results Dietary fat supplementation alleviated the negative effects of cold temperatures on growth performance and digestive enzymes, while hormonal homeostasis was also restored. Moreover, cold temperature exposure increased glucose transport in the jejunum. In contrast, we observed abnormalities in lipid metabolism, which was characterized by the accumulation of bile acids in the ileum and plasma. In addition, the results of the ileal metabolomic analysis were consistent with the energy metabolism measurements in the jejunum, and dietary fat supplementation increased the activity of the mitochondrial respiratory chain and lipid metabolism. As the central nexus of energy metabolism, the state of glycolipid metabolism and oxidative stress in the liver are inconsistent with that in the small intestine. Specifically, we found that cold temperature exposure increased glucose transport in the liver, which fully validates the idea that hormones can act on the liver to regulate glucose output. Additionally, dietary fat supplementation inhibited glucose transport and glycolysis, but increased gluconeogenesis, bile acid cycling, and lipid metabolism. Sustained activation of AMPK, which an energy receptor and regulator, leads to oxidative stress and apoptosis in the liver;dietary fat supplementation alleviates energy stress by reducing AMPK phosphorylation.Conclusions Cold stress reduced the growth performance and aggravated glycolipid metabolism disorders and oxidative stress damage in pigs. Dietary fat supplementation improved growth performance and alleviated cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis. In this study, we high-light the importance of AMPK in dietary fat supplementation-mediated alleviation of host energy stress in response to environmental changes.展开更多
Bone loss caused by ageing has become one of the leading health risk factors worldwide.Wheat germ(WG)is consists of high amounts of bioactive peptides,polyunsaturated fatty acids,and dietary fibre.Currently,WG has bee...Bone loss caused by ageing has become one of the leading health risk factors worldwide.Wheat germ(WG)is consists of high amounts of bioactive peptides,polyunsaturated fatty acids,and dietary fibre.Currently,WG has been proven to possess strong antioxidant and anti-infl ammatory properties.We recently explored the beneficial effects and relevant mechanisms of a WG-rich diet(2.5%and 5%WG,m/m)on bone homeostasis in aged rats.Our results showed that 5%WG supplementation for 12 months effectively attenuated ageing-induced microstructural damage and differentiation activity changes in the femur.The 5%WG supplementation also signifi cantly increased the levels of total antioxidant capacity(T-AOC),glutathione peroxidase(GSH-Px)(P<0.01),and superoxide dismutase(SOD)(P<0.05),and decreased infl ammatory cytokine levels(tumor necrosis factor-α(TNF-α)and interleukin-6(IL-6))(P<0.01).Furthermore,the WG-rich diet reshaped the composition of the gut microbiota,enhancing short-chain fatty acids(SCFAs)-producing microbes and reducing infl ammation-related microbes.In addition,metabolomics analysis showed that 5%WG supplementation improved plasma metabolites related to bone metabolism.Conclusively,our study purports long-term WG-rich diet may preserve bone homeostasis by regulating gut microbiota and plasma metabolites in aged rats.展开更多
Alzheimer’s disease(AD)is a major age-related form of dementia with a number of cases exponentially growing,causing enormous social and economic impact on individuals and society.Neuropathological hallmarks of AD,evi...Alzheimer’s disease(AD)is a major age-related form of dementia with a number of cases exponentially growing,causing enormous social and economic impact on individuals and society.Neuropathological hallmarks of AD,evident in postmortem AD brains,include a massive loss of the grey matter in the neocortex,extracellular deposition of amyloid-β(Aβ)in the form of senile plaques and cerebrovascular amyloid angiopathy,and intra-neuronal accumulation of neurofibrillary tangles,formed by hyper-phosphorylated tau protein.展开更多
Wnts are secreted,lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways,which control various biological processes throughout embryo...Wnts are secreted,lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways,which control various biological processes throughout embryonic development and adult life.Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses.展开更多
Parkinson’s disease(PD) is characterized by the slow and progressive demise of dopamine(DA)-synthesizing neurons in the substantia nigra pars compacta(SNc),a nucleus located in the human ventral midbrain.Neuron death...Parkinson’s disease(PD) is characterized by the slow and progressive demise of dopamine(DA)-synthesizing neurons in the substantia nigra pars compacta(SNc),a nucleus located in the human ventral midbrain.Neuron death also affects other regions in the brain at later stages of PD.The concomitant lack of DA in the human forebrain(striatum) leads to the typical motor symptoms of this still uncurable neurodegenerative disorder.展开更多
Apolipoprotein E receptor 2(ApoER2)is a receptor for the protein ApoE,the most common genetic risk factor for late-onset Alzheimer's disease(AD).It is also a key modulator of syna ptic homeostasis,in part through ...Apolipoprotein E receptor 2(ApoER2)is a receptor for the protein ApoE,the most common genetic risk factor for late-onset Alzheimer's disease(AD).It is also a key modulator of syna ptic homeostasis,in part through its effect on the expression of neuronal genes including those implicated in AD and other neuropsychiatric disorders.In this perspective,we highlight several genes affected by ApoER2 and its alternatively spliced forms and how aberrant expression can be rescued by the reintroduction of the ApoER2 intracellular domain in the mouse hippocampus.展开更多
Grain water content(GWC)is a key determinant for mechanical harvesting of maize(Zea mays).In our previous research,we identified a quantitative trait locus,qGWC1,associated with GWC in maize.Here,we examined near-isog...Grain water content(GWC)is a key determinant for mechanical harvesting of maize(Zea mays).In our previous research,we identified a quantitative trait locus,qGWC1,associated with GWC in maize.Here,we examined near-isogenic lines(NILs)NILL and NILH that differed at the qGWC1 locus.Lower GWC in NILL was primarily attributed to reduced grain water weight(GWW)and smaller fresh grain size,rather than the accumulation of dry matter.The difference in GWC between the NILs became more pronounced approximately 35 d after pollination(DAP),arising from a faster dehydration rate in NILL.Through an integrated analysis of the transcriptome,proteome,and metabolome,coupled with an examination of hormones and their derivatives,we detected a marked decrease in JA,along with an increase in cytokinin,storage forms of IAA(IAA-Glu,IAA-ASP),and IAA precursor IPA in immature NILL kernels.During kernel development,genes associated with sucrose synthases,starch biosynthesis,and zein production in NILL,exhibited an initial up-regulation followed by a gradual down-regulation,compared to those in NILH.This discovery highlights the crucial role of phytohormone homeostasis and genes related to kernel development in balancing GWC and dry matter accumulation in maize kernels.展开更多
Aim Intracellular calcium ([Ca^(2+) ]_i) is mainly regulated by mitochondriaand endo-plasmic reticula. This study was carried out to ascertain whether the elementary mechanismof the effects of etimicin (EM) and gentam...Aim Intracellular calcium ([Ca^(2+) ]_i) is mainly regulated by mitochondriaand endo-plasmic reticula. This study was carried out to ascertain whether the elementary mechanismof the effects of etimicin (EM) and gentamicin (GM) on [Ca^(2+) ]_i is related to their effects onmitochondrion Ca^(2+) -uptake and endoplasmic reticulum Ca^(2+) -uptake. Methods The effects of GMand EM on [Ca^(2+) ]_i in LLC-PK1 were determined with a fluorescent probe of Fura-2/AM. The effectsof EM and GM on mitochondrion Ca^(2+) -uptake and endoplasmic reticulum Ca^(2+) -uptake weredetermined by isotope indicator (^(45)Ca^(2+) ) . Results EM and GM at the concentration of 1mmol·L^(-1) had no significant effect on [Ca^(2+) ]_i(P. > 0.05) and at 10 mmol·L^(-1)significantly caused [Ca^(2+) ]_i to increase (P < 0.01). EM and GM at 1 mmol·L^(-1) causedmitochondrion Ca^(2+)-uptake to ascend dramatically (P < 0.05) and at 10 mmol·L^(-1) causedmitochondrion Ca^(2+) -uptake to descend significantly. EM and GM at more than 0.34 mrnol·L^(-1)significantly inhibited endoplasmic reticulum Ca^(2+) -uptake (P < 0.05 or 0.01). Conclusion Novariation of [Ca^(2+) ]_i caused by EM and GM at lower concentrations might relate to theequilibrium of their promotion of mitochondrion Ca^(2+) -uptake with their inhibition of endoplasmicreticulum Ca^(2+) -uptake. The elevation of [Ca^(2+) ]_i caused by EM and GM at higherconcentrations might correlate with their inhibition of mitochondrion Ca^(2+) -uptake andendoplasmic reticulum Ca^(2+) -uptake.展开更多
Iron is an essential element for plant growth and development. Iron homeostasis in plants is tightly regulated at both transcriptional and posttranscriptional level. Several bHLH transcription factors involved in iron...Iron is an essential element for plant growth and development. Iron homeostasis in plants is tightly regulated at both transcriptional and posttranscriptional level. Several bHLH transcription factors involved in iron homeostasis have been identified recently. However, their regulatory mechanisms remain unknown. In this work, we demonstrate that the transcription factor FIT interacted with AtbHLH38 and AtbHLH39 and directly conferred the expression regulation of iron uptake genes for iron homeostasis in Arabidopsis. Yeast two-hybrid analysis and transient expression in Arabidopsis protoplasts showed that AtbHLH38 or AtbHLH39 interacted with FIT, a central transcription factor involved in iron homeostasis in Arabidopsis. Expression of FIT/AtbHLH38 or FIT/AtbHLH39 in yeast cells activated GUS expression driven by ferric chelate reductase (FRO2) and ferrous transporter (IRT1) promoters. Overexpression of FITwith either AtbHLH38 or AtbHLH39 in plants converted the expression of the iron uptake genes FRO2 and IRT1 from induced to constitutive. Further analysis revealed that FRO2 and IRT1 were not regulated at the posttranscriptional level in these plants because IRT1 protein accumulation and high ferric chelate reductase activity were detected in the overexpression plants under both iron deficiency and iron sufficiency. The double overexpression plants accumulated more iron in their shoots than wild type or the plants overexpressing either AtbHLH38, AtbHLH39 or FIT. Our data support that ferric-chelate reductase FRO2 and ferrous-transporter IRT1 are the targets of the three transcription factors and the transcription of FRO2 and IRT1 is directly regulated by a complex of FIT/AtbHLH38 or FIT/AtbHLH39.展开更多
Immune-mediated liver injury is widely seen during hepatitis B virus(HBV) infection. Unsuccessful immune clearance of HBV results in chronic hepatitis and increases the risk of liver cirrhosis and hepatocellular carci...Immune-mediated liver injury is widely seen during hepatitis B virus(HBV) infection. Unsuccessful immune clearance of HBV results in chronic hepatitis and increases the risk of liver cirrhosis and hepatocellular carcinoma. HBV-related liver fibrosis(HBVLF),occurring as a result of HBV-induced chronic hepatitis,is a reversible,intermediate stage of chronic hepatitis B(CHB) and liver cirrhosis. Therefore,defining the pathogenesis of HBVLF is of practical significance for achieving better clinical outcomes. Recently,the homeostasis of CD4+ T cells was considered to be pivotal in the process of HBVLF. To better uncover the underlying mechanisms,in this review,we systematically retrospect the impacts of different CD4+T-cell subsets on CHB and HBVLF. We emphasize CD4+ T-cell homeostasis and the important balance between regulatory T(Treg) and T helper 17(Th17) cells. We discuss some cytokines associated with Treg and Th17 cells such as interleukin(IL)-17,IL-22,IL-21,IL-23,IL-10,IL-35 and IL-33,as well as surface molecules such as programmed cell death protein 1,cytotoxic T lymphocyte-associated antigen 4,T cell immunoglobulin domain and mucin domain-containing molecule 3 and cannabinoid receptor 2 that have potential therapeutic implications for the homeostasis of CD4+ T cells in CHB and HBVLF.展开更多
INTRODUCTIONThe transforming growth factor-β (TGF-β) superfamily com- prises TGF-βs, Activin, bone morphogenetic proteins (BMPs) and other related proteins. TGF-β superfamily members act through a heteromeric ...INTRODUCTIONThe transforming growth factor-β (TGF-β) superfamily com- prises TGF-βs, Activin, bone morphogenetic proteins (BMPs) and other related proteins. TGF-β superfamily members act through a heteromeric receptor complex,, comprised of type I and type II receptors at the cell surface that transduce intracellular signals via Smad complex or mitogen-activated protein kinase (MAPK) cascade.展开更多
Autophagy is an evolutionarily conserved intracellular process,in which domestic cellular components are selectively digested for the recycling of nutrients and energy.This process is indispensable for cell homeostasi...Autophagy is an evolutionarily conserved intracellular process,in which domestic cellular components are selectively digested for the recycling of nutrients and energy.This process is indispensable for cell homeostasis maintenance and stress responses.Both genetic and functional studies have demonstrated that multiple proteins involved in autophagic activities are critical to the survival,differentiation,and functioning of bone cells,including osteoblasts,osteocytes,and osteoclasts.Dysregulation at the level of autophagic activity consequently disturbs the balance between bone formation and bone resorption and mediates the onset and progression of multiple bone diseases,including osteoporosis.This review aims to introduce the topic of autophagy,summarize the understanding of its relevance in bone physiology,and discuss its role in the onset of osteoporosis and therapeutic potential.展开更多
The rice Eui (ELONGATED UPPERMOST INTERNODE) gene encodes a cytochrome P450 monooxygenase that deactivates bioactive gibberellins (GAs). In this study, we investigated controlled expression of the Eui gene and its...The rice Eui (ELONGATED UPPERMOST INTERNODE) gene encodes a cytochrome P450 monooxygenase that deactivates bioactive gibberellins (GAs). In this study, we investigated controlled expression of the Eui gene and its role in plant development. We found that Eui was differentially induced by exogenous GAs and that the Eui promoter had the highest activity in the vascular bundles. The eui mutant was defective in starch granule development in root caps and Eui overexpression enhanced starch granule generation and gravity responses, revealing a role for GA in root starch granule development and gravity responses. Experiments using embryoless half-seeds revealed that RAmylA and GAmyb were highly upregulated in eui aleurone ceils in the absence of exogenous GA. In addition, the GA biosynthesis genes GA3oxl and GA20ox2 were downregulated and GA2oxl was upregulated in eui seedlings. These results indicate that EUI is involved in GA homeostasis, not only in the internodes at the heading stage, but also in the seedling stage, roots and seeds. Disturbing GA homeostasis affected the expression of the GA signaling genes GID1 (GIBBERELLIN INSENSITIVE DWARF 1), GID2 and SLR1. Transgenic RNA interference of the Eui gene effectively increased plant height and improved heading performance. By contrast, the ectopic expression of Eui under the promoters of the rice GA biosynthesis genes GA3ox2 and GA2Oox2 significantly reduced plant height. These results demonstrate that a slight increase in Eui expression could dramatically change rice morphology, indicating the practical application of the Eui gene in rice molecular breeding for a high yield potential.展开更多
It has been almost three decades since the term "apoptosis" was first coined to describe a unique form of cell death that involves orderly, gene-dependent cell disintegration. It is now well accepted that apoptosis ...It has been almost three decades since the term "apoptosis" was first coined to describe a unique form of cell death that involves orderly, gene-dependent cell disintegration. It is now well accepted that apoptosis is an essential life process for metazoan animals and is critical for the formation and function of tissues and organs. In the adult mammalian body, apoptosis is especially important for proper functioning of the immune system. In recent years, along with the rapid advancement of molecular and cellular biology, great progress has been made in understanding the mechanisms leading to apoptosis. It is generally accepted that there are two major pathways ofapoptotic cell death induction: extrin- sic signaling through death receptors that leads to the formation of the death-inducing signaling complex (DISC), and intrinsic signaling mainly through mitochondria which leads to the formation of the apoptosome. Formation of the DISC or apoptosome, respectively, activates initiator and common effector caspases that execute the apoptosis process. In the immune system, both pathways operate; however, it is not known whether they are sufficient to maintain lymphocyte homeostasis. Recently, new apoptotic mechanisms including caspase-independent pathways and granzyme-initiated pathways have been shown to exist in lymphocytes. This review will summarize our understanding of the mechanisms that control the homeostasis of various lymphocyte populations.展开更多
Objective To reveal the effects and related mechanisms of chlorogenic acid(CGA)on intestinal glucose homeostasis.Methods Forty male Sprague-Dawley rats were randomly and equally divided into four groups:normal chow(NC...Objective To reveal the effects and related mechanisms of chlorogenic acid(CGA)on intestinal glucose homeostasis.Methods Forty male Sprague-Dawley rats were randomly and equally divided into four groups:normal chow(NC),high-fat diet(HFD),HFD with low-dose CGA(20 mg/kg,HFD-LC),and HFD with high-dose CGA(90 mg/kg,HFD-HC).The oral glucose tolerance test was performed,and fast serum insulin(FSI)was detected using an enzyme-linked immunosorbent assay.The m RNA expression levels of glucose transporters(Sglt-1 and Glut-2)and proglucagon(Plg)in different intestinal segments(the duodenum,jejunum,ileum,and colon)were analyzed using quantitative real-time polymerase chain reaction.SGLT-1 protein and the morphology of epithelial cells in the duodenum and jejunum was localized by using immunofluorescence.Results At both doses,CGA ameliorated the HFD-induced body weight gain,maintained FSI,and increased postprandial 30-min glucagon-like peptide 1 secretion.High-dose CGA inhibited the HFD-induced elevation in Sglt-1 expression.Both CGA doses normalized the HFD-induced downregulation of Glut-2 and elevated the expression of Plg in all four intestinal segments.Conclusion An HFD can cause a glucose metabolism disorder in the rat intestine and affect body glucose homeostasis.CGA can modify intestinal glucose metabolism by regulating the expression of intestinal glucose transporters and Plg,thereby controlling the levels of blood glucose and insulin to maintain glucose homeostasis.展开更多
基金supported by the Notional Natural Science Foundation of Chino,No.82160690Colloborotive Innovation Center of Chinese Ministry of Education,No.2020-39Science and Technology Foundation of Guizhou Province,No.ZK[2021]-014(all to FZ)。
文摘Copper,one of the most prolific transition metals in the body,is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations.Copper homeostasis is meticulously maintained through a complex network of copper-dependent proteins,including copper transporters(CTR1 and CTR2),the two copper ion transporters the Cu-transporting ATPase 1(ATP7A)and Cu-transporting beta(ATP7B),and the three copper chaperones ATOX1,CCS,and COX17.Disruptions in copper homeostasis can lead to either the deficiency or accumulation of copper in brain tissue.Emerging evidence suggests that abnormal copper metabolism or copper binding to various proteins,including ceruloplasmin and metallothionein,is involved in the pathogenesis of neurodegenerative disorders.However,the exact mechanisms underlying these processes are not known.Copper is a potent oxidant that increases reactive oxygen species production and promotes oxidative stress.Elevated reactive oxygen species levels may further compromise mitochondrial integrity and cause mitochondrial dysfunction.Reactive oxygen species serve as key signaling molecules in copper-induced neuroinflammation,with elevated levels activating several critical inflammatory pathways.Additionally,copper can bind aberrantly to several neuronal proteins,including alphasynuclein,tau,superoxide dismutase 1,and huntingtin,thereby inducing neurotoxicity and ultimately cell death.This study focuses on the latest literature evaluating the role of copper in neurodegenerative diseases,with a particular focus on copper-containing metalloenzymes and copper-binding proteins in the regulation of copper homeostasis and their involvement in neurodegenerative disease pathogenesis.By synthesizing the current findings on the functions of copper in oxidative stress,neuroinflammation,mitochondrial dysfunction,and protein misfolding,we aim to elucidate the mechanisms by which copper contributes to a wide range of hereditary and neuronal disorders,such as Wilson's disease,Menkes'disease,Alzheimer's disease,Parkinson's disease,amyotrophic lateral sclerosis,Huntington's disease,and multiple sclerosis.Potential clinically significant therapeutic targets,including superoxide dismutase 1,D-penicillamine,and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline,along with their associated therapeutic agents,are further discussed.Ultimately,we collate evidence that copper homeostasis may function in the underlying etiology of several neurodegenerative diseases and offer novel insights into the potential prevention and treatment of these diseases based on copper homeostasis.
基金supported by the National Natural Science Foundation of China,Nos.82271222(to ZL),81971012(to ZL),82071189(to XG),and 82201335(to YL)Key Clinical Projects of Peking University Third Hospital,No.BYSYZD2019027(to ZL)。
文摘Mitochondria play an essential role in neural function,such as supporting normal energy metabolism,regulating reactive oxygen species,buffering physiological calcium loads,and maintaining the balance of morphology,subcellular distribution,and overall health through mitochondrial dynamics.Given the recent technological advances in the assessment of mitochondrial structure and functions,mitochondrial dysfunction has been regarded as the early and key pathophysiological mechanism of cognitive disorders such as Alzheimer’s disease,Parkinson’s disease,Huntington’s disease,mild cognitive impairment,and postoperative cognitive dysfunction.This review will focus on the recent advances in mitochondrial medicine and research methodology in the field of cognitive sciences,from the perspectives of energy metabolism,oxidative stress,calcium homeostasis,and mitochondrial dynamics(including fission-fusion,transport,and mitophagy).
基金supported by the National Natural Science Foundation of China,No.82272484(to XC).
文摘The inflammatory microenvironment and neurotoxicity can hinder neuronal regeneration and functional recovery after spinal cord injury.Ruxolitinib,a JAK-STAT inhibitor,exhibits effectiveness in autoimmune diseases,arthritis,and managing inflammatory cytokine storms.Although studies have shown the neuroprotective potential of ruxolitinib in neurological trauma,the exact mechanism by which it enhances functional recovery after spinal cord injury,particularly its effect on astrocytes,remains unclear.To address this gap,we established a mouse model of T10 spinal cord contusion and found that ruxolitinib effectively improved hindlimb motor function and reduced the area of spinal cord injury.Transcriptome sequencing analysis showed that ruxolitinib alleviated inflammation and immune response after spinal cord injury,restored EAAT2 expression,reduced glutamate levels,and alleviated excitatory toxicity.Furthermore,ruxolitinib inhibited the phosphorylation of JAK2 and STAT3 in the injured spinal cord and decreased the phosphorylation level of nuclear factor kappa-B and the expression of inflammatory factors interleukin-1β,interleukin-6,and tumor necrosis factor-α.Additionally,in glutamate-induced excitotoxicity astrocytes,ruxolitinib restored EAAT2 expression and increased glutamate uptake by inhibiting the activation of STAT3,thereby reducing glutamate-induced neurotoxicity,calcium influx,oxidative stress,and cell apoptosis,and increasing the complexity of dendritic branching.Collectively,these results indicate that ruxolitinib restores glutamate homeostasis by rescuing the expression of EAAT2 in astrocytes,reduces neurotoxicity,and effectively alleviates inflammatory and immune responses after spinal cord injury,thereby promoting functional recovery after spinal cord injury.
基金supported by the National Key Research and Development Program of China (2021YFF1000304)the National Natural Science Foundation of China (32001550)the National Key Research and Development Program of China (2021YFD1200700,2023YFD1202903)。
文摘Regulation of iron homeostasis in maize remains unclear,despite the known roles of FER-Like Fe deficiency-induced transcription factor(FIT)in Arabidopsis and rice.ZmFIT,like At FIT and Os FIT,interacts with iron-related transcription factors 2(ZmIRO2).Here,we investigate the involvement of ZmFIT in iron homeostasis.Mutant ZmFIT lines exhibiting symptoms of Fe deficiency had reduced shoot iron content.Transcriptome analysis revealed downregulation of Fe deficiency-responsive genes in the roots of a Zmfit mutant.ZmFIT facilitates the nuclear translocation of ZmIRO2 to activate transcription of downstream genes under Fe-deficient conditions.Our findings suggest that ZmFIT,by interaction with ZmIRO2,mediates iron homeostasis in maize.Notably,the binding and activation mechanisms of ZmFIT resemble those in Arabidopsis but differ from those in rice,whereas downstream genes regulated by ZmFIT show similarities to rice but differences from Arabidopsis.In brief,ZmFIT,orthgologs of Os FIT and At FIT in rice and maize,respectively,regulates iron uptake and homeostasis in maize,but with variations.
基金supported by the National Natural Science Foundation of China,Nos.82071382(to MZ),81601306(to HS)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)(to MZ)+5 种基金Jiangsu 333 High Level Talent Training Project(2022)(to HS)the Jiangsu Maternal and Child Health Research Key Project(F202013)(to HS)Jiangsu Talent Youth Medical Program,No.QNRC2016245(to HS)Shanghai Key Lab of Forensic Medicine,No.KF2102(to MZ)Suzhou Science and Technology Development Project,No.SYS2020089(to MZ)the Fifth Batch of Gusu District Health Talent Training Project,No.GSWS2019060(to HS)。
文摘Brain homeostasis refe rs to the normal working state of the brain in a certain period,which is impo rtant for overall health and normal life activities.Currently,there is a lack of effective treatment methods for the adverse consequences caused by brain homeostasis imbalance.Snapin is a protein that assists in the formation of neuronal synapses and plays a crucial role in the normal growth and development of synapses.Recently,many researchers have reported the association between snapin and neurologic and psychiatric disorders,demonstrating that snapin can improve brain homeostasis.Clinical manifestations of brain disease often involve imbalances in brain homeostasis and may lead to neurological and behavioral sequelae.This article aims to explo re the role of snapin in restoring brain homeostasis after injury or diseases,highlighting its significance in maintaining brain homeostasis and treating brain diseases.Additionally,it comprehensively discusses the implications of snapin in other extracerebral diseases such as diabetes and viral infections,with the objective of determining the clinical potential of snapin in maintaining brain homeostasis.
基金funded by the National Key Research and Development Program of China (2021YFD1300403)。
文摘Background Cold stress has negative effects on the growth and health of mammals, and has become a factor restricting livestock development at high latitudes and on plateaus. The gut-liver axis is central to energy metabolism, and the mechanisms by which it regulates host energy metabolism at cold temperatures have rarely been illustrated. In this study, we evaluated the status of glycolipid metabolism and oxidative stress in pigs based on the gut-liver axis and propose that AMP-activated protein kinase(AMPK) is a key target for alleviating energy stress at cold temperatures by dietary fat supplementation.Results Dietary fat supplementation alleviated the negative effects of cold temperatures on growth performance and digestive enzymes, while hormonal homeostasis was also restored. Moreover, cold temperature exposure increased glucose transport in the jejunum. In contrast, we observed abnormalities in lipid metabolism, which was characterized by the accumulation of bile acids in the ileum and plasma. In addition, the results of the ileal metabolomic analysis were consistent with the energy metabolism measurements in the jejunum, and dietary fat supplementation increased the activity of the mitochondrial respiratory chain and lipid metabolism. As the central nexus of energy metabolism, the state of glycolipid metabolism and oxidative stress in the liver are inconsistent with that in the small intestine. Specifically, we found that cold temperature exposure increased glucose transport in the liver, which fully validates the idea that hormones can act on the liver to regulate glucose output. Additionally, dietary fat supplementation inhibited glucose transport and glycolysis, but increased gluconeogenesis, bile acid cycling, and lipid metabolism. Sustained activation of AMPK, which an energy receptor and regulator, leads to oxidative stress and apoptosis in the liver;dietary fat supplementation alleviates energy stress by reducing AMPK phosphorylation.Conclusions Cold stress reduced the growth performance and aggravated glycolipid metabolism disorders and oxidative stress damage in pigs. Dietary fat supplementation improved growth performance and alleviated cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis. In this study, we high-light the importance of AMPK in dietary fat supplementation-mediated alleviation of host energy stress in response to environmental changes.
基金supported by the National Natural Science Foundation of China(32172203,81903940,32172139,and 32202001)the Natural Science Foundation of Jiangsu Province of China(BK20220372)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant(22KJB550003)the Excellent Postdoctoral Program of Jiangsu Province(2022ZB433).
文摘Bone loss caused by ageing has become one of the leading health risk factors worldwide.Wheat germ(WG)is consists of high amounts of bioactive peptides,polyunsaturated fatty acids,and dietary fibre.Currently,WG has been proven to possess strong antioxidant and anti-infl ammatory properties.We recently explored the beneficial effects and relevant mechanisms of a WG-rich diet(2.5%and 5%WG,m/m)on bone homeostasis in aged rats.Our results showed that 5%WG supplementation for 12 months effectively attenuated ageing-induced microstructural damage and differentiation activity changes in the femur.The 5%WG supplementation also signifi cantly increased the levels of total antioxidant capacity(T-AOC),glutathione peroxidase(GSH-Px)(P<0.01),and superoxide dismutase(SOD)(P<0.05),and decreased infl ammatory cytokine levels(tumor necrosis factor-α(TNF-α)and interleukin-6(IL-6))(P<0.01).Furthermore,the WG-rich diet reshaped the composition of the gut microbiota,enhancing short-chain fatty acids(SCFAs)-producing microbes and reducing infl ammation-related microbes.In addition,metabolomics analysis showed that 5%WG supplementation improved plasma metabolites related to bone metabolism.Conclusively,our study purports long-term WG-rich diet may preserve bone homeostasis by regulating gut microbiota and plasma metabolites in aged rats.
基金the following financial support grant FAR-2019 to DL from The Universita del Piemonte Orientale。
文摘Alzheimer’s disease(AD)is a major age-related form of dementia with a number of cases exponentially growing,causing enormous social and economic impact on individuals and society.Neuropathological hallmarks of AD,evident in postmortem AD brains,include a massive loss of the grey matter in the neocortex,extracellular deposition of amyloid-β(Aβ)in the form of senile plaques and cerebrovascular amyloid angiopathy,and intra-neuronal accumulation of neurofibrillary tangles,formed by hyper-phosphorylated tau protein.
基金supported by the National Natural Science Foundation of China (81772017 to[L.F.H.],and 82072106 and 32371371 to[A.R.Q.])The Project Supported by Natural Science Basic Research Plan in Shaanxi Province of China (2023-JC-YB-163 to[L.F.H.])the National Institutes of Health[AR-070135 and AG-056438 to W.C.,and AR075735,DE023813,AR074954,and DE028264 to Y.P.L.]。
文摘Wnts are secreted,lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways,which control various biological processes throughout embryonic development and adult life.Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses.
文摘Parkinson’s disease(PD) is characterized by the slow and progressive demise of dopamine(DA)-synthesizing neurons in the substantia nigra pars compacta(SNc),a nucleus located in the human ventral midbrain.Neuron death also affects other regions in the brain at later stages of PD.The concomitant lack of DA in the human forebrain(striatum) leads to the typical motor symptoms of this still uncurable neurodegenerative disorder.
基金supported by NIH grants NS093382,NS108115,AG053391,HL063762 (to JH)supported by Blue Field Project to Cure FTD,BrightFocus Foundation (A20135245 and A2016396S)。
文摘Apolipoprotein E receptor 2(ApoER2)is a receptor for the protein ApoE,the most common genetic risk factor for late-onset Alzheimer's disease(AD).It is also a key modulator of syna ptic homeostasis,in part through its effect on the expression of neuronal genes including those implicated in AD and other neuropsychiatric disorders.In this perspective,we highlight several genes affected by ApoER2 and its alternatively spliced forms and how aberrant expression can be rescued by the reintroduction of the ApoER2 intracellular domain in the mouse hippocampus.
基金supported by the Jiangsu province Seed Industry Revitalization project[JBGS(2021)002]Beijing Germplasm Creation and Variety Selection and Breeding Joint Project[NY2023-180].
文摘Grain water content(GWC)is a key determinant for mechanical harvesting of maize(Zea mays).In our previous research,we identified a quantitative trait locus,qGWC1,associated with GWC in maize.Here,we examined near-isogenic lines(NILs)NILL and NILH that differed at the qGWC1 locus.Lower GWC in NILL was primarily attributed to reduced grain water weight(GWW)and smaller fresh grain size,rather than the accumulation of dry matter.The difference in GWC between the NILs became more pronounced approximately 35 d after pollination(DAP),arising from a faster dehydration rate in NILL.Through an integrated analysis of the transcriptome,proteome,and metabolome,coupled with an examination of hormones and their derivatives,we detected a marked decrease in JA,along with an increase in cytokinin,storage forms of IAA(IAA-Glu,IAA-ASP),and IAA precursor IPA in immature NILL kernels.During kernel development,genes associated with sucrose synthases,starch biosynthesis,and zein production in NILL,exhibited an initial up-regulation followed by a gradual down-regulation,compared to those in NILH.This discovery highlights the crucial role of phytohormone homeostasis and genes related to kernel development in balancing GWC and dry matter accumulation in maize kernels.
文摘Aim Intracellular calcium ([Ca^(2+) ]_i) is mainly regulated by mitochondriaand endo-plasmic reticula. This study was carried out to ascertain whether the elementary mechanismof the effects of etimicin (EM) and gentamicin (GM) on [Ca^(2+) ]_i is related to their effects onmitochondrion Ca^(2+) -uptake and endoplasmic reticulum Ca^(2+) -uptake. Methods The effects of GMand EM on [Ca^(2+) ]_i in LLC-PK1 were determined with a fluorescent probe of Fura-2/AM. The effectsof EM and GM on mitochondrion Ca^(2+) -uptake and endoplasmic reticulum Ca^(2+) -uptake weredetermined by isotope indicator (^(45)Ca^(2+) ) . Results EM and GM at the concentration of 1mmol·L^(-1) had no significant effect on [Ca^(2+) ]_i(P. > 0.05) and at 10 mmol·L^(-1)significantly caused [Ca^(2+) ]_i to increase (P < 0.01). EM and GM at 1 mmol·L^(-1) causedmitochondrion Ca^(2+)-uptake to ascend dramatically (P < 0.05) and at 10 mmol·L^(-1) causedmitochondrion Ca^(2+) -uptake to descend significantly. EM and GM at more than 0.34 mrnol·L^(-1)significantly inhibited endoplasmic reticulum Ca^(2+) -uptake (P < 0.05 or 0.01). Conclusion Novariation of [Ca^(2+) ]_i caused by EM and GM at lower concentrations might relate to theequilibrium of their promotion of mitochondrion Ca^(2+) -uptake with their inhibition of endoplasmicreticulum Ca^(2+) -uptake. The elevation of [Ca^(2+) ]_i caused by EM and GM at higherconcentrations might correlate with their inhibition of mitochondrion Ca^(2+) -uptake andendoplasmic reticulum Ca^(2+) -uptake.
基金The authors thank ProfMary Lou Guerinot (Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire) for providing IRT1 peptide antibody and for the critical reading of the manuscript. We are also grateful to Drs Zhentao Lin and Yongfu Fu (Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing) for providing the BiFC assay system and technical supporting. This work was supported by the National Natural Science Foundation of China (Grant nos, 30530460 and 30521001) and the Ministry of Science and Technology of China (Grant nos, 2005cb20904 and 2006AA 10A 105) and Chinese Academy of Sciences (Grant no. KSCX2-YW-N- 001) as well as by the Harvest Plus-China Program.
文摘Iron is an essential element for plant growth and development. Iron homeostasis in plants is tightly regulated at both transcriptional and posttranscriptional level. Several bHLH transcription factors involved in iron homeostasis have been identified recently. However, their regulatory mechanisms remain unknown. In this work, we demonstrate that the transcription factor FIT interacted with AtbHLH38 and AtbHLH39 and directly conferred the expression regulation of iron uptake genes for iron homeostasis in Arabidopsis. Yeast two-hybrid analysis and transient expression in Arabidopsis protoplasts showed that AtbHLH38 or AtbHLH39 interacted with FIT, a central transcription factor involved in iron homeostasis in Arabidopsis. Expression of FIT/AtbHLH38 or FIT/AtbHLH39 in yeast cells activated GUS expression driven by ferric chelate reductase (FRO2) and ferrous transporter (IRT1) promoters. Overexpression of FITwith either AtbHLH38 or AtbHLH39 in plants converted the expression of the iron uptake genes FRO2 and IRT1 from induced to constitutive. Further analysis revealed that FRO2 and IRT1 were not regulated at the posttranscriptional level in these plants because IRT1 protein accumulation and high ferric chelate reductase activity were detected in the overexpression plants under both iron deficiency and iron sufficiency. The double overexpression plants accumulated more iron in their shoots than wild type or the plants overexpressing either AtbHLH38, AtbHLH39 or FIT. Our data support that ferric-chelate reductase FRO2 and ferrous-transporter IRT1 are the targets of the three transcription factors and the transcription of FRO2 and IRT1 is directly regulated by a complex of FIT/AtbHLH38 or FIT/AtbHLH39.
基金Supported by The National Natural Science Foundation of China,No.81070341 and No.81270517
文摘Immune-mediated liver injury is widely seen during hepatitis B virus(HBV) infection. Unsuccessful immune clearance of HBV results in chronic hepatitis and increases the risk of liver cirrhosis and hepatocellular carcinoma. HBV-related liver fibrosis(HBVLF),occurring as a result of HBV-induced chronic hepatitis,is a reversible,intermediate stage of chronic hepatitis B(CHB) and liver cirrhosis. Therefore,defining the pathogenesis of HBVLF is of practical significance for achieving better clinical outcomes. Recently,the homeostasis of CD4+ T cells was considered to be pivotal in the process of HBVLF. To better uncover the underlying mechanisms,in this review,we systematically retrospect the impacts of different CD4+T-cell subsets on CHB and HBVLF. We emphasize CD4+ T-cell homeostasis and the important balance between regulatory T(Treg) and T helper 17(Th17) cells. We discuss some cytokines associated with Treg and Th17 cells such as interleukin(IL)-17,IL-22,IL-21,IL-23,IL-10,IL-35 and IL-33,as well as surface molecules such as programmed cell death protein 1,cytotoxic T lymphocyte-associated antigen 4,T cell immunoglobulin domain and mucin domain-containing molecule 3 and cannabinoid receptor 2 that have potential therapeutic implications for the homeostasis of CD4+ T cells in CHB and HBVLF.
基金supported by grants by NIH grant AR-044741(Y-PL) and R01DE023813 (Y-PL)
文摘INTRODUCTIONThe transforming growth factor-β (TGF-β) superfamily com- prises TGF-βs, Activin, bone morphogenetic proteins (BMPs) and other related proteins. TGF-β superfamily members act through a heteromeric receptor complex,, comprised of type I and type II receptors at the cell surface that transduce intracellular signals via Smad complex or mitogen-activated protein kinase (MAPK) cascade.
基金supported by grants from National Natural Science Foundation of China (81722014, 81801019)the Sichuan Provincial Science and Technology Department (2018JY0139, 2019JDRC0099, 2019YJ0101)+2 种基金the China Postdoctoral Science Foundation (2018M640929)Sichuan University (2018SCU12020)West China Hospital of Stomatology Sichuan University (WCHS-201702)
文摘Autophagy is an evolutionarily conserved intracellular process,in which domestic cellular components are selectively digested for the recycling of nutrients and energy.This process is indispensable for cell homeostasis maintenance and stress responses.Both genetic and functional studies have demonstrated that multiple proteins involved in autophagic activities are critical to the survival,differentiation,and functioning of bone cells,including osteoblasts,osteocytes,and osteoclasts.Dysregulation at the level of autophagic activity consequently disturbs the balance between bone formation and bone resorption and mediates the onset and progression of multiple bone diseases,including osteoporosis.This review aims to introduce the topic of autophagy,summarize the understanding of its relevance in bone physiology,and discuss its role in the onset of osteoporosis and therapeutic potential.
基金Abbreviations: double-stranded RNA (dsRNA) ELONGATED UPPER- MOST INTERNODE (Eui)+5 种基金 gibberellin (GA) GIBBERELLIN INSENSI- TIVE DWARF (GID) overexpression (OX) RNA interference (RNAi) slender rice (SLR) wild type (WT) We are grateful to Dr Shinjiro Yamaguchi (RIKEN, Ja- pan) for critical reading of the manuscript, and to Professor Yinong Yang (Penn. State University, USA) for the rice RNAi vector. This work was supported by grants from the National Natural Science Foundation of China (30670186 and 30421001), and the Ministry of Science and Technology of China (2006AA10A102) to ZH.
文摘The rice Eui (ELONGATED UPPERMOST INTERNODE) gene encodes a cytochrome P450 monooxygenase that deactivates bioactive gibberellins (GAs). In this study, we investigated controlled expression of the Eui gene and its role in plant development. We found that Eui was differentially induced by exogenous GAs and that the Eui promoter had the highest activity in the vascular bundles. The eui mutant was defective in starch granule development in root caps and Eui overexpression enhanced starch granule generation and gravity responses, revealing a role for GA in root starch granule development and gravity responses. Experiments using embryoless half-seeds revealed that RAmylA and GAmyb were highly upregulated in eui aleurone ceils in the absence of exogenous GA. In addition, the GA biosynthesis genes GA3oxl and GA20ox2 were downregulated and GA2oxl was upregulated in eui seedlings. These results indicate that EUI is involved in GA homeostasis, not only in the internodes at the heading stage, but also in the seedling stage, roots and seeds. Disturbing GA homeostasis affected the expression of the GA signaling genes GID1 (GIBBERELLIN INSENSITIVE DWARF 1), GID2 and SLR1. Transgenic RNA interference of the Eui gene effectively increased plant height and improved heading performance. By contrast, the ectopic expression of Eui under the promoters of the rice GA biosynthesis genes GA3ox2 and GA2Oox2 significantly reduced plant height. These results demonstrate that a slight increase in Eui expression could dramatically change rice morphology, indicating the practical application of the Eui gene in rice molecular breeding for a high yield potential.
文摘It has been almost three decades since the term "apoptosis" was first coined to describe a unique form of cell death that involves orderly, gene-dependent cell disintegration. It is now well accepted that apoptosis is an essential life process for metazoan animals and is critical for the formation and function of tissues and organs. In the adult mammalian body, apoptosis is especially important for proper functioning of the immune system. In recent years, along with the rapid advancement of molecular and cellular biology, great progress has been made in understanding the mechanisms leading to apoptosis. It is generally accepted that there are two major pathways ofapoptotic cell death induction: extrin- sic signaling through death receptors that leads to the formation of the death-inducing signaling complex (DISC), and intrinsic signaling mainly through mitochondria which leads to the formation of the apoptosome. Formation of the DISC or apoptosome, respectively, activates initiator and common effector caspases that execute the apoptosis process. In the immune system, both pathways operate; however, it is not known whether they are sufficient to maintain lymphocyte homeostasis. Recently, new apoptotic mechanisms including caspase-independent pathways and granzyme-initiated pathways have been shown to exist in lymphocytes. This review will summarize our understanding of the mechanisms that control the homeostasis of various lymphocyte populations.
基金supported by the National Natural Science foundation of China(No.31071531)the Scientific Research Fund of the Hunan Provincial Education Department(No.14A071)the China National Tobacco Corp Hunan Branch(15-17Aa04)
文摘Objective To reveal the effects and related mechanisms of chlorogenic acid(CGA)on intestinal glucose homeostasis.Methods Forty male Sprague-Dawley rats were randomly and equally divided into four groups:normal chow(NC),high-fat diet(HFD),HFD with low-dose CGA(20 mg/kg,HFD-LC),and HFD with high-dose CGA(90 mg/kg,HFD-HC).The oral glucose tolerance test was performed,and fast serum insulin(FSI)was detected using an enzyme-linked immunosorbent assay.The m RNA expression levels of glucose transporters(Sglt-1 and Glut-2)and proglucagon(Plg)in different intestinal segments(the duodenum,jejunum,ileum,and colon)were analyzed using quantitative real-time polymerase chain reaction.SGLT-1 protein and the morphology of epithelial cells in the duodenum and jejunum was localized by using immunofluorescence.Results At both doses,CGA ameliorated the HFD-induced body weight gain,maintained FSI,and increased postprandial 30-min glucagon-like peptide 1 secretion.High-dose CGA inhibited the HFD-induced elevation in Sglt-1 expression.Both CGA doses normalized the HFD-induced downregulation of Glut-2 and elevated the expression of Plg in all four intestinal segments.Conclusion An HFD can cause a glucose metabolism disorder in the rat intestine and affect body glucose homeostasis.CGA can modify intestinal glucose metabolism by regulating the expression of intestinal glucose transporters and Plg,thereby controlling the levels of blood glucose and insulin to maintain glucose homeostasis.