High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to ana...High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to analyze it in a 3D environment and understand its intricate role as the Water Tower of Asia.The science teams of NASA realized an 8-m DEM using satellite stereo imagery for HMA,termed HMA 8-m DEM.In this research,we assessed the vertical accuracy of HMA 8-m DEM using reference elevations from ICESat-2 geolocated photons at three test sites of varied topography and land covers.Inferences were made from statistical quantifiers and elevation profiles.For the world’s highest mountain,Mount Everest,and its surroundings,Root Mean Squared Error(RMSE)and Mean Absolute Error(MAE)resulted in 1.94 m and 1.66 m,respectively;however,a uniform positive bias observed in the elevation profiles indicates the seasonal snow cover change will dent the accurate estimation of the elevation in this sort of test sites.The second test site containing gentle slopes with forest patches has exhibited the Digital Surface Model(DSM)features with RMSE and MAE of 0.58 m and 0.52 m,respectively.The third test site,situated in the Zanda County of the Qinghai-Tibet,is a relatively flat terrain bed,mostly bare earth with sudden river cuts,and has minimal errors with RMSE and MAE of 0.32 m and 0.29 m,respectively,and with a negligible bias.Additionally,in one more test site,the feasibility of detecting the glacial lakes was tested,which resulted in exhibiting a flat surface over the surface of the lakes,indicating the potential of HMA 8-m DEM for deriving the hydrological parameters.The results accrued in this investigation confirm that the HMA 8-m DEM has the best vertical accuracy and should be of high use for analyzing natural hazards and monitoring glacier surfaces.展开更多
The success of catalytic schemes for the large-scale valorization of CO_(2) does not only depend on the development of active,selective and stable catalytic materials but also on the overall process design.Here we pre...The success of catalytic schemes for the large-scale valorization of CO_(2) does not only depend on the development of active,selective and stable catalytic materials but also on the overall process design.Here we present a multidisciplinary study(from catalyst to plant and techno-economic/lifecycle analysis)for the production of green methanol from renewable H2 and CO_(2).We combine an in-depth kinetic analysis of one of the most promising recently reported methanol-synthesis catalysts(InCo)with a thorough process simulation and techno-economic assessment.We then perform a life cycle assessment of the simulated process to gauge the real environmental impact of green methanol production from CO_(2).Our results indicate that up to 1.75 ton of CO_(2) can be abated per ton of produced methanol only if renewable energy is used to run the process,while the sensitivity analysis suggest that either rock-bottom H2 prices(1.5$kg1)or severe CO_(2) taxation(300$per ton)are needed for a profitable methanol plant.Besides,we herein highlight and analyze some critical bottlenecks of the process.Especial attention has been paid to the contribution of H2 to the overall plant costs,CH4 trace formation,and purity and costs of raw gases.In addition to providing important information for policy makers and industrialists,directions for catalyst(and therefore process)improvements are outlined.展开更多
Introduction: In recent years, flow mediated dilatation (FMD) has become a popular technique in cardiovascular medicine. HOMA-IR was accepted to determine the insulin sensitivity as a valuable standard. In this study,...Introduction: In recent years, flow mediated dilatation (FMD) has become a popular technique in cardiovascular medicine. HOMA-IR was accepted to determine the insulin sensitivity as a valuable standard. In this study, we evaluated the association between HOMA-IR (homeostasis model assessment of insulin resistance) and vascular endothelial dysfunction, as assessed by endothelium- dependent flow-mediated dilatation (FMD) and nitroglycerin-mediated dilatation (NMD), in type 2 Diabetic (DM) patients. Material and Methods: Eighty four (84) consecutive out-patients were enrolled. HOMA-IR was calculated as fasting insulin (μU/ml) multiplied by fasting plasma glucose (FPG) (mg/dl) and divided by 405. The ultrasound method for measuring FMD and NMD has been used. Out of 84 patients, 42 patients were in control group and 42 patients were in diabetic group, which were further subdivided into two groups based on HOMA-IR > 3.0 and above was considered as Group I and HOMA IR < 3.0 and below was considered as Group II. Fasting Plasma Glucose (mmol/dl) (7.74 ± 2.56, 6.81 ± 1.9, p < 0.001) and Fasting Insulin (μU/dl) (13.26 ± 8.09, 6.65 ± 2.36, p < 0.001) were statistically significant in Group I. The baseline mean FMD in controls and cases (Group I and Group II) was 15.36 ± 9.56, 4.15 ± 2.29, 12.21 ± 6.24 (p < 0.001) respectively. By logistic regression analysis the factors which were effective on FMD percentage change (<5.5%) in Group I were BMI (p < 0.02), plasma Insulin (p < 0.04) and triglycerides (p < 0.02). There was a negative co-relation for FMD, NMD and HOMA-IR. Discussion: We conclude that increased HOMA-IR in hyperglycaemic patients is associated with severe endothelial dysfunction which is the marker of the atherosclerosis. Thus the measurement of endothelial vasomotor function which is a comprehensive analysis of atherosclerotic burden may provide a better predictive value of future cardiovascular events than the analysis of each of the traditional risk factors alone.展开更多
基金The authors gratefully acknowledge the science teams of NASA High Mountain Asia 8-meter DEM and NASA ICESat-2 for providing access to the data.This work was conducted with the infrastructure provided by the National Remote Sensing Centre(NRSC),for which the authors were indebted to the Director,NRSC,Hyderabad.We acknowledge the continued support and scientific insights from Mr.Rakesh Fararoda,Mr.Sagar S Salunkhe,Mr.Hansraj Meena,Mr.Ashish K.Jain and other staff members of Regional Remote Sensing Centre-West,NRSC/ISRO,Jodhpur.The authors want to acknowledge Dr.Kamal Pandey,Scientist,IIRS,Dehradun,for sharing field-level information about the Auli-Joshimath.This research did not receive any specific grant from funding agencies in the public,commercial,or not-for-profit sectors.
文摘High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to analyze it in a 3D environment and understand its intricate role as the Water Tower of Asia.The science teams of NASA realized an 8-m DEM using satellite stereo imagery for HMA,termed HMA 8-m DEM.In this research,we assessed the vertical accuracy of HMA 8-m DEM using reference elevations from ICESat-2 geolocated photons at three test sites of varied topography and land covers.Inferences were made from statistical quantifiers and elevation profiles.For the world’s highest mountain,Mount Everest,and its surroundings,Root Mean Squared Error(RMSE)and Mean Absolute Error(MAE)resulted in 1.94 m and 1.66 m,respectively;however,a uniform positive bias observed in the elevation profiles indicates the seasonal snow cover change will dent the accurate estimation of the elevation in this sort of test sites.The second test site containing gentle slopes with forest patches has exhibited the Digital Surface Model(DSM)features with RMSE and MAE of 0.58 m and 0.52 m,respectively.The third test site,situated in the Zanda County of the Qinghai-Tibet,is a relatively flat terrain bed,mostly bare earth with sudden river cuts,and has minimal errors with RMSE and MAE of 0.32 m and 0.29 m,respectively,and with a negligible bias.Additionally,in one more test site,the feasibility of detecting the glacial lakes was tested,which resulted in exhibiting a flat surface over the surface of the lakes,indicating the potential of HMA 8-m DEM for deriving the hydrological parameters.The results accrued in this investigation confirm that the HMA 8-m DEM has the best vertical accuracy and should be of high use for analyzing natural hazards and monitoring glacier surfaces.
基金support from the King Abdullah University of Science and Technology(KAUST).T.Cordero-Lanzac and A.T.Aguayo acknowledge the financial support received from the Spanish Ministry of Science and Innovation with some ERDF funds(CTQ2016-77812-R)the Basque Government(IT1218-19)+2 种基金T.Cordero-Lanzac also acknowledges the Spanish Ministry of Education,Culture and Sport for the award of his FPU grant(FPU15-01666)A.Navajas and L.M.Gandía gratefully acknowledge the financial support from Spanish Ministerio de Ciencia,Innovación y Universidades,and the European Regional Development Fund(ERDF/FEDER)(grant RTI2018-096294-B-C31)L.M.Gandía also thanks Banco de Santander and Universidad Pública de Navarra for their financial support under“Programa de Intensificación de la Investigación 2018”initiative.
文摘The success of catalytic schemes for the large-scale valorization of CO_(2) does not only depend on the development of active,selective and stable catalytic materials but also on the overall process design.Here we present a multidisciplinary study(from catalyst to plant and techno-economic/lifecycle analysis)for the production of green methanol from renewable H2 and CO_(2).We combine an in-depth kinetic analysis of one of the most promising recently reported methanol-synthesis catalysts(InCo)with a thorough process simulation and techno-economic assessment.We then perform a life cycle assessment of the simulated process to gauge the real environmental impact of green methanol production from CO_(2).Our results indicate that up to 1.75 ton of CO_(2) can be abated per ton of produced methanol only if renewable energy is used to run the process,while the sensitivity analysis suggest that either rock-bottom H2 prices(1.5$kg1)or severe CO_(2) taxation(300$per ton)are needed for a profitable methanol plant.Besides,we herein highlight and analyze some critical bottlenecks of the process.Especial attention has been paid to the contribution of H2 to the overall plant costs,CH4 trace formation,and purity and costs of raw gases.In addition to providing important information for policy makers and industrialists,directions for catalyst(and therefore process)improvements are outlined.
文摘Introduction: In recent years, flow mediated dilatation (FMD) has become a popular technique in cardiovascular medicine. HOMA-IR was accepted to determine the insulin sensitivity as a valuable standard. In this study, we evaluated the association between HOMA-IR (homeostasis model assessment of insulin resistance) and vascular endothelial dysfunction, as assessed by endothelium- dependent flow-mediated dilatation (FMD) and nitroglycerin-mediated dilatation (NMD), in type 2 Diabetic (DM) patients. Material and Methods: Eighty four (84) consecutive out-patients were enrolled. HOMA-IR was calculated as fasting insulin (μU/ml) multiplied by fasting plasma glucose (FPG) (mg/dl) and divided by 405. The ultrasound method for measuring FMD and NMD has been used. Out of 84 patients, 42 patients were in control group and 42 patients were in diabetic group, which were further subdivided into two groups based on HOMA-IR > 3.0 and above was considered as Group I and HOMA IR < 3.0 and below was considered as Group II. Fasting Plasma Glucose (mmol/dl) (7.74 ± 2.56, 6.81 ± 1.9, p < 0.001) and Fasting Insulin (μU/dl) (13.26 ± 8.09, 6.65 ± 2.36, p < 0.001) were statistically significant in Group I. The baseline mean FMD in controls and cases (Group I and Group II) was 15.36 ± 9.56, 4.15 ± 2.29, 12.21 ± 6.24 (p < 0.001) respectively. By logistic regression analysis the factors which were effective on FMD percentage change (<5.5%) in Group I were BMI (p < 0.02), plasma Insulin (p < 0.04) and triglycerides (p < 0.02). There was a negative co-relation for FMD, NMD and HOMA-IR. Discussion: We conclude that increased HOMA-IR in hyperglycaemic patients is associated with severe endothelial dysfunction which is the marker of the atherosclerosis. Thus the measurement of endothelial vasomotor function which is a comprehensive analysis of atherosclerotic burden may provide a better predictive value of future cardiovascular events than the analysis of each of the traditional risk factors alone.