Copper,one of the most prolific transition metals in the body,is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations.Copper homeostasis is...Copper,one of the most prolific transition metals in the body,is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations.Copper homeostasis is meticulously maintained through a complex network of copper-dependent proteins,including copper transporters(CTR1 and CTR2),the two copper ion transporters the Cu-transporting ATPase 1(ATP7A)and Cu-transporting beta(ATP7B),and the three copper chaperones ATOX1,CCS,and COX17.Disruptions in copper homeostasis can lead to either the deficiency or accumulation of copper in brain tissue.Emerging evidence suggests that abnormal copper metabolism or copper binding to various proteins,including ceruloplasmin and metallothionein,is involved in the pathogenesis of neurodegenerative disorders.However,the exact mechanisms underlying these processes are not known.Copper is a potent oxidant that increases reactive oxygen species production and promotes oxidative stress.Elevated reactive oxygen species levels may further compromise mitochondrial integrity and cause mitochondrial dysfunction.Reactive oxygen species serve as key signaling molecules in copper-induced neuroinflammation,with elevated levels activating several critical inflammatory pathways.Additionally,copper can bind aberrantly to several neuronal proteins,including alphasynuclein,tau,superoxide dismutase 1,and huntingtin,thereby inducing neurotoxicity and ultimately cell death.This study focuses on the latest literature evaluating the role of copper in neurodegenerative diseases,with a particular focus on copper-containing metalloenzymes and copper-binding proteins in the regulation of copper homeostasis and their involvement in neurodegenerative disease pathogenesis.By synthesizing the current findings on the functions of copper in oxidative stress,neuroinflammation,mitochondrial dysfunction,and protein misfolding,we aim to elucidate the mechanisms by which copper contributes to a wide range of hereditary and neuronal disorders,such as Wilson's disease,Menkes'disease,Alzheimer's disease,Parkinson's disease,amyotrophic lateral sclerosis,Huntington's disease,and multiple sclerosis.Potential clinically significant therapeutic targets,including superoxide dismutase 1,D-penicillamine,and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline,along with their associated therapeutic agents,are further discussed.Ultimately,we collate evidence that copper homeostasis may function in the underlying etiology of several neurodegenerative diseases and offer novel insights into the potential prevention and treatment of these diseases based on copper homeostasis.展开更多
Autophagy is a cellular degradation and recycling system,indispensable for cellular and organ development,homeostasis,and function.This cellular process is evolutionarily highly conserved to quality control of many pr...Autophagy is a cellular degradation and recycling system,indispensable for cellular and organ development,homeostasis,and function.This cellular process is evolutionarily highly conserved to quality control of many proteins and dysfunctional organelles,which finally recycle components as amino acids.This process is effective during normal physiology as part of anabolism and plays an additional important role during starvation(Dikic and Elazar,2018).Different types of autophagy have been chara cterized based on their dynamic,mechanism of action,target substrates,and protein markers.Some of them are macroautophagy(hereafter called"autophagy"),microa utophagy,and chape rone-media ted autophagy(Fleming et al.,2022).展开更多
Mitochondria play an essential role in neural function,such as supporting normal energy metabolism,regulating reactive oxygen species,buffering physiological calcium loads,and maintaining the balance of morphology,sub...Mitochondria play an essential role in neural function,such as supporting normal energy metabolism,regulating reactive oxygen species,buffering physiological calcium loads,and maintaining the balance of morphology,subcellular distribution,and overall health through mitochondrial dynamics.Given the recent technological advances in the assessment of mitochondrial structure and functions,mitochondrial dysfunction has been regarded as the early and key pathophysiological mechanism of cognitive disorders such as Alzheimer’s disease,Parkinson’s disease,Huntington’s disease,mild cognitive impairment,and postoperative cognitive dysfunction.This review will focus on the recent advances in mitochondrial medicine and research methodology in the field of cognitive sciences,from the perspectives of energy metabolism,oxidative stress,calcium homeostasis,and mitochondrial dynamics(including fission-fusion,transport,and mitophagy).展开更多
The inflammatory microenvironment and neurotoxicity can hinder neuronal regeneration and functional recovery after spinal cord injury.Ruxolitinib,a JAK-STAT inhibitor,exhibits effectiveness in autoimmune diseases,arth...The inflammatory microenvironment and neurotoxicity can hinder neuronal regeneration and functional recovery after spinal cord injury.Ruxolitinib,a JAK-STAT inhibitor,exhibits effectiveness in autoimmune diseases,arthritis,and managing inflammatory cytokine storms.Although studies have shown the neuroprotective potential of ruxolitinib in neurological trauma,the exact mechanism by which it enhances functional recovery after spinal cord injury,particularly its effect on astrocytes,remains unclear.To address this gap,we established a mouse model of T10 spinal cord contusion and found that ruxolitinib effectively improved hindlimb motor function and reduced the area of spinal cord injury.Transcriptome sequencing analysis showed that ruxolitinib alleviated inflammation and immune response after spinal cord injury,restored EAAT2 expression,reduced glutamate levels,and alleviated excitatory toxicity.Furthermore,ruxolitinib inhibited the phosphorylation of JAK2 and STAT3 in the injured spinal cord and decreased the phosphorylation level of nuclear factor kappa-B and the expression of inflammatory factors interleukin-1β,interleukin-6,and tumor necrosis factor-α.Additionally,in glutamate-induced excitotoxicity astrocytes,ruxolitinib restored EAAT2 expression and increased glutamate uptake by inhibiting the activation of STAT3,thereby reducing glutamate-induced neurotoxicity,calcium influx,oxidative stress,and cell apoptosis,and increasing the complexity of dendritic branching.Collectively,these results indicate that ruxolitinib restores glutamate homeostasis by rescuing the expression of EAAT2 in astrocytes,reduces neurotoxicity,and effectively alleviates inflammatory and immune responses after spinal cord injury,thereby promoting functional recovery after spinal cord injury.展开更多
Regulation of iron homeostasis in maize remains unclear,despite the known roles of FER-Like Fe deficiency-induced transcription factor(FIT)in Arabidopsis and rice.ZmFIT,like At FIT and Os FIT,interacts with iron-relat...Regulation of iron homeostasis in maize remains unclear,despite the known roles of FER-Like Fe deficiency-induced transcription factor(FIT)in Arabidopsis and rice.ZmFIT,like At FIT and Os FIT,interacts with iron-related transcription factors 2(ZmIRO2).Here,we investigate the involvement of ZmFIT in iron homeostasis.Mutant ZmFIT lines exhibiting symptoms of Fe deficiency had reduced shoot iron content.Transcriptome analysis revealed downregulation of Fe deficiency-responsive genes in the roots of a Zmfit mutant.ZmFIT facilitates the nuclear translocation of ZmIRO2 to activate transcription of downstream genes under Fe-deficient conditions.Our findings suggest that ZmFIT,by interaction with ZmIRO2,mediates iron homeostasis in maize.Notably,the binding and activation mechanisms of ZmFIT resemble those in Arabidopsis but differ from those in rice,whereas downstream genes regulated by ZmFIT show similarities to rice but differences from Arabidopsis.In brief,ZmFIT,orthgologs of Os FIT and At FIT in rice and maize,respectively,regulates iron uptake and homeostasis in maize,but with variations.展开更多
In this study, “homeostasis”, the function by which living things keep their constancy, was emulated as a lighting control for a building space. The algorithm we developed mimics the mechanisms of the endocrine and ...In this study, “homeostasis”, the function by which living things keep their constancy, was emulated as a lighting control for a building space. The algorithm we developed mimics the mechanisms of the endocrine and immune systems. The endocrine system transmits information entirely, whereas the immune system transmits information with a concentration gradient. A lighting control system using the proposed algorithm was evaluated in a simulation and experiment using a sensor agent robot. In this algorithm, a robot recognizes a person’s behavior and uses it to decide his or her preference as to the illuminance. The results indicate that the algorithm can be used to realize a comfortable lighting control in several situations.展开更多
Brain homeostasis refe rs to the normal working state of the brain in a certain period,which is impo rtant for overall health and normal life activities.Currently,there is a lack of effective treatment methods for the...Brain homeostasis refe rs to the normal working state of the brain in a certain period,which is impo rtant for overall health and normal life activities.Currently,there is a lack of effective treatment methods for the adverse consequences caused by brain homeostasis imbalance.Snapin is a protein that assists in the formation of neuronal synapses and plays a crucial role in the normal growth and development of synapses.Recently,many researchers have reported the association between snapin and neurologic and psychiatric disorders,demonstrating that snapin can improve brain homeostasis.Clinical manifestations of brain disease often involve imbalances in brain homeostasis and may lead to neurological and behavioral sequelae.This article aims to explo re the role of snapin in restoring brain homeostasis after injury or diseases,highlighting its significance in maintaining brain homeostasis and treating brain diseases.Additionally,it comprehensively discusses the implications of snapin in other extracerebral diseases such as diabetes and viral infections,with the objective of determining the clinical potential of snapin in maintaining brain homeostasis.展开更多
Background Cold stress has negative effects on the growth and health of mammals, and has become a factor restricting livestock development at high latitudes and on plateaus. The gut-liver axis is central to energy met...Background Cold stress has negative effects on the growth and health of mammals, and has become a factor restricting livestock development at high latitudes and on plateaus. The gut-liver axis is central to energy metabolism, and the mechanisms by which it regulates host energy metabolism at cold temperatures have rarely been illustrated. In this study, we evaluated the status of glycolipid metabolism and oxidative stress in pigs based on the gut-liver axis and propose that AMP-activated protein kinase(AMPK) is a key target for alleviating energy stress at cold temperatures by dietary fat supplementation.Results Dietary fat supplementation alleviated the negative effects of cold temperatures on growth performance and digestive enzymes, while hormonal homeostasis was also restored. Moreover, cold temperature exposure increased glucose transport in the jejunum. In contrast, we observed abnormalities in lipid metabolism, which was characterized by the accumulation of bile acids in the ileum and plasma. In addition, the results of the ileal metabolomic analysis were consistent with the energy metabolism measurements in the jejunum, and dietary fat supplementation increased the activity of the mitochondrial respiratory chain and lipid metabolism. As the central nexus of energy metabolism, the state of glycolipid metabolism and oxidative stress in the liver are inconsistent with that in the small intestine. Specifically, we found that cold temperature exposure increased glucose transport in the liver, which fully validates the idea that hormones can act on the liver to regulate glucose output. Additionally, dietary fat supplementation inhibited glucose transport and glycolysis, but increased gluconeogenesis, bile acid cycling, and lipid metabolism. Sustained activation of AMPK, which an energy receptor and regulator, leads to oxidative stress and apoptosis in the liver;dietary fat supplementation alleviates energy stress by reducing AMPK phosphorylation.Conclusions Cold stress reduced the growth performance and aggravated glycolipid metabolism disorders and oxidative stress damage in pigs. Dietary fat supplementation improved growth performance and alleviated cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis. In this study, we high-light the importance of AMPK in dietary fat supplementation-mediated alleviation of host energy stress in response to environmental changes.展开更多
Bone loss caused by ageing has become one of the leading health risk factors worldwide.Wheat germ(WG)is consists of high amounts of bioactive peptides,polyunsaturated fatty acids,and dietary fibre.Currently,WG has bee...Bone loss caused by ageing has become one of the leading health risk factors worldwide.Wheat germ(WG)is consists of high amounts of bioactive peptides,polyunsaturated fatty acids,and dietary fibre.Currently,WG has been proven to possess strong antioxidant and anti-infl ammatory properties.We recently explored the beneficial effects and relevant mechanisms of a WG-rich diet(2.5%and 5%WG,m/m)on bone homeostasis in aged rats.Our results showed that 5%WG supplementation for 12 months effectively attenuated ageing-induced microstructural damage and differentiation activity changes in the femur.The 5%WG supplementation also signifi cantly increased the levels of total antioxidant capacity(T-AOC),glutathione peroxidase(GSH-Px)(P<0.01),and superoxide dismutase(SOD)(P<0.05),and decreased infl ammatory cytokine levels(tumor necrosis factor-α(TNF-α)and interleukin-6(IL-6))(P<0.01).Furthermore,the WG-rich diet reshaped the composition of the gut microbiota,enhancing short-chain fatty acids(SCFAs)-producing microbes and reducing infl ammation-related microbes.In addition,metabolomics analysis showed that 5%WG supplementation improved plasma metabolites related to bone metabolism.Conclusively,our study purports long-term WG-rich diet may preserve bone homeostasis by regulating gut microbiota and plasma metabolites in aged rats.展开更多
Alzheimer’s disease(AD)is a major age-related form of dementia with a number of cases exponentially growing,causing enormous social and economic impact on individuals and society.Neuropathological hallmarks of AD,evi...Alzheimer’s disease(AD)is a major age-related form of dementia with a number of cases exponentially growing,causing enormous social and economic impact on individuals and society.Neuropathological hallmarks of AD,evident in postmortem AD brains,include a massive loss of the grey matter in the neocortex,extracellular deposition of amyloid-β(Aβ)in the form of senile plaques and cerebrovascular amyloid angiopathy,and intra-neuronal accumulation of neurofibrillary tangles,formed by hyper-phosphorylated tau protein.展开更多
Wnts are secreted,lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways,which control various biological processes throughout embryo...Wnts are secreted,lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways,which control various biological processes throughout embryonic development and adult life.Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses.展开更多
Parkinson’s disease(PD) is characterized by the slow and progressive demise of dopamine(DA)-synthesizing neurons in the substantia nigra pars compacta(SNc),a nucleus located in the human ventral midbrain.Neuron death...Parkinson’s disease(PD) is characterized by the slow and progressive demise of dopamine(DA)-synthesizing neurons in the substantia nigra pars compacta(SNc),a nucleus located in the human ventral midbrain.Neuron death also affects other regions in the brain at later stages of PD.The concomitant lack of DA in the human forebrain(striatum) leads to the typical motor symptoms of this still uncurable neurodegenerative disorder.展开更多
Apolipoprotein E receptor 2(ApoER2)is a receptor for the protein ApoE,the most common genetic risk factor for late-onset Alzheimer's disease(AD).It is also a key modulator of syna ptic homeostasis,in part through ...Apolipoprotein E receptor 2(ApoER2)is a receptor for the protein ApoE,the most common genetic risk factor for late-onset Alzheimer's disease(AD).It is also a key modulator of syna ptic homeostasis,in part through its effect on the expression of neuronal genes including those implicated in AD and other neuropsychiatric disorders.In this perspective,we highlight several genes affected by ApoER2 and its alternatively spliced forms and how aberrant expression can be rescued by the reintroduction of the ApoER2 intracellular domain in the mouse hippocampus.展开更多
Grain water content(GWC)is a key determinant for mechanical harvesting of maize(Zea mays).In our previous research,we identified a quantitative trait locus,qGWC1,associated with GWC in maize.Here,we examined near-isog...Grain water content(GWC)is a key determinant for mechanical harvesting of maize(Zea mays).In our previous research,we identified a quantitative trait locus,qGWC1,associated with GWC in maize.Here,we examined near-isogenic lines(NILs)NILL and NILH that differed at the qGWC1 locus.Lower GWC in NILL was primarily attributed to reduced grain water weight(GWW)and smaller fresh grain size,rather than the accumulation of dry matter.The difference in GWC between the NILs became more pronounced approximately 35 d after pollination(DAP),arising from a faster dehydration rate in NILL.Through an integrated analysis of the transcriptome,proteome,and metabolome,coupled with an examination of hormones and their derivatives,we detected a marked decrease in JA,along with an increase in cytokinin,storage forms of IAA(IAA-Glu,IAA-ASP),and IAA precursor IPA in immature NILL kernels.During kernel development,genes associated with sucrose synthases,starch biosynthesis,and zein production in NILL,exhibited an initial up-regulation followed by a gradual down-regulation,compared to those in NILH.This discovery highlights the crucial role of phytohormone homeostasis and genes related to kernel development in balancing GWC and dry matter accumulation in maize kernels.展开更多
Citrus bacterial canker(CBC) is resulted from Xanthomonas citri subsp. citri(Xcc) infection and poses a significant threat to citrus production.Glutathione S-transferases(GSTs) are critical in maintaining redox homeos...Citrus bacterial canker(CBC) is resulted from Xanthomonas citri subsp. citri(Xcc) infection and poses a significant threat to citrus production.Glutathione S-transferases(GSTs) are critical in maintaining redox homeostasis in plants, especially in relation to abiotic and biotic stress responses. However, the function of GSTs in resisting CBC remains unclear. Here, citrus glutathione S-transferases were investigated applying a genome-wide approach. In total, 69 CsGSTs belonging to seven classes were identified, and the phylogeny, chromosomal distribution, gene structures and conserved motifs were analyzed. Several CsGSTs responded to Xcc infection, as observed in the upregulation of CsGSTF1 and CsGSTU18 in the CBC-sensitive ‘Wanjincheng' variety but not in the resistant ‘Kumquat' variety. CsGSTF1 and CsGSTU18 were localized at the cytoplasm. Transient overexpression of CsGSTF1 and CsGSTU18 mediated reactive oxygen species(ROS) scavenging, whereas the virus-induced gene silencing(VIGS) of CsGSTF1 and CsGSTU18 caused strong CBC resistance and ROS burst. The present study investigated the characterization of citrus GST gene family, and discovered that CsGSTF1 and CsGSTU18 negatively contributed to CBC through modulating ROS homeostasis. These findings emphasize the significance of GSTs in infection resistance in plants.展开更多
Heterogeneous proper t i es of vascular endothelial cells in the brain:The brain displays large energy dynamics and consumption,and this high level of metabolic demands is fulfilled by a continuous supply of glucose a...Heterogeneous proper t i es of vascular endothelial cells in the brain:The brain displays large energy dynamics and consumption,and this high level of metabolic demands is fulfilled by a continuous supply of glucose and oxygen through its vascular networks.Brain vasculature consists of highly divergent blood vessel branches,giving rise to a dense network of capillaries that supply blood to all cells across the brain.This elaborated vascular network is thought to develop via angiogenesis,a process in which new blood vessels grow from pre-existing vasculature.Brain capillaries exhibit organotypic features distinct from other tissues and are formed primarily by two major endothelial cell(EC)types:those that form the semi-permeable blood-brain barrier(BBB)and those that develop highly permeable pores known as fenestrae(Matsuoka et al.,2022).The structural and functional differences between BBB and fenestrated vascular ECs represent a fundamental feature of brain vasculature and form the foundation for both brain function and homeostasis.展开更多
Brain-derived neurotrophic factor(BDNF)exerts pleiotropic effects on brain processes including psychiatric disorders,aging,neurodegeneration,and metabolic homeostasis.A simple PubMed search using the key word“BDNF,”...Brain-derived neurotrophic factor(BDNF)exerts pleiotropic effects on brain processes including psychiatric disorders,aging,neurodegeneration,and metabolic homeostasis.A simple PubMed search using the key word“BDNF,”to date,yields over 33,000 publications.From fundamental biology to potential therapeutic applications,BDNF has clearly garnered extensive and significant attention in the field of neurobiology research.展开更多
The umbrella term"neurodege ne rative disorders"(NDDs) refers to several conditions characterized by a progressive loss of structure and function of cells belonging to the nervous system.Such diseases affect...The umbrella term"neurodege ne rative disorders"(NDDs) refers to several conditions characterized by a progressive loss of structure and function of cells belonging to the nervous system.Such diseases affect more than 50million people worldwide.Neurodegenerative disorders are characterized by sundry factors and pathophysiological mechanisms that a re challenging to be fully profiled.Many of these rely on cell signaling pathways to preserve homeostasis,involving second messengers such as cyclic adenosine monophosphate (cAMP)and cyclic guanosine 3',5'-monophosphate(cGMP).Their ability to control the duration and amplitude of the signaling cascade is given by the presence of several common and uncommon effectors.Protein kinases A and G (PKA and PKG),phosphodiesterases (PDEs),and scaffold proteins are among them.展开更多
Parkinson's disease(PD) has a complex and multifactorial pathophysiology. Various studies, conducted both in pre-clinical models and PD patients, have reported a link between the disruption of calcium(Ca^(2+)) hom...Parkinson's disease(PD) has a complex and multifactorial pathophysiology. Various studies, conducted both in pre-clinical models and PD patients, have reported a link between the disruption of calcium(Ca^(2+)) homeostasis and the subsequent development of PD. Ca^(2+) regulation is crucial for neuronal survival, differentiation,exocytosis at synapses,gene transcription,and proliferation.展开更多
Recent work suggests a link betweenα-synuclein(α-syn)and mitochondrial dysfunction;however,the mechanisms of howα-syn influences mitochondrial function are still unclear.Most notably,whetherα-syn plays a direct ro...Recent work suggests a link betweenα-synuclein(α-syn)and mitochondrial dysfunction;however,the mechanisms of howα-syn influences mitochondrial function are still unclear.Most notably,whetherα-syn plays a direct role during mitochondrial function and/or whether diseasedα-syn-mediated mitochondrial dysfunction is a potential modifiable risk factor in Parkinson’s disease(PD)is unknown.To date,mutations in more than eight genes cause familial PD(fPD)and have functions in diverse pathways including synaptic homeostasis,mitochondria maintenance,autophagy/lysosome,and ubiquitin-proteasome pathways.展开更多
基金supported by the Notional Natural Science Foundation of Chino,No.82160690Colloborotive Innovation Center of Chinese Ministry of Education,No.2020-39Science and Technology Foundation of Guizhou Province,No.ZK[2021]-014(all to FZ)。
文摘Copper,one of the most prolific transition metals in the body,is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations.Copper homeostasis is meticulously maintained through a complex network of copper-dependent proteins,including copper transporters(CTR1 and CTR2),the two copper ion transporters the Cu-transporting ATPase 1(ATP7A)and Cu-transporting beta(ATP7B),and the three copper chaperones ATOX1,CCS,and COX17.Disruptions in copper homeostasis can lead to either the deficiency or accumulation of copper in brain tissue.Emerging evidence suggests that abnormal copper metabolism or copper binding to various proteins,including ceruloplasmin and metallothionein,is involved in the pathogenesis of neurodegenerative disorders.However,the exact mechanisms underlying these processes are not known.Copper is a potent oxidant that increases reactive oxygen species production and promotes oxidative stress.Elevated reactive oxygen species levels may further compromise mitochondrial integrity and cause mitochondrial dysfunction.Reactive oxygen species serve as key signaling molecules in copper-induced neuroinflammation,with elevated levels activating several critical inflammatory pathways.Additionally,copper can bind aberrantly to several neuronal proteins,including alphasynuclein,tau,superoxide dismutase 1,and huntingtin,thereby inducing neurotoxicity and ultimately cell death.This study focuses on the latest literature evaluating the role of copper in neurodegenerative diseases,with a particular focus on copper-containing metalloenzymes and copper-binding proteins in the regulation of copper homeostasis and their involvement in neurodegenerative disease pathogenesis.By synthesizing the current findings on the functions of copper in oxidative stress,neuroinflammation,mitochondrial dysfunction,and protein misfolding,we aim to elucidate the mechanisms by which copper contributes to a wide range of hereditary and neuronal disorders,such as Wilson's disease,Menkes'disease,Alzheimer's disease,Parkinson's disease,amyotrophic lateral sclerosis,Huntington's disease,and multiple sclerosis.Potential clinically significant therapeutic targets,including superoxide dismutase 1,D-penicillamine,and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline,along with their associated therapeutic agents,are further discussed.Ultimately,we collate evidence that copper homeostasis may function in the underlying etiology of several neurodegenerative diseases and offer novel insights into the potential prevention and treatment of these diseases based on copper homeostasis.
基金supported by Grants from Spanish FEDER/Science and Innovation Ministry I+D+i-RETOS-PID2021-124801NB-100Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas(CIBERN ED+1 种基金an initiative of the ISCIII)[PI2016/01]the Fundocion Ramon Areces and Banco Santander to the CBMSO(to FW)。
文摘Autophagy is a cellular degradation and recycling system,indispensable for cellular and organ development,homeostasis,and function.This cellular process is evolutionarily highly conserved to quality control of many proteins and dysfunctional organelles,which finally recycle components as amino acids.This process is effective during normal physiology as part of anabolism and plays an additional important role during starvation(Dikic and Elazar,2018).Different types of autophagy have been chara cterized based on their dynamic,mechanism of action,target substrates,and protein markers.Some of them are macroautophagy(hereafter called"autophagy"),microa utophagy,and chape rone-media ted autophagy(Fleming et al.,2022).
基金supported by the National Natural Science Foundation of China,Nos.82271222(to ZL),81971012(to ZL),82071189(to XG),and 82201335(to YL)Key Clinical Projects of Peking University Third Hospital,No.BYSYZD2019027(to ZL)。
文摘Mitochondria play an essential role in neural function,such as supporting normal energy metabolism,regulating reactive oxygen species,buffering physiological calcium loads,and maintaining the balance of morphology,subcellular distribution,and overall health through mitochondrial dynamics.Given the recent technological advances in the assessment of mitochondrial structure and functions,mitochondrial dysfunction has been regarded as the early and key pathophysiological mechanism of cognitive disorders such as Alzheimer’s disease,Parkinson’s disease,Huntington’s disease,mild cognitive impairment,and postoperative cognitive dysfunction.This review will focus on the recent advances in mitochondrial medicine and research methodology in the field of cognitive sciences,from the perspectives of energy metabolism,oxidative stress,calcium homeostasis,and mitochondrial dynamics(including fission-fusion,transport,and mitophagy).
基金supported by the National Natural Science Foundation of China,No.82272484(to XC).
文摘The inflammatory microenvironment and neurotoxicity can hinder neuronal regeneration and functional recovery after spinal cord injury.Ruxolitinib,a JAK-STAT inhibitor,exhibits effectiveness in autoimmune diseases,arthritis,and managing inflammatory cytokine storms.Although studies have shown the neuroprotective potential of ruxolitinib in neurological trauma,the exact mechanism by which it enhances functional recovery after spinal cord injury,particularly its effect on astrocytes,remains unclear.To address this gap,we established a mouse model of T10 spinal cord contusion and found that ruxolitinib effectively improved hindlimb motor function and reduced the area of spinal cord injury.Transcriptome sequencing analysis showed that ruxolitinib alleviated inflammation and immune response after spinal cord injury,restored EAAT2 expression,reduced glutamate levels,and alleviated excitatory toxicity.Furthermore,ruxolitinib inhibited the phosphorylation of JAK2 and STAT3 in the injured spinal cord and decreased the phosphorylation level of nuclear factor kappa-B and the expression of inflammatory factors interleukin-1β,interleukin-6,and tumor necrosis factor-α.Additionally,in glutamate-induced excitotoxicity astrocytes,ruxolitinib restored EAAT2 expression and increased glutamate uptake by inhibiting the activation of STAT3,thereby reducing glutamate-induced neurotoxicity,calcium influx,oxidative stress,and cell apoptosis,and increasing the complexity of dendritic branching.Collectively,these results indicate that ruxolitinib restores glutamate homeostasis by rescuing the expression of EAAT2 in astrocytes,reduces neurotoxicity,and effectively alleviates inflammatory and immune responses after spinal cord injury,thereby promoting functional recovery after spinal cord injury.
基金supported by the National Key Research and Development Program of China (2021YFF1000304)the National Natural Science Foundation of China (32001550)the National Key Research and Development Program of China (2021YFD1200700,2023YFD1202903)。
文摘Regulation of iron homeostasis in maize remains unclear,despite the known roles of FER-Like Fe deficiency-induced transcription factor(FIT)in Arabidopsis and rice.ZmFIT,like At FIT and Os FIT,interacts with iron-related transcription factors 2(ZmIRO2).Here,we investigate the involvement of ZmFIT in iron homeostasis.Mutant ZmFIT lines exhibiting symptoms of Fe deficiency had reduced shoot iron content.Transcriptome analysis revealed downregulation of Fe deficiency-responsive genes in the roots of a Zmfit mutant.ZmFIT facilitates the nuclear translocation of ZmIRO2 to activate transcription of downstream genes under Fe-deficient conditions.Our findings suggest that ZmFIT,by interaction with ZmIRO2,mediates iron homeostasis in maize.Notably,the binding and activation mechanisms of ZmFIT resemble those in Arabidopsis but differ from those in rice,whereas downstream genes regulated by ZmFIT show similarities to rice but differences from Arabidopsis.In brief,ZmFIT,orthgologs of Os FIT and At FIT in rice and maize,respectively,regulates iron uptake and homeostasis in maize,but with variations.
文摘In this study, “homeostasis”, the function by which living things keep their constancy, was emulated as a lighting control for a building space. The algorithm we developed mimics the mechanisms of the endocrine and immune systems. The endocrine system transmits information entirely, whereas the immune system transmits information with a concentration gradient. A lighting control system using the proposed algorithm was evaluated in a simulation and experiment using a sensor agent robot. In this algorithm, a robot recognizes a person’s behavior and uses it to decide his or her preference as to the illuminance. The results indicate that the algorithm can be used to realize a comfortable lighting control in several situations.
基金supported by the National Natural Science Foundation of China,Nos.82071382(to MZ),81601306(to HS)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)(to MZ)+5 种基金Jiangsu 333 High Level Talent Training Project(2022)(to HS)the Jiangsu Maternal and Child Health Research Key Project(F202013)(to HS)Jiangsu Talent Youth Medical Program,No.QNRC2016245(to HS)Shanghai Key Lab of Forensic Medicine,No.KF2102(to MZ)Suzhou Science and Technology Development Project,No.SYS2020089(to MZ)the Fifth Batch of Gusu District Health Talent Training Project,No.GSWS2019060(to HS)。
文摘Brain homeostasis refe rs to the normal working state of the brain in a certain period,which is impo rtant for overall health and normal life activities.Currently,there is a lack of effective treatment methods for the adverse consequences caused by brain homeostasis imbalance.Snapin is a protein that assists in the formation of neuronal synapses and plays a crucial role in the normal growth and development of synapses.Recently,many researchers have reported the association between snapin and neurologic and psychiatric disorders,demonstrating that snapin can improve brain homeostasis.Clinical manifestations of brain disease often involve imbalances in brain homeostasis and may lead to neurological and behavioral sequelae.This article aims to explo re the role of snapin in restoring brain homeostasis after injury or diseases,highlighting its significance in maintaining brain homeostasis and treating brain diseases.Additionally,it comprehensively discusses the implications of snapin in other extracerebral diseases such as diabetes and viral infections,with the objective of determining the clinical potential of snapin in maintaining brain homeostasis.
基金funded by the National Key Research and Development Program of China (2021YFD1300403)。
文摘Background Cold stress has negative effects on the growth and health of mammals, and has become a factor restricting livestock development at high latitudes and on plateaus. The gut-liver axis is central to energy metabolism, and the mechanisms by which it regulates host energy metabolism at cold temperatures have rarely been illustrated. In this study, we evaluated the status of glycolipid metabolism and oxidative stress in pigs based on the gut-liver axis and propose that AMP-activated protein kinase(AMPK) is a key target for alleviating energy stress at cold temperatures by dietary fat supplementation.Results Dietary fat supplementation alleviated the negative effects of cold temperatures on growth performance and digestive enzymes, while hormonal homeostasis was also restored. Moreover, cold temperature exposure increased glucose transport in the jejunum. In contrast, we observed abnormalities in lipid metabolism, which was characterized by the accumulation of bile acids in the ileum and plasma. In addition, the results of the ileal metabolomic analysis were consistent with the energy metabolism measurements in the jejunum, and dietary fat supplementation increased the activity of the mitochondrial respiratory chain and lipid metabolism. As the central nexus of energy metabolism, the state of glycolipid metabolism and oxidative stress in the liver are inconsistent with that in the small intestine. Specifically, we found that cold temperature exposure increased glucose transport in the liver, which fully validates the idea that hormones can act on the liver to regulate glucose output. Additionally, dietary fat supplementation inhibited glucose transport and glycolysis, but increased gluconeogenesis, bile acid cycling, and lipid metabolism. Sustained activation of AMPK, which an energy receptor and regulator, leads to oxidative stress and apoptosis in the liver;dietary fat supplementation alleviates energy stress by reducing AMPK phosphorylation.Conclusions Cold stress reduced the growth performance and aggravated glycolipid metabolism disorders and oxidative stress damage in pigs. Dietary fat supplementation improved growth performance and alleviated cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis. In this study, we high-light the importance of AMPK in dietary fat supplementation-mediated alleviation of host energy stress in response to environmental changes.
基金supported by the National Natural Science Foundation of China(32172203,81903940,32172139,and 32202001)the Natural Science Foundation of Jiangsu Province of China(BK20220372)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant(22KJB550003)the Excellent Postdoctoral Program of Jiangsu Province(2022ZB433).
文摘Bone loss caused by ageing has become one of the leading health risk factors worldwide.Wheat germ(WG)is consists of high amounts of bioactive peptides,polyunsaturated fatty acids,and dietary fibre.Currently,WG has been proven to possess strong antioxidant and anti-infl ammatory properties.We recently explored the beneficial effects and relevant mechanisms of a WG-rich diet(2.5%and 5%WG,m/m)on bone homeostasis in aged rats.Our results showed that 5%WG supplementation for 12 months effectively attenuated ageing-induced microstructural damage and differentiation activity changes in the femur.The 5%WG supplementation also signifi cantly increased the levels of total antioxidant capacity(T-AOC),glutathione peroxidase(GSH-Px)(P<0.01),and superoxide dismutase(SOD)(P<0.05),and decreased infl ammatory cytokine levels(tumor necrosis factor-α(TNF-α)and interleukin-6(IL-6))(P<0.01).Furthermore,the WG-rich diet reshaped the composition of the gut microbiota,enhancing short-chain fatty acids(SCFAs)-producing microbes and reducing infl ammation-related microbes.In addition,metabolomics analysis showed that 5%WG supplementation improved plasma metabolites related to bone metabolism.Conclusively,our study purports long-term WG-rich diet may preserve bone homeostasis by regulating gut microbiota and plasma metabolites in aged rats.
基金the following financial support grant FAR-2019 to DL from The Universita del Piemonte Orientale。
文摘Alzheimer’s disease(AD)is a major age-related form of dementia with a number of cases exponentially growing,causing enormous social and economic impact on individuals and society.Neuropathological hallmarks of AD,evident in postmortem AD brains,include a massive loss of the grey matter in the neocortex,extracellular deposition of amyloid-β(Aβ)in the form of senile plaques and cerebrovascular amyloid angiopathy,and intra-neuronal accumulation of neurofibrillary tangles,formed by hyper-phosphorylated tau protein.
基金supported by the National Natural Science Foundation of China (81772017 to[L.F.H.],and 82072106 and 32371371 to[A.R.Q.])The Project Supported by Natural Science Basic Research Plan in Shaanxi Province of China (2023-JC-YB-163 to[L.F.H.])the National Institutes of Health[AR-070135 and AG-056438 to W.C.,and AR075735,DE023813,AR074954,and DE028264 to Y.P.L.]。
文摘Wnts are secreted,lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways,which control various biological processes throughout embryonic development and adult life.Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses.
文摘Parkinson’s disease(PD) is characterized by the slow and progressive demise of dopamine(DA)-synthesizing neurons in the substantia nigra pars compacta(SNc),a nucleus located in the human ventral midbrain.Neuron death also affects other regions in the brain at later stages of PD.The concomitant lack of DA in the human forebrain(striatum) leads to the typical motor symptoms of this still uncurable neurodegenerative disorder.
基金supported by NIH grants NS093382,NS108115,AG053391,HL063762 (to JH)supported by Blue Field Project to Cure FTD,BrightFocus Foundation (A20135245 and A2016396S)。
文摘Apolipoprotein E receptor 2(ApoER2)is a receptor for the protein ApoE,the most common genetic risk factor for late-onset Alzheimer's disease(AD).It is also a key modulator of syna ptic homeostasis,in part through its effect on the expression of neuronal genes including those implicated in AD and other neuropsychiatric disorders.In this perspective,we highlight several genes affected by ApoER2 and its alternatively spliced forms and how aberrant expression can be rescued by the reintroduction of the ApoER2 intracellular domain in the mouse hippocampus.
基金supported by the Jiangsu province Seed Industry Revitalization project[JBGS(2021)002]Beijing Germplasm Creation and Variety Selection and Breeding Joint Project[NY2023-180].
文摘Grain water content(GWC)is a key determinant for mechanical harvesting of maize(Zea mays).In our previous research,we identified a quantitative trait locus,qGWC1,associated with GWC in maize.Here,we examined near-isogenic lines(NILs)NILL and NILH that differed at the qGWC1 locus.Lower GWC in NILL was primarily attributed to reduced grain water weight(GWW)and smaller fresh grain size,rather than the accumulation of dry matter.The difference in GWC between the NILs became more pronounced approximately 35 d after pollination(DAP),arising from a faster dehydration rate in NILL.Through an integrated analysis of the transcriptome,proteome,and metabolome,coupled with an examination of hormones and their derivatives,we detected a marked decrease in JA,along with an increase in cytokinin,storage forms of IAA(IAA-Glu,IAA-ASP),and IAA precursor IPA in immature NILL kernels.During kernel development,genes associated with sucrose synthases,starch biosynthesis,and zein production in NILL,exhibited an initial up-regulation followed by a gradual down-regulation,compared to those in NILH.This discovery highlights the crucial role of phytohormone homeostasis and genes related to kernel development in balancing GWC and dry matter accumulation in maize kernels.
基金funded by the National Key Research and Development Program of China (Grant No.2022YFD1201600)Natural Science Foundation of Chongqing (Grant No.cstc2020jcyj-msxmX1064)+1 种基金Earmarked Funds for the China Agriculture Research System (Grant No.CARS-26)Three-year Action Plan of Xi'an University (Grant No.2021XDJH41)。
文摘Citrus bacterial canker(CBC) is resulted from Xanthomonas citri subsp. citri(Xcc) infection and poses a significant threat to citrus production.Glutathione S-transferases(GSTs) are critical in maintaining redox homeostasis in plants, especially in relation to abiotic and biotic stress responses. However, the function of GSTs in resisting CBC remains unclear. Here, citrus glutathione S-transferases were investigated applying a genome-wide approach. In total, 69 CsGSTs belonging to seven classes were identified, and the phylogeny, chromosomal distribution, gene structures and conserved motifs were analyzed. Several CsGSTs responded to Xcc infection, as observed in the upregulation of CsGSTF1 and CsGSTU18 in the CBC-sensitive ‘Wanjincheng' variety but not in the resistant ‘Kumquat' variety. CsGSTF1 and CsGSTU18 were localized at the cytoplasm. Transient overexpression of CsGSTF1 and CsGSTU18 mediated reactive oxygen species(ROS) scavenging, whereas the virus-induced gene silencing(VIGS) of CsGSTF1 and CsGSTU18 caused strong CBC resistance and ROS burst. The present study investigated the characterization of citrus GST gene family, and discovered that CsGSTF1 and CsGSTU18 negatively contributed to CBC through modulating ROS homeostasis. These findings emphasize the significance of GSTs in infection resistance in plants.
基金supported by funding from the National Institutes of Health(R01 NS117510)(to RLM)。
文摘Heterogeneous proper t i es of vascular endothelial cells in the brain:The brain displays large energy dynamics and consumption,and this high level of metabolic demands is fulfilled by a continuous supply of glucose and oxygen through its vascular networks.Brain vasculature consists of highly divergent blood vessel branches,giving rise to a dense network of capillaries that supply blood to all cells across the brain.This elaborated vascular network is thought to develop via angiogenesis,a process in which new blood vessels grow from pre-existing vasculature.Brain capillaries exhibit organotypic features distinct from other tissues and are formed primarily by two major endothelial cell(EC)types:those that form the semi-permeable blood-brain barrier(BBB)and those that develop highly permeable pores known as fenestrae(Matsuoka et al.,2022).The structural and functional differences between BBB and fenestrated vascular ECs represent a fundamental feature of brain vasculature and form the foundation for both brain function and homeostasis.
文摘Brain-derived neurotrophic factor(BDNF)exerts pleiotropic effects on brain processes including psychiatric disorders,aging,neurodegeneration,and metabolic homeostasis.A simple PubMed search using the key word“BDNF,”to date,yields over 33,000 publications.From fundamental biology to potential therapeutic applications,BDNF has clearly garnered extensive and significant attention in the field of neurobiology research.
文摘The umbrella term"neurodege ne rative disorders"(NDDs) refers to several conditions characterized by a progressive loss of structure and function of cells belonging to the nervous system.Such diseases affect more than 50million people worldwide.Neurodegenerative disorders are characterized by sundry factors and pathophysiological mechanisms that a re challenging to be fully profiled.Many of these rely on cell signaling pathways to preserve homeostasis,involving second messengers such as cyclic adenosine monophosphate (cAMP)and cyclic guanosine 3',5'-monophosphate(cGMP).Their ability to control the duration and amplitude of the signaling cascade is given by the presence of several common and uncommon effectors.Protein kinases A and G (PKA and PKG),phosphodiesterases (PDEs),and scaffold proteins are among them.
文摘Parkinson's disease(PD) has a complex and multifactorial pathophysiology. Various studies, conducted both in pre-clinical models and PD patients, have reported a link between the disruption of calcium(Ca^(2+)) homeostasis and the subsequent development of PD. Ca^(2+) regulation is crucial for neuronal survival, differentiation,exocytosis at synapses,gene transcription,and proliferation.
文摘Recent work suggests a link betweenα-synuclein(α-syn)and mitochondrial dysfunction;however,the mechanisms of howα-syn influences mitochondrial function are still unclear.Most notably,whetherα-syn plays a direct role during mitochondrial function and/or whether diseasedα-syn-mediated mitochondrial dysfunction is a potential modifiable risk factor in Parkinson’s disease(PD)is unknown.To date,mutations in more than eight genes cause familial PD(fPD)and have functions in diverse pathways including synaptic homeostasis,mitochondria maintenance,autophagy/lysosome,and ubiquitin-proteasome pathways.