In this paper, the stereoselective homogeneous catalysis polymerization of phenylacetylene by using two kinds of catalysts W(CO)_5CH_3I and W(CO)_4I_2 produced from UV laser photolysis of W (CO)_6 in CH_3I, I_2—C_6H_...In this paper, the stereoselective homogeneous catalysis polymerization of phenylacetylene by using two kinds of catalysts W(CO)_5CH_3I and W(CO)_4I_2 produced from UV laser photolysis of W (CO)_6 in CH_3I, I_2—C_6H_6 and CHI_3—C_6H_6 respectively was studied. The effects of laser energy, laser irradiation time and lifetime of catalyst on the polymerization of phenylacetylene were discussed. The photoproducts of W (CO)_6 in CH_3I, I2—C_6H_6 and CHI_3—C_6I_6 were determined by IR spectra. The structures of polyphenylacetylene obtained by W (CO)_5CH_3I and W (CO)_4I_2 catalysts were characterized by IR spectra and ~1H NMR spectra.展开更多
Solid non-conjugated polymers have long been regarded as insulators due to deficiency of delocalizedπelectrons along the molecular chain framework.Up to date,origin of insulating polymer regulated charge transfer has...Solid non-conjugated polymers have long been regarded as insulators due to deficiency of delocalizedπelectrons along the molecular chain framework.Up to date,origin of insulating polymer regulated charge transfer has not yet been uncovered.In this work,we unleash the root origin of charge transport capability of insulating polymer in photocatalysis.We ascertain that insulating polymer plays crucial roles in fine tuning of electronic structure of transition metal chalcogenides(TMCs),which mainly include altering surface electron density of TMCs for accelerating charge transport kinetics,triggering the generation of defect over TMCs for prolonging carrier lifetime,and acting as hole-trapping mediator for retarding charge recombination.These synergistic roles contribute to the charge transfer of insulating polymer.Our work opens a new vista of utilizing solid insulating polymers for maneuvering charge transfer toward solar energy conversion.展开更多
In homogeneous media, N,N-Dimethylacrylamide (DMA) was grafted copolymerization to cellulose by a metal-catalyzed atom transfer radical polymerization (ATRP) process. First, cellulose was dissolved in DMAc/LiCl system...In homogeneous media, N,N-Dimethylacrylamide (DMA) was grafted copolymerization to cellulose by a metal-catalyzed atom transfer radical polymerization (ATRP) process. First, cellulose was dissolved in DMAc/LiCl system, and it reacted with 2-bromoisobutyloyl bromide (BiBBr) to produce macroinitiator (cell-BiB). Then DMA was polymerized to the cellulose backbone in a homogeneous DMSO solution in presence of the cell-BiB. Characterization with FT-IR, NMR, and GPC measurements showed that there obtained a graft copolymer with cellulose backbone and PDMA side chains (cell-PDMA) in well-defined structure. The proteins adsorption studies showed that the cellulose membranes modified by the as-prepared cell-PDMA copolymer owns good protein adsorption resistancet.展开更多
The title complex N,O-bis{2-[[(2-benzhydryl-4,6-dimethylphenyl)imino]-methyl]-phenol}-nickel(II)(C56H48N2NiO2) has been synthesized by the reaction of 2-[[(2-benzhydryl-4,6-dimethylphenyl)mino]-methyl]-phenol ...The title complex N,O-bis{2-[[(2-benzhydryl-4,6-dimethylphenyl)imino]-methyl]-phenol}-nickel(II)(C56H48N2NiO2) has been synthesized by the reaction of 2-[[(2-benzhydryl-4,6-dimethylphenyl)mino]-methyl]-phenol with Ni(CH3COO)2·4 H2O, and characterized by elemental analysis and IR spectrum. The spatial structure of the complex has been confirmed by single-crystal X-ray diffraction analysis. The compound belongs to the monoclinic system, space group C2/c with a = 39.035(8), b = 13.276(3), c = 17.679(4) A°, β = 98.06(3)°, V = 9071(3) A°^3, C56H48N2NiO2, Mr = 839.67, Z = 8, Dc = 1.230 Mg/m^3, μ = 0.472 mm^-1, F(000) = 3536, T = 293(2) K, the final R = 0.0675 and w R = 0.1345(I 〉 2s(I)). The compound showed excellent catalytic activity up to 1.268 × 10^7 g of PNB(mol of Ni)^-1h^-1 for the addition polymerization of norbornene by using methylaluminoxane(MAO) as a cocatalyst.展开更多
The CO_2 quenching method has been used for the first time to determine the active complex concen- tration in Nd(naph)_3-Al(i-Bu)_3 catalyst system for polymerization of phenylacetylene into polyphenylacetylene(PPA)fi...The CO_2 quenching method has been used for the first time to determine the active complex concen- tration in Nd(naph)_3-Al(i-Bu)_3 catalyst system for polymerization of phenylacetylene into polyphenylacetylene(PPA)films.The kinetics and mechanism of this polymerization have been investigated by CO_2 quenching and IR,UV analytical methods.The kinetic equation can be expressed as Rp=k[M][Cp],and the apparent activation energy is about 13.6 kJ/mol.There is self-termination of chain propagating.Models for formation of the active complex and polymerization mechanism are proposed.展开更多
The title complex N,O-bis{[2-[(2,4-dimethylphenyl)imino]-5-methoxyl]-phenol}-palladium(Ⅱ)(CC_(32)H_(32)N_2O_4Pd) has been synthesized by the reaction of 2-[(2,4-dimethylphenyl)imino]-5-methoxyl-phenol wit...The title complex N,O-bis{[2-[(2,4-dimethylphenyl)imino]-5-methoxyl]-phenol}-palladium(Ⅱ)(CC_(32)H_(32)N_2O_4Pd) has been synthesized by the reaction of 2-[(2,4-dimethylphenyl)imino]-5-methoxyl-phenol with Pd(CH_3COO)_2,and characterized by elemental analysis,IR spectrum and single-crystal X-ray diffraction analysis.The crystal belongs to the monoclinic system,space group P2_1/c with a = 12.058(2),b = 8.3624(17),c = 14.735(3) ?,β = 107.66(3)°,V = 1415.7(5)?~3,C_(32)H_(32)N_2O_4Pd,Mr = 615,Z = 2,D_c = 1.443 Mg/m^3,μ = 0.695 mm^(-1),F(000) = 632,T = 293(2) K,the final R = 0.0514 and w R = 0.1356(I 〉 2s(I)).Under the co-catalysis of methylaluminoxane(MAO),the palladium compound exhibited favorable catalytic activity for the polymerization of norbornene(NB).展开更多
The reaction mechanisms of diene polymerization with homogeneous rare earth catalyst are studied by means of the spectra of ~1H-NMR, one-and two-dimensions ^(13)C-NMR. Based on the data of above NMR spectra, it is pro...The reaction mechanisms of diene polymerization with homogeneous rare earth catalyst are studied by means of the spectra of ~1H-NMR, one-and two-dimensions ^(13)C-NMR. Based on the data of above NMR spectra, it is proposed that the polymerization reaction proceeds according to the following mechanism: η~4-diene (cis-trans-)and η~3-allyl (syn-anti-).展开更多
In the last years, biodiesel production has been on a steady increase due to it is renewable and biodegradable fuel. The process to obtain biodiesel can be carried out using different raw materials. It is conlmonly pe...In the last years, biodiesel production has been on a steady increase due to it is renewable and biodegradable fuel. The process to obtain biodiesel can be carried out using different raw materials. It is conlmonly performed by transesterification reaction of vegetable oils with methanol and using a homogeneous or heterogeneous catalyst. This work seeks to compare the results produced in transesterification of wasted cooking oil and chicken fat by homogeneous catalysis with NaOH. Due to in each case triglyceride comes from different raw materials, operation conditions differ slightly, which is more evident in the values used for the temperature. For chicken fat was used temperature variations between 35 ℃ and 55 ℃, varying catalyst in percentages between 0.3% and 0.7% with a molar ratio 6:1 in all cases and a reaction time of I h. Likewise, the conditions used in the tmnsesterification process of waste cooking oil were temperature between 50 ℃ and 60 ℃ with a molar ratio 6/1 and 9/1 for alcohol and oil, and catalyst percentage between 0.5% and 0.7% by weight. The yields obtained were between 78% and 94%, or 83% and 95%, for chicken fat and wasted cooking oil, respectively.展开更多
Porous aromatic framework 1(PAF-1)is an extremely representative nanoporous organic framework owing to its high stability and exceptionally high surface area.Currently,the synthesis of PAF-1 is catalyzed by the Ni(COD...Porous aromatic framework 1(PAF-1)is an extremely representative nanoporous organic framework owing to its high stability and exceptionally high surface area.Currently,the synthesis of PAF-1 is catalyzed by the Ni(COD)2/COD/bpy system,suffering from great instability and high cost.Herein,we developed an in situ reduction of the Ni(II)catalytic system to synthesize PAF-1 in low cost and high yield.The active Ni(0)species produced from the NiCl_(2)/bpy/NaI/Mg catalyst system can effectively catalyze homocoupling of tetrakis(4-bromophenyl)methane at the room temperature to form PAF-1 with high Brunauer-Emmett-Teller(BET)-specific surface area up to 4948 m^(2) g^(−1)(Langmuir surface area,6785 m2 g−1).The possible halogen exchange and dehalogenation coupling mechanisms for this new catalytic process in PAF's synthesis are discussed in detail.The efficiency and universality of this innovative catalyst system have also been demonstrated in other PAFs'synthesis.This work provides a cheap,facile,and efficient method for scalable synthesis of PAFs and explores their application for high-pressure storage of Xe and Kr.展开更多
Single-atom catalysis,the catalysis by single-atom catalysts(SACs),has attracted considerable attention in recent years as a new frontier in the heterogeneous catalysis field.SACs have the advantages of both homogeneo...Single-atom catalysis,the catalysis by single-atom catalysts(SACs),has attracted considerable attention in recent years as a new frontier in the heterogeneous catalysis field.SACs have the advantages of both homogeneous catalysts(isolated active sites)and heterogeneous catalysts(stable and easy to separate),and are thus predicted to be able to bridge the homo-and heterogeneous catalysis.This prediction was first experimentally demonstrated in 2016.In this mini-review,we summarize the few homogeneous catalysis progresses reported recently where SACs have exhibited promising application:a)Rh/ZnO and Rh/CoO SAC have been used successfully in hydroformylation of olefin of which the activity are comparable to the homogeneous Wilkinson’s catalyst;b)a Pt/Al2O3 SAC has shown excellent performance in hydrosilylation reaction;and c)M-N-C SACs(M=Fe,Co etc.)have been applied in the activation of C–H bonds.All of these examples suggest that fabrication of suitable SACs could provide a new avenue for the heterogenization of homogeneous catalysts.These pioneering works shed new light on the recognition of single-atom catalysis in bridging the homo-and heterogeneous catalysis.展开更多
Activation and transformation of CO_2 is one of the important issues in the field of green and sustainable chemistry. Herein, CO_2 as a carbonoxygen resource was converted to CO_2-polyurea with 1,6-hexanediamine throu...Activation and transformation of CO_2 is one of the important issues in the field of green and sustainable chemistry. Herein, CO_2 as a carbonoxygen resource was converted to CO_2-polyurea with 1,6-hexanediamine through a two-step polymerization. The reaction parameters such as temperature, pressure and reaction time were examined; and several kinds of catalysts were screened in the absence and presence of NMP solvent. The formed oligomer and the final polyurea were characterized by FT-IR, VT-DRIFTS, NMR, XRD, AFM and their thermal properties were examined by TGA and DSC. It was confirmed that the final polyurea has a high thermal stability; the melting temperature is 269℃ and the decomposition temperature is above 300℃. It is a brittle polymer with a tensile strength of 18.35 MPa at break length of 1.64%. The polyurea has a stronger solvent resistance due to the ordered hydrogen bond in structure. The average molecular weight should be enhanced in the postpolymerization as the appearance, hydrogen bond intensity, crystallinity, melting point and the thermal stability changed largely compared to the oligomer. The present work provides a new kind of polyurea, it is expected to have a wide application in the field of polymer materials.展开更多
Direct numerical simulations (DNS) were performed for the forced homogeneous isotropic turbulence (FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading i...Direct numerical simulations (DNS) were performed for the forced homogeneous isotropic turbulence (FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading influenced by drag-reducing effects. The finite elastic non-linear extensibility-Peterlin model (FENE-P) was used as the conformation tensor equation for the viscoelastic polymer solution. Detailed analyses of DNS data were carried out in this paper for the turbulence scaling law and the topological dynamics of FHIT as well as the important turbulent parameters, including turbulent kinetic energy spectra, enstrophy and strain, velocity structure function, small-scale intermittency, etc. A natural and straightforward definition for the drag reduction rate was also proposed for the drag-reducing FHIT based on the decrease degree of the turbulent kinetic energy. It was found that the turbulent energy cascading in the FHIT was greatly modified by the drag-reducing polymer additives. The enstrophy and the strain fields in the FH1T of the polymer solution were remarkably weakened as compared with their Newtonian counterparts. The small-scale vortices and the small-scale intermittency were all inhibited by the viscoelastic effects in the FHIT of the polymer solution. However, the scaling law in a fashion of extended self-similarity for the FHIT of the polymer solution, within the presently simulated range of Weissenberg numbers, had no distinct differences compared with that of the Newtonian fluid case.展开更多
Two coordination polymers called [Ni(L)2]n(1) and [Ni(2,2?-bpy)22(H2O)]n (2)(HL = 4-benzoimidazol-1-yl-methyl benzoic acid, 2,2?-bpy = 2,2'-dipyridine) were synthesized by solvothermal reaction simultan...Two coordination polymers called [Ni(L)2]n(1) and [Ni(2,2?-bpy)22(H2O)]n (2)(HL = 4-benzoimidazol-1-yl-methyl benzoic acid, 2,2?-bpy = 2,2'-dipyridine) were synthesized by solvothermal reaction simultaneously and characterized by elemental analyses, thermogravimetric analysis, X-ray powder diffraction, IR spectroscopy and single-crystal X-ray diffraction analysis. Complex 1 crystallizes in monoclinic system, space group P21/c with a = 14.673(3), b = 10.773(2), c = 16.566(3) ?, V = 2559.2(8) A^3, Z = 4 and F(000) = 1160. 2 also crystallizes in monoclinic system, space group C2/c with a = 15.404(3), b = 12.652(3), c = 6.5362(13) ?, V = 1246.2(5) A^3, Z = 4 and F(000) = 712. The bridging L ligand connects the Ni^Ⅱ cations into a 2D network in complex 1, while 2 shows a 1D structure formed through the two O atoms of SO4^(2-) ions connecting the molecule. The catalytic properties indicate that complex 1 shows good catalytic activities for the cyanosilylation of 4-chlorobenzaldehyde. In addition, fluorescence property of complex 1 which quenches the excitation intensity in solid state was investigated at room temperature.展开更多
Two new unbridged zirconocenes, bis(2.4,7-trimethyl indenyl)zirconium dichloride (Met-I) and bis(2-methyl-4,7-diethyl indenyl)zirconium dichloride (Met-II) were prepared in order to investigate the steric effects of s...Two new unbridged zirconocenes, bis(2.4,7-trimethyl indenyl)zirconium dichloride (Met-I) and bis(2-methyl-4,7-diethyl indenyl)zirconium dichloride (Met-II) were prepared in order to investigate the steric effects of substituents on the nature of the catalysts for the: polymerization of propylene. A mixture of methyl aluminoxane (MAO) and triisobutylaluminum [Al(iBu)(3)] was used as cocatalyst to activate these catalysts. The decrease in steric bulkiness of substituents at 4 and 7 positions of the indenyl ring resulted in an increase of both activity and molecular weight as well as the isotacticity.展开更多
文摘In this paper, the stereoselective homogeneous catalysis polymerization of phenylacetylene by using two kinds of catalysts W(CO)_5CH_3I and W(CO)_4I_2 produced from UV laser photolysis of W (CO)_6 in CH_3I, I_2—C_6H_6 and CHI_3—C_6H_6 respectively was studied. The effects of laser energy, laser irradiation time and lifetime of catalyst on the polymerization of phenylacetylene were discussed. The photoproducts of W (CO)_6 in CH_3I, I2—C_6H_6 and CHI_3—C_6I_6 were determined by IR spectra. The structures of polyphenylacetylene obtained by W (CO)_5CH_3I and W (CO)_4I_2 catalysts were characterized by IR spectra and ~1H NMR spectra.
文摘Solid non-conjugated polymers have long been regarded as insulators due to deficiency of delocalizedπelectrons along the molecular chain framework.Up to date,origin of insulating polymer regulated charge transfer has not yet been uncovered.In this work,we unleash the root origin of charge transport capability of insulating polymer in photocatalysis.We ascertain that insulating polymer plays crucial roles in fine tuning of electronic structure of transition metal chalcogenides(TMCs),which mainly include altering surface electron density of TMCs for accelerating charge transport kinetics,triggering the generation of defect over TMCs for prolonging carrier lifetime,and acting as hole-trapping mediator for retarding charge recombination.These synergistic roles contribute to the charge transfer of insulating polymer.Our work opens a new vista of utilizing solid insulating polymers for maneuvering charge transfer toward solar energy conversion.
文摘In homogeneous media, N,N-Dimethylacrylamide (DMA) was grafted copolymerization to cellulose by a metal-catalyzed atom transfer radical polymerization (ATRP) process. First, cellulose was dissolved in DMAc/LiCl system, and it reacted with 2-bromoisobutyloyl bromide (BiBBr) to produce macroinitiator (cell-BiB). Then DMA was polymerized to the cellulose backbone in a homogeneous DMSO solution in presence of the cell-BiB. Characterization with FT-IR, NMR, and GPC measurements showed that there obtained a graft copolymer with cellulose backbone and PDMA side chains (cell-PDMA) in well-defined structure. The proteins adsorption studies showed that the cellulose membranes modified by the as-prepared cell-PDMA copolymer owns good protein adsorption resistancet.
基金Supported by the Natural Science Foundation of Fujian Province(2010J01026)the Ministry of Education of China(No.208066)+1 种基金the Education Department of Fujian Province(JA07029)the State Key Laboratory of Structural Chemistry(No.20130013)
文摘The title complex N,O-bis{2-[[(2-benzhydryl-4,6-dimethylphenyl)imino]-methyl]-phenol}-nickel(II)(C56H48N2NiO2) has been synthesized by the reaction of 2-[[(2-benzhydryl-4,6-dimethylphenyl)mino]-methyl]-phenol with Ni(CH3COO)2·4 H2O, and characterized by elemental analysis and IR spectrum. The spatial structure of the complex has been confirmed by single-crystal X-ray diffraction analysis. The compound belongs to the monoclinic system, space group C2/c with a = 39.035(8), b = 13.276(3), c = 17.679(4) A°, β = 98.06(3)°, V = 9071(3) A°^3, C56H48N2NiO2, Mr = 839.67, Z = 8, Dc = 1.230 Mg/m^3, μ = 0.472 mm^-1, F(000) = 3536, T = 293(2) K, the final R = 0.0675 and w R = 0.1345(I 〉 2s(I)). The compound showed excellent catalytic activity up to 1.268 × 10^7 g of PNB(mol of Ni)^-1h^-1 for the addition polymerization of norbornene by using methylaluminoxane(MAO) as a cocatalyst.
文摘The CO_2 quenching method has been used for the first time to determine the active complex concen- tration in Nd(naph)_3-Al(i-Bu)_3 catalyst system for polymerization of phenylacetylene into polyphenylacetylene(PPA)films.The kinetics and mechanism of this polymerization have been investigated by CO_2 quenching and IR,UV analytical methods.The kinetic equation can be expressed as Rp=k[M][Cp],and the apparent activation energy is about 13.6 kJ/mol.There is self-termination of chain propagating.Models for formation of the active complex and polymerization mechanism are proposed.
基金Supported by the Natural Science Foundation of Fujian Province(2010J01026)the Ministry of Education of China(No.208066)+1 种基金the Education Department of Fujian Province(JA07029)the State Key Laboratory of Structural Chemistry(No.20130013)
文摘The title complex N,O-bis{[2-[(2,4-dimethylphenyl)imino]-5-methoxyl]-phenol}-palladium(Ⅱ)(CC_(32)H_(32)N_2O_4Pd) has been synthesized by the reaction of 2-[(2,4-dimethylphenyl)imino]-5-methoxyl-phenol with Pd(CH_3COO)_2,and characterized by elemental analysis,IR spectrum and single-crystal X-ray diffraction analysis.The crystal belongs to the monoclinic system,space group P2_1/c with a = 12.058(2),b = 8.3624(17),c = 14.735(3) ?,β = 107.66(3)°,V = 1415.7(5)?~3,C_(32)H_(32)N_2O_4Pd,Mr = 615,Z = 2,D_c = 1.443 Mg/m^3,μ = 0.695 mm^(-1),F(000) = 632,T = 293(2) K,the final R = 0.0514 and w R = 0.1356(I 〉 2s(I)).Under the co-catalysis of methylaluminoxane(MAO),the palladium compound exhibited favorable catalytic activity for the polymerization of norbornene(NB).
基金The Project is supported by "Laboratory of Physics & Chemistry, Academia Sinica" and "National Natural Science Foundation of China"
文摘The reaction mechanisms of diene polymerization with homogeneous rare earth catalyst are studied by means of the spectra of ~1H-NMR, one-and two-dimensions ^(13)C-NMR. Based on the data of above NMR spectra, it is proposed that the polymerization reaction proceeds according to the following mechanism: η~4-diene (cis-trans-)and η~3-allyl (syn-anti-).
文摘In the last years, biodiesel production has been on a steady increase due to it is renewable and biodegradable fuel. The process to obtain biodiesel can be carried out using different raw materials. It is conlmonly performed by transesterification reaction of vegetable oils with methanol and using a homogeneous or heterogeneous catalyst. This work seeks to compare the results produced in transesterification of wasted cooking oil and chicken fat by homogeneous catalysis with NaOH. Due to in each case triglyceride comes from different raw materials, operation conditions differ slightly, which is more evident in the values used for the temperature. For chicken fat was used temperature variations between 35 ℃ and 55 ℃, varying catalyst in percentages between 0.3% and 0.7% with a molar ratio 6:1 in all cases and a reaction time of I h. Likewise, the conditions used in the tmnsesterification process of waste cooking oil were temperature between 50 ℃ and 60 ℃ with a molar ratio 6/1 and 9/1 for alcohol and oil, and catalyst percentage between 0.5% and 0.7% by weight. The yields obtained were between 78% and 94%, or 83% and 95%, for chicken fat and wasted cooking oil, respectively.
基金National Natural Science Foundation of China,Grant/Award Numbers:21975096,22178280Key Laboratory of Nuclear Data Foundation,Grant/Award Number:JCKY2021201C151Young Talent Support Plan,Grant/Award Number:HG6J001。
文摘Porous aromatic framework 1(PAF-1)is an extremely representative nanoporous organic framework owing to its high stability and exceptionally high surface area.Currently,the synthesis of PAF-1 is catalyzed by the Ni(COD)2/COD/bpy system,suffering from great instability and high cost.Herein,we developed an in situ reduction of the Ni(II)catalytic system to synthesize PAF-1 in low cost and high yield.The active Ni(0)species produced from the NiCl_(2)/bpy/NaI/Mg catalyst system can effectively catalyze homocoupling of tetrakis(4-bromophenyl)methane at the room temperature to form PAF-1 with high Brunauer-Emmett-Teller(BET)-specific surface area up to 4948 m^(2) g^(−1)(Langmuir surface area,6785 m2 g−1).The possible halogen exchange and dehalogenation coupling mechanisms for this new catalytic process in PAF's synthesis are discussed in detail.The efficiency and universality of this innovative catalyst system have also been demonstrated in other PAFs'synthesis.This work provides a cheap,facile,and efficient method for scalable synthesis of PAFs and explores their application for high-pressure storage of Xe and Kr.
基金supported by National Natural Science Foundation of China(21606222,21776270)Postdoctoral Science Foundation(2017M621170,2016M601350)~~
文摘Single-atom catalysis,the catalysis by single-atom catalysts(SACs),has attracted considerable attention in recent years as a new frontier in the heterogeneous catalysis field.SACs have the advantages of both homogeneous catalysts(isolated active sites)and heterogeneous catalysts(stable and easy to separate),and are thus predicted to be able to bridge the homo-and heterogeneous catalysis.This prediction was first experimentally demonstrated in 2016.In this mini-review,we summarize the few homogeneous catalysis progresses reported recently where SACs have exhibited promising application:a)Rh/ZnO and Rh/CoO SAC have been used successfully in hydroformylation of olefin of which the activity are comparable to the homogeneous Wilkinson’s catalyst;b)a Pt/Al2O3 SAC has shown excellent performance in hydrosilylation reaction;and c)M-N-C SACs(M=Fe,Co etc.)have been applied in the activation of C–H bonds.All of these examples suggest that fabrication of suitable SACs could provide a new avenue for the heterogenization of homogeneous catalysts.These pioneering works shed new light on the recognition of single-atom catalysis in bridging the homo-and heterogeneous catalysis.
基金the financial support from National Basic Research Program of China(2016YFA0602900)National Natural Science Foundation of China(21672204,21273222)+1 种基金Youth Innovation Promotion Association CAS(2016206)Jilin Provincial Science and Technology Program of China(20160203007GX)
文摘Activation and transformation of CO_2 is one of the important issues in the field of green and sustainable chemistry. Herein, CO_2 as a carbonoxygen resource was converted to CO_2-polyurea with 1,6-hexanediamine through a two-step polymerization. The reaction parameters such as temperature, pressure and reaction time were examined; and several kinds of catalysts were screened in the absence and presence of NMP solvent. The formed oligomer and the final polyurea were characterized by FT-IR, VT-DRIFTS, NMR, XRD, AFM and their thermal properties were examined by TGA and DSC. It was confirmed that the final polyurea has a high thermal stability; the melting temperature is 269℃ and the decomposition temperature is above 300℃. It is a brittle polymer with a tensile strength of 18.35 MPa at break length of 1.64%. The polyurea has a stronger solvent resistance due to the ordered hydrogen bond in structure. The average molecular weight should be enhanced in the postpolymerization as the appearance, hydrogen bond intensity, crystallinity, melting point and the thermal stability changed largely compared to the oligomer. The present work provides a new kind of polyurea, it is expected to have a wide application in the field of polymer materials.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51076036 and 51206033)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No.51121004)+2 种基金the Fundamental Research Funds for the Central Universities,China (Grant No. HIT.BRET2.2010008)the Doctoral Fund of Ministry of Education of China (Grant No. 20112302110020)the China Postdoctoral Science Foundation (Grant No. 2011M500652)
文摘Direct numerical simulations (DNS) were performed for the forced homogeneous isotropic turbulence (FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading influenced by drag-reducing effects. The finite elastic non-linear extensibility-Peterlin model (FENE-P) was used as the conformation tensor equation for the viscoelastic polymer solution. Detailed analyses of DNS data were carried out in this paper for the turbulence scaling law and the topological dynamics of FHIT as well as the important turbulent parameters, including turbulent kinetic energy spectra, enstrophy and strain, velocity structure function, small-scale intermittency, etc. A natural and straightforward definition for the drag reduction rate was also proposed for the drag-reducing FHIT based on the decrease degree of the turbulent kinetic energy. It was found that the turbulent energy cascading in the FHIT was greatly modified by the drag-reducing polymer additives. The enstrophy and the strain fields in the FH1T of the polymer solution were remarkably weakened as compared with their Newtonian counterparts. The small-scale vortices and the small-scale intermittency were all inhibited by the viscoelastic effects in the FHIT of the polymer solution. However, the scaling law in a fashion of extended self-similarity for the FHIT of the polymer solution, within the presently simulated range of Weissenberg numbers, had no distinct differences compared with that of the Newtonian fluid case.
基金supported by the National Natural Science Foundation of China(21171075/B010303,21103073/B030201,21306067/B060903)Innovation&Entrepreneurship Traning Program of China(201410299054Y)
文摘Two coordination polymers called [Ni(L)2]n(1) and [Ni(2,2?-bpy)22(H2O)]n (2)(HL = 4-benzoimidazol-1-yl-methyl benzoic acid, 2,2?-bpy = 2,2'-dipyridine) were synthesized by solvothermal reaction simultaneously and characterized by elemental analyses, thermogravimetric analysis, X-ray powder diffraction, IR spectroscopy and single-crystal X-ray diffraction analysis. Complex 1 crystallizes in monoclinic system, space group P21/c with a = 14.673(3), b = 10.773(2), c = 16.566(3) ?, V = 2559.2(8) A^3, Z = 4 and F(000) = 1160. 2 also crystallizes in monoclinic system, space group C2/c with a = 15.404(3), b = 12.652(3), c = 6.5362(13) ?, V = 1246.2(5) A^3, Z = 4 and F(000) = 712. The bridging L ligand connects the Ni^Ⅱ cations into a 2D network in complex 1, while 2 shows a 1D structure formed through the two O atoms of SO4^(2-) ions connecting the molecule. The catalytic properties indicate that complex 1 shows good catalytic activities for the cyanosilylation of 4-chlorobenzaldehyde. In addition, fluorescence property of complex 1 which quenches the excitation intensity in solid state was investigated at room temperature.
基金This project has been supported by the National Natural Science Foundation of China and the Petrochemical Incorporation of China (grant number 29734144).
文摘Two new unbridged zirconocenes, bis(2.4,7-trimethyl indenyl)zirconium dichloride (Met-I) and bis(2-methyl-4,7-diethyl indenyl)zirconium dichloride (Met-II) were prepared in order to investigate the steric effects of substituents on the nature of the catalysts for the: polymerization of propylene. A mixture of methyl aluminoxane (MAO) and triisobutylaluminum [Al(iBu)(3)] was used as cocatalyst to activate these catalysts. The decrease in steric bulkiness of substituents at 4 and 7 positions of the indenyl ring resulted in an increase of both activity and molecular weight as well as the isotacticity.