Experimental study on homogeneous charge compression ignition (HCCI) combustion process was carried out on a single-cylinder direct injection diesel engine fueled with dimethyl ether(DME). The influence of inert g...Experimental study on homogeneous charge compression ignition (HCCI) combustion process was carried out on a single-cylinder direct injection diesel engine fueled with dimethyl ether(DME). The influence of inert gas CO2 on the ignition and combustion process was investigated. The research results indicate that because of the high cetane number of DME, the stable HCCI operating range is quite narrow while the engine has a high compression ratio. The HCCI operating range can be largely extended when the inert gas is inducted into the charging air. HCCI combustion of DME presents remarkable characteristic of two-stage combustion process. As the concentration of inert gas increases, the ignition timing of the first combustion stage delays, the peak heat release rate decreases, and the combustion duration extends. Inducting inert gas into charging air cannot make the combustion and heat release of DME occur at a perfect crank angle position. Therefore,to obtain HCCI operation for the fuel with high cetane number,other methods such as reducing engine compression ratio should be adopted. Emission results show that under HCCI operation, a nearly zero NOx emission can be obtained with no smoke emissions. But the HC and CO emissions are high, and both rise with the increase of the concentration of inert gases.展开更多
The effects of cooled external exhaust gas recirculation (EGR) on the combustion and emission performance of diesel fuel homogeneous charge compression ignition (HCCI) are studied. Homogeneous mixture is formed by...The effects of cooled external exhaust gas recirculation (EGR) on the combustion and emission performance of diesel fuel homogeneous charge compression ignition (HCCI) are studied. Homogeneous mixture is formed by injecting fuel in-cylinder in the negative valve overlap (NVO) period. So, the HCCI combustion which has low NOx and smoke emission is achieved. Cooled external EGR can delay the start of combustion effectively, which is very useful for high cetane fuel (diesel) HCCI, because these fuels can easily self-ignition, which makes the start of combustion more early. External EGR can avoid the knock combustion of HCCI at high load which means that the EGR can expand the high load limit. HCCI maintains low smoke emission at various EGR rate and various load compared with conventional diesel engine because there is no fuel-rich area in cylinder.展开更多
Effects of exhaust gas recirculation (EGR) on homogeneous charge combustion of n-heptane was studied through simulation and experiment. Experiments were carried out in a single cylinder, four-stroke, air cooled engi...Effects of exhaust gas recirculation (EGR) on homogeneous charge combustion of n-heptane was studied through simulation and experiment. Experiments were carried out in a single cylinder, four-stroke, air cooled engine and a single cylinder, two-stroke, water cooled engine. In the four-stroke engine, experiments of the effects of EGR were examined using heated N2 addition as a surrogate for external EGR and modifying engine to increase internal EGR. The ignition timing was sensitive to EGR due to thermal and chemical effects. EGR or extra air is a key factor in eliminating knock during mid-load conditions. For higher load operation the only way to avoid knock is to control reaction timing through the use of spark ignition. Experimental and modeling results from the two-stroke engine show that auto-ignition can be avoided by increasing the engine speed. The two-stroke engine experiments indicate that high levels of internal EGR can enable spark ignition at lean conditions. At higher load conditions, increasing the engine speed is an effective method to control transition from homogeneous charge compression ignition (HCCI) operation to non-HCCI operation and successful spark ignition of a highly dilute mixture can avoid serious knock.展开更多
The detailed surface reaction mechanism of methane on rhodium catalyst was analyzed. Comparisons between numerical simulation and experiments showed a basic agreement. The combustion process of homogeneous charge comp...The detailed surface reaction mechanism of methane on rhodium catalyst was analyzed. Comparisons between numerical simulation and experiments showed a basic agreement. The combustion process of homogeneous charge compression ignition (HCCI) engine whose piston surface has been coated with catalyst (rhodium and platinum) was numerically investigated. A multi-dimensional model with detailed chemical kinetics was built. The effects of catalytic combustion on the ignition timing, the temperature and CO concentration fields, and HC, CO and NOx emissions of the HCCI engine were discussed. The results showed the ignition timing of the HCCI engine was advanced and the emissions of HC and CO were decreased by the catalysis.展开更多
To meet the requirements of the homogeneous charge compression ignition gasoline engine’s rapid cylinder exhaust gas rate and accurate control of combustion phasing,a residual exhaust gas rate model was proposed.A he...To meet the requirements of the homogeneous charge compression ignition gasoline engine’s rapid cylinder exhaust gas rate and accurate control of combustion phasing,a residual exhaust gas rate model was proposed.A heat dissipation model for gas flow in the exhaust passage and exhaust pipe was established,and the exhaust gas was established.Flow through the exhaust valve was considered as an adiabatic expansion process,the exhaust temperature was used to estimate the temperature in the cylinder at the time that the valve was closed,and the cylinder exhaust gas rate was calculated.To meet the requirements of transient operating conditions,a first-order inertial link was used to correct the thermocouple temperature measurement.Addressing this delay problem and modification of the exhaust wall temperature according to different conditions effectively improved the accuracy of the model.The relative error between the calculated results of this model and the simulation results determined using GT-POWER software was within 3.5%.展开更多
Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show ...Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show that hydrogen addition advances ignition tim- ing and enhances peak pressure and temperature. A brief analysis of chemical kinetics of methane blending hydrogen is also performed in order to investigate the scope of its appli- cation, and the analysis suggests that OH radical plays an important role in the oxidation. Hydrogen addition increases NOx while decreasing HC and CO emissions. Exhaust gas recir- culation (EGR) also advances ignition timing; however, its effects on emissions are generally the opposite. By adjusting the hydrogen addition and EGR rate, the ignition timing can be regulated with a low emission level. Investigation into zones suggests that NOx is mostly formed in core zones while HC and CO mostly originate in the crevice and the quench layer.展开更多
The catalytic combustion of methane in a mierochannel whose surface was coated with platinum(Pt) catalyst was studied by numerical-simulation. The effects of gas-phase reactions on the whole catalytic combustion pro...The catalytic combustion of methane in a mierochannel whose surface was coated with platinum(Pt) catalyst was studied by numerical-simulation. The effects of gas-phase reactions on the whole catalytic combustion process were analyzed at a high inlet pressure. A sensitivity analysis of the detailed mechanisms of the surface reaction of methane on Pt revealed that the most sensitive reactions affecting the heterogeneous ignition are oxygen adsorption/desorption and methane adsorption, and the most sensitive reactions affecting the homogeneous ignition are OH and H2O adsorption/desorption. The combustion process of the homogeneous charge compression ignition(HCCI) engine whose piston face was coated with Pt catalyst was simulated. The effects of catalysis and the most sensitive reactions on the ignition timing and the concentration of the main intermediate species during the HCCI engine combustion are discussed. The results show that the ignition timing of the HCCI engine can be increased by catalysis, and the most sensitive reactions affecting the ignition timing of the HCCI engine are OH and H2O adsorption/desorption.展开更多
For homogeneous charge compression ignition (HCCI) combustion, the auto-ignition process is very sensitive to in-cylinder conditions, including in-cylinder temperature, in-cylinder components and concentrations. The...For homogeneous charge compression ignition (HCCI) combustion, the auto-ignition process is very sensitive to in-cylinder conditions, including in-cylinder temperature, in-cylinder components and concentrations. Therefore, accurate control is required for reliable and efficient HCCI combustion. This paper outlines a simplified gasoline-fueled HCCI engine model implemented in Simulink environment. The model is able to run in real-time and with fixed simulation steps with the aim of cycle-to-cycle control and hardware- in-the-loop simulation. With the aim of controlling the desired amount of the trapped exhaust gas recirculation (EGR) from the previous cycle, the phase of the intake and exhaust valves and the respective profiles are designed to vary in this model. The model is able to anticipate the auto-ignition timing and the in-cylinder pressure and temperature. The validation has been conducted using a comparison of the experimental results on Ricardo Hydro engine published in a research by Tianjin University and a JAGUAR V6 HCCI test engine at the University of Birmingham. The comparison shows the typical HCCI combustion and a fair agreement between the simulation and experimental results.展开更多
The negative valve overlap (NVO) strategy of HCCI operation was experimentally investigated on a gasoline HCCI engine operated with variable valve timing in association with the addition of diesel fuel. The experiment...The negative valve overlap (NVO) strategy of HCCI operation was experimentally investigated on a gasoline HCCI engine operated with variable valve timing in association with the addition of diesel fuel. The experimental results show that, by using gasoline and diesel blended fuels, the required NVO interval for suitable HCCI combustion under a given engine speed and a moderate compression ratio condition could be reduced, and the HCCI combustion region was extended remarkably without substantial increase in NOx emissions under a given inlet and exhaust valve timing due to the improvement of charge ignitability. In addition, the possible scale of NVO was extended. A substantial increase in the lean limit of excess air ratio and the upper limit of load range can be achieved because of higher volumetric efficiency, resulting from the decrease in the required NVO and the presence of less residual gases in cylinder.展开更多
High electric field and temperatures can result in electrical property degradation of oil-paper insulation and accelerate its aging process.This paper describes the regulation of space charge in the process of electro...High electric field and temperatures can result in electrical property degradation of oil-paper insulation and accelerate its aging process.This paper describes the regulation of space charge in the process of electro-thermal aging.Electric field distortion and differences in characteristic parameters during electro-thermal aging are analyzed,along with the effects of electro-thermal aging on space charge from the perspective of trap energy.High temperature and an electric field are used to accelerate the aging of oil-paper,and space charge characteristics are measured using the pulsed electro-acoustic(PEA)method throughout the electro-thermal aging.Based on results obtained,it can be concluded that homo-charge injection occurs at the anode and the type of the charge injection at the cathode varies throughout the electro-thermal aging;the decrease of permittivity during aging allows for space charge injection to take place;growth of trap depth makes the space charge accumulate in the middle of the sample;and space charge accumulation after electro-thermal aging results in inner electric field distortion,which leads to large current and decreased breakdown in voltages.展开更多
This paper experimentally and numerically studied the effects of fuel combination and intake valve opening(IVO)timing on combustion and emissions of an n-heptane and gasoline dual-flicl homogeneous charge compression ...This paper experimentally and numerically studied the effects of fuel combination and intake valve opening(IVO)timing on combustion and emissions of an n-heptane and gasoline dual-flicl homogeneous charge compression ignition(HCCI)engine.By changing the gasoline fraction(GF)from 0」to 0.5 and the IVO timing from-15°CA ATDC to 35°CA ATDC,the in-cylinder pressure traces,heat release behaviors,and HC and CO emissions were investigated.The results showed that both the increased GF and the retarded IVO timing delay the combustion phasing,lengthen the combustion duration,and decrease the peak heat release rate and the maximum average combustion temperature,whereas the IVO timing has a more obvious influence on combustion than GF.HC and CO emissions are decreased with reduced GF,advanced IVO timing and increased operational load.展开更多
文摘Experimental study on homogeneous charge compression ignition (HCCI) combustion process was carried out on a single-cylinder direct injection diesel engine fueled with dimethyl ether(DME). The influence of inert gas CO2 on the ignition and combustion process was investigated. The research results indicate that because of the high cetane number of DME, the stable HCCI operating range is quite narrow while the engine has a high compression ratio. The HCCI operating range can be largely extended when the inert gas is inducted into the charging air. HCCI combustion of DME presents remarkable characteristic of two-stage combustion process. As the concentration of inert gas increases, the ignition timing of the first combustion stage delays, the peak heat release rate decreases, and the combustion duration extends. Inducting inert gas into charging air cannot make the combustion and heat release of DME occur at a perfect crank angle position. Therefore,to obtain HCCI operation for the fuel with high cetane number,other methods such as reducing engine compression ratio should be adopted. Emission results show that under HCCI operation, a nearly zero NOx emission can be obtained with no smoke emissions. But the HC and CO emissions are high, and both rise with the increase of the concentration of inert gases.
基金This project is supported by National Basic Research Program of China (973Program, No. 2001CB209205)National Natural Science Foundation ofChina (No. 50406016)
文摘The effects of cooled external exhaust gas recirculation (EGR) on the combustion and emission performance of diesel fuel homogeneous charge compression ignition (HCCI) are studied. Homogeneous mixture is formed by injecting fuel in-cylinder in the negative valve overlap (NVO) period. So, the HCCI combustion which has low NOx and smoke emission is achieved. Cooled external EGR can delay the start of combustion effectively, which is very useful for high cetane fuel (diesel) HCCI, because these fuels can easily self-ignition, which makes the start of combustion more early. External EGR can avoid the knock combustion of HCCI at high load which means that the EGR can expand the high load limit. HCCI maintains low smoke emission at various EGR rate and various load compared with conventional diesel engine because there is no fuel-rich area in cylinder.
基金Supported by National Natural Science Foundation and GM Fund (No.50322261).
文摘Effects of exhaust gas recirculation (EGR) on homogeneous charge combustion of n-heptane was studied through simulation and experiment. Experiments were carried out in a single cylinder, four-stroke, air cooled engine and a single cylinder, two-stroke, water cooled engine. In the four-stroke engine, experiments of the effects of EGR were examined using heated N2 addition as a surrogate for external EGR and modifying engine to increase internal EGR. The ignition timing was sensitive to EGR due to thermal and chemical effects. EGR or extra air is a key factor in eliminating knock during mid-load conditions. For higher load operation the only way to avoid knock is to control reaction timing through the use of spark ignition. Experimental and modeling results from the two-stroke engine show that auto-ignition can be avoided by increasing the engine speed. The two-stroke engine experiments indicate that high levels of internal EGR can enable spark ignition at lean conditions. At higher load conditions, increasing the engine speed is an effective method to control transition from homogeneous charge compression ignition (HCCI) operation to non-HCCI operation and successful spark ignition of a highly dilute mixture can avoid serious knock.
文摘The detailed surface reaction mechanism of methane on rhodium catalyst was analyzed. Comparisons between numerical simulation and experiments showed a basic agreement. The combustion process of homogeneous charge compression ignition (HCCI) engine whose piston surface has been coated with catalyst (rhodium and platinum) was numerically investigated. A multi-dimensional model with detailed chemical kinetics was built. The effects of catalytic combustion on the ignition timing, the temperature and CO concentration fields, and HC, CO and NOx emissions of the HCCI engine were discussed. The results showed the ignition timing of the HCCI engine was advanced and the emissions of HC and CO were decreased by the catalysis.
基金Hebei Provincial Science and Technology Research Project(Grant No.Z2015092)Langfang Science and Technology Bureau High-Tech Support Project(Grant No.2016011018)Yanjing Institute of Technology Research Project(Grant No.2017YITSRF105)are thanked for joint funding.
文摘To meet the requirements of the homogeneous charge compression ignition gasoline engine’s rapid cylinder exhaust gas rate and accurate control of combustion phasing,a residual exhaust gas rate model was proposed.A heat dissipation model for gas flow in the exhaust passage and exhaust pipe was established,and the exhaust gas was established.Flow through the exhaust valve was considered as an adiabatic expansion process,the exhaust temperature was used to estimate the temperature in the cylinder at the time that the valve was closed,and the cylinder exhaust gas rate was calculated.To meet the requirements of transient operating conditions,a first-order inertial link was used to correct the thermocouple temperature measurement.Addressing this delay problem and modification of the exhaust wall temperature according to different conditions effectively improved the accuracy of the model.The relative error between the calculated results of this model and the simulation results determined using GT-POWER software was within 3.5%.
基金This work was supported by the Natural Science Foundation of Anhui Province (No.090412030).
文摘Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show that hydrogen addition advances ignition tim- ing and enhances peak pressure and temperature. A brief analysis of chemical kinetics of methane blending hydrogen is also performed in order to investigate the scope of its appli- cation, and the analysis suggests that OH radical plays an important role in the oxidation. Hydrogen addition increases NOx while decreasing HC and CO emissions. Exhaust gas recir- culation (EGR) also advances ignition timing; however, its effects on emissions are generally the opposite. By adjusting the hydrogen addition and EGR rate, the ignition timing can be regulated with a low emission level. Investigation into zones suggests that NOx is mostly formed in core zones while HC and CO mostly originate in the crevice and the quench layer.
基金Supported by the National Key Basic Research Development Project of China(No.2001CB209201).
文摘The catalytic combustion of methane in a mierochannel whose surface was coated with platinum(Pt) catalyst was studied by numerical-simulation. The effects of gas-phase reactions on the whole catalytic combustion process were analyzed at a high inlet pressure. A sensitivity analysis of the detailed mechanisms of the surface reaction of methane on Pt revealed that the most sensitive reactions affecting the heterogeneous ignition are oxygen adsorption/desorption and methane adsorption, and the most sensitive reactions affecting the homogeneous ignition are OH and H2O adsorption/desorption. The combustion process of the homogeneous charge compression ignition(HCCI) engine whose piston face was coated with Pt catalyst was simulated. The effects of catalysis and the most sensitive reactions on the ignition timing and the concentration of the main intermediate species during the HCCI engine combustion are discussed. The results show that the ignition timing of the HCCI engine can be increased by catalysis, and the most sensitive reactions affecting the ignition timing of the HCCI engine are OH and H2O adsorption/desorption.
文摘For homogeneous charge compression ignition (HCCI) combustion, the auto-ignition process is very sensitive to in-cylinder conditions, including in-cylinder temperature, in-cylinder components and concentrations. Therefore, accurate control is required for reliable and efficient HCCI combustion. This paper outlines a simplified gasoline-fueled HCCI engine model implemented in Simulink environment. The model is able to run in real-time and with fixed simulation steps with the aim of cycle-to-cycle control and hardware- in-the-loop simulation. With the aim of controlling the desired amount of the trapped exhaust gas recirculation (EGR) from the previous cycle, the phase of the intake and exhaust valves and the respective profiles are designed to vary in this model. The model is able to anticipate the auto-ignition timing and the in-cylinder pressure and temperature. The validation has been conducted using a comparison of the experimental results on Ricardo Hydro engine published in a research by Tianjin University and a JAGUAR V6 HCCI test engine at the University of Birmingham. The comparison shows the typical HCCI combustion and a fair agreement between the simulation and experimental results.
基金Supported by the Engineering and Physical Sciences Research Council of the UK(No58338/01)
文摘The negative valve overlap (NVO) strategy of HCCI operation was experimentally investigated on a gasoline HCCI engine operated with variable valve timing in association with the addition of diesel fuel. The experimental results show that, by using gasoline and diesel blended fuels, the required NVO interval for suitable HCCI combustion under a given engine speed and a moderate compression ratio condition could be reduced, and the HCCI combustion region was extended remarkably without substantial increase in NOx emissions under a given inlet and exhaust valve timing due to the improvement of charge ignitability. In addition, the possible scale of NVO was extended. A substantial increase in the lean limit of excess air ratio and the upper limit of load range can be achieved because of higher volumetric efficiency, resulting from the decrease in the required NVO and the presence of less residual gases in cylinder.
基金supported by National Basic Research Program of China(973 Program)under Grant 2011CB209400。
文摘High electric field and temperatures can result in electrical property degradation of oil-paper insulation and accelerate its aging process.This paper describes the regulation of space charge in the process of electro-thermal aging.Electric field distortion and differences in characteristic parameters during electro-thermal aging are analyzed,along with the effects of electro-thermal aging on space charge from the perspective of trap energy.High temperature and an electric field are used to accelerate the aging of oil-paper,and space charge characteristics are measured using the pulsed electro-acoustic(PEA)method throughout the electro-thermal aging.Based on results obtained,it can be concluded that homo-charge injection occurs at the anode and the type of the charge injection at the cathode varies throughout the electro-thermal aging;the decrease of permittivity during aging allows for space charge injection to take place;growth of trap depth makes the space charge accumulate in the middle of the sample;and space charge accumulation after electro-thermal aging results in inner electric field distortion,which leads to large current and decreased breakdown in voltages.
基金the National Natural Science Foundation of China(Grant Nos.51861135303 and 51776124)the Shanghai Science and Technology Committee,China(Grant No.19160745400).
文摘This paper experimentally and numerically studied the effects of fuel combination and intake valve opening(IVO)timing on combustion and emissions of an n-heptane and gasoline dual-flicl homogeneous charge compression ignition(HCCI)engine.By changing the gasoline fraction(GF)from 0」to 0.5 and the IVO timing from-15°CA ATDC to 35°CA ATDC,the in-cylinder pressure traces,heat release behaviors,and HC and CO emissions were investigated.The results showed that both the increased GF and the retarded IVO timing delay the combustion phasing,lengthen the combustion duration,and decrease the peak heat release rate and the maximum average combustion temperature,whereas the IVO timing has a more obvious influence on combustion than GF.HC and CO emissions are decreased with reduced GF,advanced IVO timing and increased operational load.