Determining homogeneous domains statistically is helpful for engineering geological modeling and rock mass stability evaluation.In this text,a technique that can integrate lithology,geotechnical and structural informa...Determining homogeneous domains statistically is helpful for engineering geological modeling and rock mass stability evaluation.In this text,a technique that can integrate lithology,geotechnical and structural information is proposed to delineate homogeneous domains.This technique is then applied to a high and steep slope along a road.First,geological and geotechnical domains were described based on lithology,faults,and shear zones.Next,topological manifolds were used to eliminate the incompatibility between orientations and other parameters(i.e.trace length and roughness)so that the data concerning various properties of each discontinuity can be matched and characterized in the same Euclidean space.Thus,the influence of implicit combined effect in between parameter sequences on the homogeneous domains could be considered.Deep learning technique was employed to quantify abstract features of the characterization images of discontinuity properties,and to assess the similarity of rock mass structures.The results show that the technique can effectively distinguish structural variations and outperform conventional methods.It can handle multisource engineering geological information and multiple discontinuity parameters.This technique can also minimize the interference of human factors and delineate homogeneous domains based on orientations or multi-parameter with arbitrary distributions to satisfy different engineering requirements.展开更多
We study the bounded and the compact weighted composition operators from the Bloch space into the weighted Banach spaces of holomorphic functions on bounded homogeneous domains, with particular attention to the unit p...We study the bounded and the compact weighted composition operators from the Bloch space into the weighted Banach spaces of holomorphic functions on bounded homogeneous domains, with particular attention to the unit polydisk. For bounded homogeneous domains, we characterize the bounded weighted composition operators and determine the operator norm. In addition, we provide sufficient conditions for compactness. For the unit polydisk, we completely characterize the compact weighted composition operators, as well as provide "computable" estimates on the operator norm.展开更多
The Hartogs domain over homogeneous Siegel domain D_(N,s)(s>0)is defined by the inequality■,where D is a homogeneous Siegel domain of typeⅡ,(z,ζ)∈D×C~N and KD(z,z)is the Bergman kernel of D.Recently,Seo ob...The Hartogs domain over homogeneous Siegel domain D_(N,s)(s>0)is defined by the inequality■,where D is a homogeneous Siegel domain of typeⅡ,(z,ζ)∈D×C~N and KD(z,z)is the Bergman kernel of D.Recently,Seo obtained the rigidity result that proper holomorphic mappings between two equidimensional domains D_(N,s)and D'_(N',s')are biholomorphisms for N≥2.In this article,we find a counter-example to show that the rigidity result is not true for D_(1,s)and obtain a classification of proper holomorphic mappings between D_(1,s)and D'_(1,s').展开更多
We study the heat equation with non-periodic coefficients in periodically perforated domains with a homogeneous Neumann condition on the holes. Using the time-dependent unfolding method, we obtain some homogenization ...We study the heat equation with non-periodic coefficients in periodically perforated domains with a homogeneous Neumann condition on the holes. Using the time-dependent unfolding method, we obtain some homogenization and corrector results which generalize those by Donato and Nabil(2001).展开更多
For equations of order two with the Dirichlet boundary condition, as the Laplace problem, the Stokes and the Navier-Stokes systems, perforated domains were only studied when the distance between the holes d_ε is equa...For equations of order two with the Dirichlet boundary condition, as the Laplace problem, the Stokes and the Navier-Stokes systems, perforated domains were only studied when the distance between the holes d_ε is equal to or much larger than the size of the holes ε. Such a diluted porous medium is interesting because it contains some cases where we have a non-negligible effect on the solution when(ε, d_ε) →(0, 0).Smaller distances were avoided for mathematical reasons and for these large distances, the geometry of the holes does not affect or rarely affect the asymptotic result. Very recently, it was shown for the 2D-Euler equations that a porous medium is non-negligible only for inter-holes distances much smaller than the sizes of the holes.For this result, the boundary regularity of holes plays a crucial role, and the permeability criterion depends on the geometry of the lateral boundary. In this paper, we relax slightly the regularity condition, allowing a corner, and we note that a line of irregular obstacles cannot slow down a perfect fluid in any regime such thatε ln d_ε→ 0.展开更多
基金the National Natural Science Foundation of China(Grant Nos.41941017 and U1702241).
文摘Determining homogeneous domains statistically is helpful for engineering geological modeling and rock mass stability evaluation.In this text,a technique that can integrate lithology,geotechnical and structural information is proposed to delineate homogeneous domains.This technique is then applied to a high and steep slope along a road.First,geological and geotechnical domains were described based on lithology,faults,and shear zones.Next,topological manifolds were used to eliminate the incompatibility between orientations and other parameters(i.e.trace length and roughness)so that the data concerning various properties of each discontinuity can be matched and characterized in the same Euclidean space.Thus,the influence of implicit combined effect in between parameter sequences on the homogeneous domains could be considered.Deep learning technique was employed to quantify abstract features of the characterization images of discontinuity properties,and to assess the similarity of rock mass structures.The results show that the technique can effectively distinguish structural variations and outperform conventional methods.It can handle multisource engineering geological information and multiple discontinuity parameters.This technique can also minimize the interference of human factors and delineate homogeneous domains based on orientations or multi-parameter with arbitrary distributions to satisfy different engineering requirements.
文摘We study the bounded and the compact weighted composition operators from the Bloch space into the weighted Banach spaces of holomorphic functions on bounded homogeneous domains, with particular attention to the unit polydisk. For bounded homogeneous domains, we characterize the bounded weighted composition operators and determine the operator norm. In addition, we provide sufficient conditions for compactness. For the unit polydisk, we completely characterize the compact weighted composition operators, as well as provide "computable" estimates on the operator norm.
基金the National Natural Science Foundation of China(Grant Nos.11801187,11871233 and 11871380)。
文摘The Hartogs domain over homogeneous Siegel domain D_(N,s)(s>0)is defined by the inequality■,where D is a homogeneous Siegel domain of typeⅡ,(z,ζ)∈D×C~N and KD(z,z)is the Bergman kernel of D.Recently,Seo obtained the rigidity result that proper holomorphic mappings between two equidimensional domains D_(N,s)and D'_(N',s')are biholomorphisms for N≥2.In this article,we find a counter-example to show that the rigidity result is not true for D_(1,s)and obtain a classification of proper holomorphic mappings between D_(1,s)and D'_(1,s').
基金supported by National Natural Science Foundation of China(Grant No.11401595)
文摘We study the heat equation with non-periodic coefficients in periodically perforated domains with a homogeneous Neumann condition on the holes. Using the time-dependent unfolding method, we obtain some homogenization and corrector results which generalize those by Donato and Nabil(2001).
基金supported by the CNRS(program Tellus)the Agence Nationale de la Recherche:Project IFSMACS(Grant No.ANR-15-CE40-0010)+2 种基金 Project SINGFLOWS(Grant No.ANR-18-CE40-0027-01)The second author was supported by National Natural Science Foundation of China(Grant No.11701016)This work has been supported by the Sino-French Research Program in Mathematics(SFRPM),which made several visits between the authors possible.
文摘For equations of order two with the Dirichlet boundary condition, as the Laplace problem, the Stokes and the Navier-Stokes systems, perforated domains were only studied when the distance between the holes d_ε is equal to or much larger than the size of the holes ε. Such a diluted porous medium is interesting because it contains some cases where we have a non-negligible effect on the solution when(ε, d_ε) →(0, 0).Smaller distances were avoided for mathematical reasons and for these large distances, the geometry of the holes does not affect or rarely affect the asymptotic result. Very recently, it was shown for the 2D-Euler equations that a porous medium is non-negligible only for inter-holes distances much smaller than the sizes of the holes.For this result, the boundary regularity of holes plays a crucial role, and the permeability criterion depends on the geometry of the lateral boundary. In this paper, we relax slightly the regularity condition, allowing a corner, and we note that a line of irregular obstacles cannot slow down a perfect fluid in any regime such thatε ln d_ε→ 0.