Let x : M^n→S^n+1 be an immersed hypersurface in the (n +1)-dimensional sphere S^n+1. If, for any points p,q ∈ M^n, there exists a Mobius transformation Ф : S^n+l →S^n+1 such that Ф o x(M^n) = x(M^n)...Let x : M^n→S^n+1 be an immersed hypersurface in the (n +1)-dimensional sphere S^n+1. If, for any points p,q ∈ M^n, there exists a Mobius transformation Ф : S^n+l →S^n+1 such that Ф o x(M^n) = x(M^n) and Ф o x(p) = x(q), then the hypersurface is called a Mobius homogeneous hypersurface. In this paper, the Mobius homogeneous hypersurfaces with three distinct principal curvatures are classified completely up to a Mobius transformation.展开更多
In this paper,we study hypersurfaces of H^(2)×H^(2).We first classify the hypersurfaces with constant principal curvatures and constant product angle functions.Then we classify homogeneous hypersurfaces and isopa...In this paper,we study hypersurfaces of H^(2)×H^(2).We first classify the hypersurfaces with constant principal curvatures and constant product angle functions.Then we classify homogeneous hypersurfaces and isoparametric hypersurfaces,respectively.Finally,we classify the hypersurfaces with at most two distinct constant principal curvatures,as well as those with three distinct constant principal curvatures under some additional conditions.展开更多
In this paper, we first set up an alternative fundamental theory of M?bius geometry for any umbilic-free spacelike hypersurfaces in four dimensional Lorentzian space form, and prove the hypersurfaces can be determined...In this paper, we first set up an alternative fundamental theory of M?bius geometry for any umbilic-free spacelike hypersurfaces in four dimensional Lorentzian space form, and prove the hypersurfaces can be determined completely by a system consisting of a function W and a tangent frame {E_i}. Then we give a complete classification for spacelike M?bius homogeneous hypersurfaces in four dimensional Lorentzian space form. They are either M?bius equivalent to spacelike Dupin hypersurfaces or to some cylinders constructed from logarithmic curves and hyperbolic logarithmic spirals. Some of them have parallel para-Blaschke tensors with non-vanishing M?bius form.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11571037,11471021)
文摘Let x : M^n→S^n+1 be an immersed hypersurface in the (n +1)-dimensional sphere S^n+1. If, for any points p,q ∈ M^n, there exists a Mobius transformation Ф : S^n+l →S^n+1 such that Ф o x(M^n) = x(M^n) and Ф o x(p) = x(q), then the hypersurface is called a Mobius homogeneous hypersurface. In this paper, the Mobius homogeneous hypersurfaces with three distinct principal curvatures are classified completely up to a Mobius transformation.
基金supported by National Natural Science Foundation of China (Grant Nos. 11831005, 12061131014 and 12171437)China Postdoctoral Science Foundation (Grant No. 2022M721871)
文摘In this paper,we study hypersurfaces of H^(2)×H^(2).We first classify the hypersurfaces with constant principal curvatures and constant product angle functions.Then we classify homogeneous hypersurfaces and isoparametric hypersurfaces,respectively.Finally,we classify the hypersurfaces with at most two distinct constant principal curvatures,as well as those with three distinct constant principal curvatures under some additional conditions.
基金supported by NSFC(Grant Nos.11571287 and 11671330)supported by NSFC(Grant Nos.11331002 and 11471021)
文摘In this paper, we first set up an alternative fundamental theory of M?bius geometry for any umbilic-free spacelike hypersurfaces in four dimensional Lorentzian space form, and prove the hypersurfaces can be determined completely by a system consisting of a function W and a tangent frame {E_i}. Then we give a complete classification for spacelike M?bius homogeneous hypersurfaces in four dimensional Lorentzian space form. They are either M?bius equivalent to spacelike Dupin hypersurfaces or to some cylinders constructed from logarithmic curves and hyperbolic logarithmic spirals. Some of them have parallel para-Blaschke tensors with non-vanishing M?bius form.