In this paper, a stochastic SIS epidemic model on homogeneous networks is considered. The largest Lyapunov exponent is calculated by Oseledec multiplicative ergodic theory, and the stability condition is determined by...In this paper, a stochastic SIS epidemic model on homogeneous networks is considered. The largest Lyapunov exponent is calculated by Oseledec multiplicative ergodic theory, and the stability condition is determined by the largest Lyapunov exponent. The probability density function for the proportion of infected individuals is found explicitly, and the stochastic bifurcation is analysed by a probability density function. In particular, the new basic reproductive number R^*, that governs whether an epidemic with few initial infections can become an endemic or not, is determined by noise intensity. In the homogeneous networks, despite of the basic productive number R0 〉1, the epidemic will die out as long as noise intensity satisfies a certain condition.展开更多
In order to prevent and control the spread of rumors, the implementation of immunization strategies for ignorant individuals is very necessary, where the immunization usually means letting them learn the truth of rumo...In order to prevent and control the spread of rumors, the implementation of immunization strategies for ignorant individuals is very necessary, where the immunization usually means letting them learn the truth of rumors.Considering the facts that there is always a delay time between rumor spreading and implementing immunization, and that the truth of rumors can also be spread out, this paper constructs a novel susceptible-infected-removed(SIR) model.The propagation dynamical behaviors of the SIR model on homogeneous networks are investigated by using the meanfield theory and the Monte Carlo method. Research shows that the greater the delay time, the worse the immune effect of the immunization strategy. It is also found that the spread of the truth can inhibit to some extent the propagation of rumors, and the trend will become more obvious with the increase of reliability of the truth. Moreover, under the influence of delay time, the existence of nodes' identification force still slightly reduces the propagation degree of rumors.展开更多
Synchronization rhythm and oscillating in biological systems can give clues to understanding the cooperation and competition between cells under appropriate biological and physical conditions. As a result, the network...Synchronization rhythm and oscillating in biological systems can give clues to understanding the cooperation and competition between cells under appropriate biological and physical conditions. As a result, the network setting is appreciated to detect the stability and transition of collective behaviors in a network with different connection types. In this paper, the synchronization performance in time-delayed excitable homogeneous random networks(EHRNs) induced by diversity in system parameters is investigated by calculating the synchronization parameter and plotting the spatiotemporal evolution pattern, and distinct impacts induced by parameter-diversity are detected by setting different time delays. It is found that diversity has no distinct effect on the synchronization performance in EHRNs with small time delay being considered. When time delay is increased greatly, the synchronization performance of EHRN degenerates remarkably as diversity is increased. Surprisingly, by setting a moderate time delay, appropriate parameter-diversity can promote the synchronization performance in EHRNs, and can induce the synchronization transition from the asynchronous state to the weak synchronization. Moreover, the bistability phenomenon, which contains the states of asynchronous state and weak synchronization,is observed. Particularly, it is confirmed that the parameter-diversity promoted synchronization performance in time-delayed EHRN is manifested in the enhancement of the synchronization performance of individual oscillation and the increase of the number of synchronization transitions from the asynchronous state to the weak synchronization. Finally, we have revealed that this kind of parameter-diversity promoted synchronization performance is a robust phenomenon.展开更多
In this paper, to study rumor spreading, we propose a novel susceptible-infected-removed (SIR) model by introducing the trust mechanism. We derive mean-field equations that describe the dynamics of the SIR model on ...In this paper, to study rumor spreading, we propose a novel susceptible-infected-removed (SIR) model by introducing the trust mechanism. We derive mean-field equations that describe the dynamics of the SIR model on homogeneous networks and inhomogeneous networks. Then a steady-state analysis is conducted to investigate the critical threshold and the finaJ size of the rumor spreading. We show that the introduction of trust mechanism reduces the final rumor size and the velocity of rumor spreading, but increases the critical thresholds on both networks. Moreover, the trust mechanism not only greatly reduces the maximum rumor influence, but also postpones the rumor terminal time, which provides us with more time to take measures to control the rumor spreading. The theoretical results are confirmed by sufficient numerical simulations.展开更多
基金Project supported by the Science Foundation of Shanxi Province of China (Grant No 2009011005-1)the Youth Foundation of Shanxi Province of China (Grant No 2007021006)
文摘In this paper, a stochastic SIS epidemic model on homogeneous networks is considered. The largest Lyapunov exponent is calculated by Oseledec multiplicative ergodic theory, and the stability condition is determined by the largest Lyapunov exponent. The probability density function for the proportion of infected individuals is found explicitly, and the stochastic bifurcation is analysed by a probability density function. In particular, the new basic reproductive number R^*, that governs whether an epidemic with few initial infections can become an endemic or not, is determined by noise intensity. In the homogeneous networks, despite of the basic productive number R0 〉1, the epidemic will die out as long as noise intensity satisfies a certain condition.
基金Supported by the National Natural Science Foundation of China under Grant No.61402531the Natural Science Basic Research Plan in Shaanxi Province of China under Grant Nos.2014JQ8358,2015JQ6231,and 2014JQ8307+1 种基金the China Postdoctoral Science Foundation under Grant No.2015M582910the Basic Research Foundation of Engineering University of the Chinese People’s Armed Police Force under Grant Nos.WJY201419,WJY201605 and JLX201686
文摘In order to prevent and control the spread of rumors, the implementation of immunization strategies for ignorant individuals is very necessary, where the immunization usually means letting them learn the truth of rumors.Considering the facts that there is always a delay time between rumor spreading and implementing immunization, and that the truth of rumors can also be spread out, this paper constructs a novel susceptible-infected-removed(SIR) model.The propagation dynamical behaviors of the SIR model on homogeneous networks are investigated by using the meanfield theory and the Monte Carlo method. Research shows that the greater the delay time, the worse the immune effect of the immunization strategy. It is also found that the spread of the truth can inhibit to some extent the propagation of rumors, and the trend will become more obvious with the increase of reliability of the truth. Moreover, under the influence of delay time, the existence of nodes' identification force still slightly reduces the propagation degree of rumors.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675001,11675112,11775020,and 11372122)
文摘Synchronization rhythm and oscillating in biological systems can give clues to understanding the cooperation and competition between cells under appropriate biological and physical conditions. As a result, the network setting is appreciated to detect the stability and transition of collective behaviors in a network with different connection types. In this paper, the synchronization performance in time-delayed excitable homogeneous random networks(EHRNs) induced by diversity in system parameters is investigated by calculating the synchronization parameter and plotting the spatiotemporal evolution pattern, and distinct impacts induced by parameter-diversity are detected by setting different time delays. It is found that diversity has no distinct effect on the synchronization performance in EHRNs with small time delay being considered. When time delay is increased greatly, the synchronization performance of EHRN degenerates remarkably as diversity is increased. Surprisingly, by setting a moderate time delay, appropriate parameter-diversity can promote the synchronization performance in EHRNs, and can induce the synchronization transition from the asynchronous state to the weak synchronization. Moreover, the bistability phenomenon, which contains the states of asynchronous state and weak synchronization,is observed. Particularly, it is confirmed that the parameter-diversity promoted synchronization performance in time-delayed EHRN is manifested in the enhancement of the synchronization performance of individual oscillation and the increase of the number of synchronization transitions from the asynchronous state to the weak synchronization. Finally, we have revealed that this kind of parameter-diversity promoted synchronization performance is a robust phenomenon.
基金Supported by the National Natural Science Foundation of China under Grant Nos.61103231,61103230the Innovation Program of Graduate Scientific Research in Institution of Higher Education of Jiangsu Province of China under Grant No.CXZZ110401+1 种基金the Basic Research Foundation of Engineering University of the Chinese People's Armed Police Force under Grant No.WJY201218 the Natural Science Basic Research Plan in Shaanxi Province of China under Grant No.2011JM8012
文摘In this paper, to study rumor spreading, we propose a novel susceptible-infected-removed (SIR) model by introducing the trust mechanism. We derive mean-field equations that describe the dynamics of the SIR model on homogeneous networks and inhomogeneous networks. Then a steady-state analysis is conducted to investigate the critical threshold and the finaJ size of the rumor spreading. We show that the introduction of trust mechanism reduces the final rumor size and the velocity of rumor spreading, but increases the critical thresholds on both networks. Moreover, the trust mechanism not only greatly reduces the maximum rumor influence, but also postpones the rumor terminal time, which provides us with more time to take measures to control the rumor spreading. The theoretical results are confirmed by sufficient numerical simulations.