Blockchain technology has garnered significant attention from global organizations and researchers due to its potential as a solution for centralized system challenges.Concurrently,the Internet of Things(IoT)has revol...Blockchain technology has garnered significant attention from global organizations and researchers due to its potential as a solution for centralized system challenges.Concurrently,the Internet of Things(IoT)has revolutionized the Fourth Industrial Revolution by enabling interconnected devices to offer innovative services,ultimately enhancing human lives.This paper presents a new approach utilizing lightweight blockchain technology,effectively reducing the computational burden typically associated with conventional blockchain systems.By integrating this lightweight blockchain with IoT systems,substantial reductions in implementation time and computational complexity can be achieved.Moreover,the paper proposes the utilization of the Okamoto Uchiyama encryption algorithm,renowned for its homomorphic characteristics,to reinforce the privacy and security of IoT-generated data.The integration of homomorphic encryption and blockchain technology establishes a secure and decentralized platformfor storing and analyzing sensitive data of the supply chain data.This platformfacilitates the development of some business models and empowers decentralized applications to perform computations on encrypted data while maintaining data privacy.The results validate the robust security of the proposed system,comparable to standard blockchain implementations,leveraging the distinctive homomorphic attributes of the Okamoto Uchiyama algorithm and the lightweight blockchain paradigm.展开更多
Federated learning ensures data privacy and security by sharing models among multiple computing nodes instead of plaintext data.However,there is still a potential risk of privacy leakage,for example,attackers can obta...Federated learning ensures data privacy and security by sharing models among multiple computing nodes instead of plaintext data.However,there is still a potential risk of privacy leakage,for example,attackers can obtain the original data through model inference attacks.Therefore,safeguarding the privacy of model parameters becomes crucial.One proposed solution involves incorporating homomorphic encryption algorithms into the federated learning process.However,the existing federated learning privacy protection scheme based on homomorphic encryption will greatly reduce the efficiency and robustness when there are performance differences between parties or abnormal nodes.To solve the above problems,this paper proposes a privacy protection scheme named Federated Learning-Elastic Averaging Stochastic Gradient Descent(FL-EASGD)based on a fully homomorphic encryption algorithm.First,this paper introduces the homomorphic encryption algorithm into the FL-EASGD scheme to preventmodel plaintext leakage and realize privacy security in the process ofmodel aggregation.Second,this paper designs a robust model aggregation algorithm by adding time variables and constraint coefficients,which ensures the accuracy of model prediction while solving performance differences such as computation speed and node anomalies such as downtime of each participant.In addition,the scheme in this paper preserves the independent exploration of the local model by the nodes of each party,making the model more applicable to the local data distribution.Finally,experimental analysis shows that when there are abnormalities in the participants,the efficiency and accuracy of the whole protocol are not significantly affected.展开更多
Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemin...Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemination of media data.However,it also faces serious problems in terms of protecting user and data privacy.Many privacy protectionmethods have been proposed to solve the problemof privacy leakage during the process of data sharing,but they suffer fromtwo flaws:1)the lack of algorithmic frameworks for specific scenarios such as dynamic datasets in the media domain;2)the inability to solve the problem of the high computational complexity of ciphertext in multi-source data privacy protection,resulting in long encryption and decryption times.In this paper,we propose a multi-source data privacy protection method based on homomorphic encryption and blockchain technology,which solves the privacy protection problem ofmulti-source heterogeneous data in the dissemination ofmedia and reduces ciphertext processing time.We deployed the proposedmethod on theHyperledger platformfor testing and compared it with the privacy protection schemes based on k-anonymity and differential privacy.The experimental results showthat the key generation,encryption,and decryption times of the proposedmethod are lower than those in data privacy protection methods based on k-anonymity technology and differential privacy technology.This significantly reduces the processing time ofmulti-source data,which gives it potential for use in many applications.展开更多
Fog computing is a rapidly growing technology that aids in pipelining the possibility of mitigating breaches between the cloud and edge servers.It facil-itates the benefits of the network edge with the maximized probab...Fog computing is a rapidly growing technology that aids in pipelining the possibility of mitigating breaches between the cloud and edge servers.It facil-itates the benefits of the network edge with the maximized probability of offering interaction with the cloud.However,the fog computing characteristics are suscep-tible to counteract the challenges of security.The issues present with the Physical Layer Security(PLS)aspect in fog computing which included authentication,integrity,and confidentiality has been considered as a reason for the potential issues leading to the security breaches.In this work,the Octonion Algebra-inspired Non-Commutative Ring-based Fully Homomorphic Encryption Scheme(NCR-FHE)was proposed as a secrecy improvement technique to overcome the impersonation attack in cloud computing.The proposed approach was derived through the benefits of Octonion algebra to facilitate the maximum security for big data-based applications.The major issues in the physical layer security which may potentially lead to the possible security issues were identified.The potential issues causing the impersonation attack in the Fog computing environment were identified.The proposed approach was compared with the existing encryption approaches and claimed as a robust approach to identify the impersonation attack for the fog and edge network.The computation cost of the proposed NCR-FHE is identified to be significantly reduced by 7.18%,8.64%,9.42%,and 10.36%in terms of communication overhead for varying packet sizes,when compared to the benchmarked ECDH-DH,LHPPS,BF-PHE and SHE-PABF schemes.展开更多
We propose an unbounded fully homomorphic encryption scheme, i.e. a scheme that allows one to compute on encrypted data for any desired functions without needing to decrypt the data or knowing the decryption keys. Thi...We propose an unbounded fully homomorphic encryption scheme, i.e. a scheme that allows one to compute on encrypted data for any desired functions without needing to decrypt the data or knowing the decryption keys. This is a rational solution to an old problem proposed by Rivest, Adleman, and Dertouzos [1] in 1978, and to some new problems that appeared in Peikert [2] as open questions 10 and open questions 11 a few years ago. Our scheme is completely different from the breakthrough work [3] of Gentry in 2009. Gentry’s bootstrapping technique constructs a fully homomorphic encryption (FHE) scheme from a somewhat homomorphic one that is powerful enough to evaluate its own decryption function. To date, it remains the only known way of obtaining unbounded FHE. Our construction of an unbounded FHE scheme is straightforward and can handle unbounded homomorphic computation on any refreshed ciphertexts without bootstrapping transformation technique.展开更多
The existing homomorphie eneryption scheme is based on ring of the integer, and the possible operators are restricted to addition and multiplication only. In this paper, a new operation is defined Similar Modul. Base ...The existing homomorphie eneryption scheme is based on ring of the integer, and the possible operators are restricted to addition and multiplication only. In this paper, a new operation is defined Similar Modul. Base on the Similar Modul, the number sets of the homomorphic encryption scheme is extended to real number, and the possible operators are extended to addition, subtraction, multiplication and division. Our new approach provides a practical ways of implementation because of the extension of the operators and the number sets.展开更多
Fully homomorphic encryption is faced with two problems now. One is candidate fully homomorphic encryption schemes are few. Another is that the efficiency of fully homomorphic encryption is a big question. In this pap...Fully homomorphic encryption is faced with two problems now. One is candidate fully homomorphic encryption schemes are few. Another is that the efficiency of fully homomorphic encryption is a big question. In this paper, we propose a fully homomorphic encryption scheme based on LWE, which has better key size. Our main contributions are: (1) According to the binary-LWE recently, we choose secret key from binary set and modify the basic encryption scheme proposed in Linder and Peikert in 2010. We propose a fully homomorphic encryption scheme based on the new basic encryption scheme. We analyze the correctness and give the proof of the security of our scheme. The public key, evaluation keys and tensored ciphertext have better size in our scheme. (2) Estimating parameters for fully homomorphic encryption scheme is an important work. We estimate the concert parameters for our scheme. We compare these parameters between our scheme and Bral2 scheme. Our scheme have public key and private key that smaller by a factor of about logq than in Bral2 scheme. Tensored ciphertext in our scheme is smaller by a factor of about log2q than in Bral2 scheme. Key switching matrix in our scheme is smaller by a factor of about log3q than in Bra12 scheme.展开更多
A scheme that can realize homomorphic Turing- equivalent privacy-preserving computations is proposed, where the encoding of the Turing machine is independent of its inputs and running time. Several extended private in...A scheme that can realize homomorphic Turing- equivalent privacy-preserving computations is proposed, where the encoding of the Turing machine is independent of its inputs and running time. Several extended private information retrieval protocols based on fully homomorphic encryption are designed, so that the reading and writing of the tape of the Turing machine, as well as the evaluation of the transition function of the Turing machine, can be performed by the permitted Boolean circuits of fully homomorphic encryption schemes. This scheme overwhelms the Turing-machine-to- circuit conversion approach, which also implements the Turing-equivalent computation. The encoding of a Turing- machine-to-circuit conversion approach is dependent on both the input data and the worst-case runtime. The proposed scheme efficiently provides the confidentiality of both program and data of the delegator in the delegator-worker model of outsourced computation against semi-honest workers.展开更多
Homomorphic encryption has giant advantages in the protection of privacy information.In this paper,we present a new kind of probabilistic quantum homomorphic encryption scheme for the universal quantum circuit evaluat...Homomorphic encryption has giant advantages in the protection of privacy information.In this paper,we present a new kind of probabilistic quantum homomorphic encryption scheme for the universal quantum circuit evaluation.Firstly,the pre-shared non-maximally entangled states are utilized as auxiliary resources,which lower the requirements of the quantum channel,to correct the errors in non-Clifford gate evaluation.By using the set synthesized by Clifford gates and T gates,it is feasible to perform the arbitrary quantum computation on the encrypted data.Secondly,our scheme is different from the previous scheme described by the quantum homomorphic encryption algorithm.From the perspective of application,a two-party probabilistic quantum homomorphic encryption scheme is proposed.It is clear what the computation and operation that the client and the server need to perform respectively,as well as the permission to access the data.Finally,the security of probabilistic quantum homomorphic encryption scheme is analyzed in detail.It demonstrates that the scheme has favorable security in three aspects,including privacy data,evaluated data and encryption and decryption keys.展开更多
This paper proposes a strategy for machine learning in the ciphertext domain.The data to be trained in the linear regression equation is encrypted by SHE homomorphic encryption,and then trained in the ciphertext domai...This paper proposes a strategy for machine learning in the ciphertext domain.The data to be trained in the linear regression equation is encrypted by SHE homomorphic encryption,and then trained in the ciphertext domain.At the same time,it is guaranteed that the error of the training results between the ciphertext domain and the plaintext domain is in a controllable range.After the training,the ciphertext can be decrypted and restored to the original plaintext training data.展开更多
In the field of sequencing of secret number,an important problem is how to establish an efficient and secure protocol for sorting the secret number.As a powerful tool in solving privacy sequencing problems,secure mult...In the field of sequencing of secret number,an important problem is how to establish an efficient and secure protocol for sorting the secret number.As a powerful tool in solving privacy sequencing problems,secure multipart computation is more and more popular in anonymous voting and online auction.In the present study,related secure computation protocol for sequencing problem is not many by far.In order to improve the efficiency and safety,we propose a security sequencing protocol based on homomorphic encryption.We also give analysis of correctness and security to highlight its feasibility.展开更多
The significant advantage of the quantum homomorphic encryption scheme is to ensure the perfect security of quantum private data.In this paper,a novel secure multiparty quantum homomorphic encryption scheme is propose...The significant advantage of the quantum homomorphic encryption scheme is to ensure the perfect security of quantum private data.In this paper,a novel secure multiparty quantum homomorphic encryption scheme is proposed,which can complete arbitrary quantum computation on the private data of multiple clients without decryption by an almost dishonest server.Firstly,each client obtains a secure encryption key through the measurement device independent quantum key distribution protocol and encrypts the private data by using the encryption operator and key.Secondly,with the help of the almost dishonest server,the non-maximally entangled states are preshared between the client and the server to correct errors in the homomorphic evaluation of T gates,so as to realize universal quantum circuit evaluation on encrypted data.Thirdly,from the perspective of the application scenario of secure multi-party computation,this work is based on the probabilistic quantum homomorphic encryption scheme,allowing multiple parties to delegate the server to perform the secure homomorphic evaluation.The operation and the permission to access the data performed by the client and the server are clearly pointed out.Finally,a concrete security analysis shows that the proposed multiparty quantum homomorphic encryption scheme can securely resist outside and inside attacks.展开更多
The privacy-preserving problem for distributed fusion estimation scheme is concerned in this paper.When legitimate user wants to obtain consistent information from multiple sensors,it always employs a fusion center(FC...The privacy-preserving problem for distributed fusion estimation scheme is concerned in this paper.When legitimate user wants to obtain consistent information from multiple sensors,it always employs a fusion center(FC)to gather local data and compute distributed fusion estimates(DFEs).Due to the existence of potential eavesdropper,the data exchanged among sensors,FC and user imperatively require privacy preservation.Hence,we propose a distributed confidentiality fusion structure against eavesdropper by using Paillier homomorphic encryption approach.In this case,FC cannot acquire real values of local state estimates,while it only helps calculate encrypted DFEs.Then,the legitimate user can successfully obtain the true values of DFEs according to the encrypted information and secret keys,which is based on the homomorphism of encryption.Finally,an illustrative example is provided to verify the effectiveness of the proposed methods.展开更多
Road networks have been used in a wide range of applications to reduces the cost of transportation and improve the quality of related services.The shortest road distance computation has been considered as one of the m...Road networks have been used in a wide range of applications to reduces the cost of transportation and improve the quality of related services.The shortest road distance computation has been considered as one of the most fundamental operations of road networks computation.To alleviate privacy concerns about location privacy leaks during road distance computation,it is desirable to have a secure and efficient road distance computation approach.In this paper,we propose two secure road distance computation approaches,which can compute road distance over encrypted data efficiently.An approximate road distance computation approach is designed by using Partially Homomorphic Encryption and road network set embedding.An exact road distance computation is built by using Somewhat Homomorphic Encryption and road network hypercube embedding.We implement our two road distance computation approaches,and evaluate them on the real cityscale road network.Evaluation results show that our approaches are accurate and efficient.展开更多
Blockchain has a profound impact on all areas of society by virtue of its immutability,decentralization and other characteristics.However,blockchain faces the problem of data privacy leakage during the application pro...Blockchain has a profound impact on all areas of society by virtue of its immutability,decentralization and other characteristics.However,blockchain faces the problem of data privacy leakage during the application process,and the rapid development of quantum computing also brings the threat of quantum attack to blockchain.In this paper,we propose a lattice-based certificateless fully homomorphic encryption(LCFHE)algorithm based on approximate eigenvector firstly.And we use the lattice-based delegate algorithm and preimage sampling algorithm to extract part of the private key based on certificateless scheme,which is composed of the private key together with the secret value selected by the user,thus effectively avoiding the problems of certificate management and key escrow.Secondly,we propose a post-quantum blockchain transaction privacy protection scheme based on LCFHE algorithm,which uses the ciphertext calculation characteristic of homomorphic encryption to encrypt the account balance and transaction amount,effectively protecting the transaction privacy of users and having the ability to resist quantum attacks.Finally,we analyze the correctness and security of LCFHE algorithm,and the security of the algorithm reduces to the hardness of learning with errors(LWE)hypothesis.展开更多
Fully homomorphic encryption(FHE)can be used for privacy-preserving aggregation of medical data.In this typical application,the security against passive attacks has been well studied by Li and Micciancio(2021).In this...Fully homomorphic encryption(FHE)can be used for privacy-preserving aggregation of medical data.In this typical application,the security against passive attacks has been well studied by Li and Micciancio(2021).In this paper,the authors further consider a“nearly passive”kind of attack,where the attacker may behave like a passive attacker in the view of the third-party server.To capture the security against this hard-to-detect attack,the authors propose a new notion of IND-CPA^(rD)security.The authors show that the standard LWE encryption and its related FHE schemes can not defend against IND-CPA^(rD)attack,even under a stricter rule limiting the content and number of queries made by the attacker.To make the application of FHE schemes more secure,the authors discuss some possible modifications that may serve as countermeasures to IND-CPA^(rD)attack.展开更多
The computational complexity of privacy information retrieval protocols is often linearly related to database size.When the database size is large,the efficiency of privacy information retrieval protocols is relativel...The computational complexity of privacy information retrieval protocols is often linearly related to database size.When the database size is large,the efficiency of privacy information retrieval protocols is relatively low.This paper designs an effective privacy information retrieval model based on hybrid fully homomorphic encryption.The assignment method is cleverly used to replace a large number of homomorphic encryption operations.At the same time,the multiplicative homomorphic encryption scheme is first used to deal with the large-scale serialization in the search,and then the fully homomorphic encryption scheme is used to deal with the remaining simple operations.The depth of operations supported by the fully homomorphic scheme no longer depends on the size of the database,but only needs to support the single homomorphic encryption scheme to decrypt the circuit depth.Based on this hybrid homomorphic encryption retrieval model,the efficiency of homomorphic privacy information retrieval model can be greatly improved.展开更多
This paper studies the secure motion control problem for micro-spacecraft systems.A novel semi-homomorphic encrypted control framework,consisting of a logarithmic quantizer,two uniform quantizers,and an encrypted cont...This paper studies the secure motion control problem for micro-spacecraft systems.A novel semi-homomorphic encrypted control framework,consisting of a logarithmic quantizer,two uniform quantizers,and an encrypted control law based on the Paillier cryptosystem is developed.More specifically,a logarithmic quantizer is adopted as a digitizer to convert the continuous relative motion information to digital signals.Two uniform quantizers with different quantization sensitivities are designed to encode the control gain matrix and digitized motion information to integer values.Then,we develop an encrypted state-feedback control law based on the Paillier cryptosystem,which allows the controller to compute the control input using only encrypted data.Using the Lyapunov stability theory and the homomorphic property of the Paillier cryptosystem,we prove that all signals in the closed-loop system are uniformly ultimately bounded.Different from the traditional motion control laws of spacecraft,the proposed encrypted control framework ensures the security of the exchanged data over the communication network of the spacecraft,even when communication channels are eavesdropped by malicious adversaries.Finally,we verify the effectiveness of the proposed encrypted control framework using numerical simulations.展开更多
Rapidly rising the quantity of Big Data is an opportunity to flout the privacy of people. Whenhigh processing capacity and massive storage are required for Big Data, distributed networkshave been used. There are sever...Rapidly rising the quantity of Big Data is an opportunity to flout the privacy of people. Whenhigh processing capacity and massive storage are required for Big Data, distributed networkshave been used. There are several people involved in these activities, the system may contributeto privacy infringements frameworks have been developed for the preservation of privacy atvarious levels (e.g. information age, information the executives and information preparing) asfor the existing pattern of huge information. We plan to frame this paper as a literature surveyof these classifications, including the Privacy Processes in Big Data and the presentation of theAssociate Challenges. Homomorphic encryption is particularised aimed at solitary single actionon the ciphered information. Homomorphic enciphering is restrained to an honest operation onthe encoded data. The reference to encryption project fulfils many accurate trading operationson coded numerical data;therefore, it protects the written in code-sensible information evenmore.展开更多
Different efforts have been undertaken to customizing a security and privacy concern in clouddata access. Therefore, the security measures are reliable and the data access was verified as themajor problem in the cloud...Different efforts have been undertaken to customizing a security and privacy concern in clouddata access. Therefore, the security measures are reliable and the data access was verified as themajor problem in the cloud environment. To overcome this problem, we proposed an efficientdata access control using optimized homomorphic encryption (HE). Because users outsourcetheir sensitive information to cloud providers, data security and access control is one of themost difficult ongoing cloud computing research projects. Existing solutions that rely on cryptographictechnologies to address these security issues result in significant complexity for bothdata and cloud service providers. The experimental results show that the key generation is 7.6%decreased by HE and 14.14% less than the proposed method. The encryption time is 11.34% lessthan the optimized HE and 23.28% decreased by ECC. The decryption time is 13.18% and 24.07%when compared with HE and ECC respectively.展开更多
文摘Blockchain technology has garnered significant attention from global organizations and researchers due to its potential as a solution for centralized system challenges.Concurrently,the Internet of Things(IoT)has revolutionized the Fourth Industrial Revolution by enabling interconnected devices to offer innovative services,ultimately enhancing human lives.This paper presents a new approach utilizing lightweight blockchain technology,effectively reducing the computational burden typically associated with conventional blockchain systems.By integrating this lightweight blockchain with IoT systems,substantial reductions in implementation time and computational complexity can be achieved.Moreover,the paper proposes the utilization of the Okamoto Uchiyama encryption algorithm,renowned for its homomorphic characteristics,to reinforce the privacy and security of IoT-generated data.The integration of homomorphic encryption and blockchain technology establishes a secure and decentralized platformfor storing and analyzing sensitive data of the supply chain data.This platformfacilitates the development of some business models and empowers decentralized applications to perform computations on encrypted data while maintaining data privacy.The results validate the robust security of the proposed system,comparable to standard blockchain implementations,leveraging the distinctive homomorphic attributes of the Okamoto Uchiyama algorithm and the lightweight blockchain paradigm.
文摘Federated learning ensures data privacy and security by sharing models among multiple computing nodes instead of plaintext data.However,there is still a potential risk of privacy leakage,for example,attackers can obtain the original data through model inference attacks.Therefore,safeguarding the privacy of model parameters becomes crucial.One proposed solution involves incorporating homomorphic encryption algorithms into the federated learning process.However,the existing federated learning privacy protection scheme based on homomorphic encryption will greatly reduce the efficiency and robustness when there are performance differences between parties or abnormal nodes.To solve the above problems,this paper proposes a privacy protection scheme named Federated Learning-Elastic Averaging Stochastic Gradient Descent(FL-EASGD)based on a fully homomorphic encryption algorithm.First,this paper introduces the homomorphic encryption algorithm into the FL-EASGD scheme to preventmodel plaintext leakage and realize privacy security in the process ofmodel aggregation.Second,this paper designs a robust model aggregation algorithm by adding time variables and constraint coefficients,which ensures the accuracy of model prediction while solving performance differences such as computation speed and node anomalies such as downtime of each participant.In addition,the scheme in this paper preserves the independent exploration of the local model by the nodes of each party,making the model more applicable to the local data distribution.Finally,experimental analysis shows that when there are abnormalities in the participants,the efficiency and accuracy of the whole protocol are not significantly affected.
基金funded by the High-Quality and Cutting-Edge Discipline Construction Project for Universities in Beijing (Internet Information,Communication University of China).
文摘Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemination of media data.However,it also faces serious problems in terms of protecting user and data privacy.Many privacy protectionmethods have been proposed to solve the problemof privacy leakage during the process of data sharing,but they suffer fromtwo flaws:1)the lack of algorithmic frameworks for specific scenarios such as dynamic datasets in the media domain;2)the inability to solve the problem of the high computational complexity of ciphertext in multi-source data privacy protection,resulting in long encryption and decryption times.In this paper,we propose a multi-source data privacy protection method based on homomorphic encryption and blockchain technology,which solves the privacy protection problem ofmulti-source heterogeneous data in the dissemination ofmedia and reduces ciphertext processing time.We deployed the proposedmethod on theHyperledger platformfor testing and compared it with the privacy protection schemes based on k-anonymity and differential privacy.The experimental results showthat the key generation,encryption,and decryption times of the proposedmethod are lower than those in data privacy protection methods based on k-anonymity technology and differential privacy technology.This significantly reduces the processing time ofmulti-source data,which gives it potential for use in many applications.
文摘Fog computing is a rapidly growing technology that aids in pipelining the possibility of mitigating breaches between the cloud and edge servers.It facil-itates the benefits of the network edge with the maximized probability of offering interaction with the cloud.However,the fog computing characteristics are suscep-tible to counteract the challenges of security.The issues present with the Physical Layer Security(PLS)aspect in fog computing which included authentication,integrity,and confidentiality has been considered as a reason for the potential issues leading to the security breaches.In this work,the Octonion Algebra-inspired Non-Commutative Ring-based Fully Homomorphic Encryption Scheme(NCR-FHE)was proposed as a secrecy improvement technique to overcome the impersonation attack in cloud computing.The proposed approach was derived through the benefits of Octonion algebra to facilitate the maximum security for big data-based applications.The major issues in the physical layer security which may potentially lead to the possible security issues were identified.The potential issues causing the impersonation attack in the Fog computing environment were identified.The proposed approach was compared with the existing encryption approaches and claimed as a robust approach to identify the impersonation attack for the fog and edge network.The computation cost of the proposed NCR-FHE is identified to be significantly reduced by 7.18%,8.64%,9.42%,and 10.36%in terms of communication overhead for varying packet sizes,when compared to the benchmarked ECDH-DH,LHPPS,BF-PHE and SHE-PABF schemes.
文摘We propose an unbounded fully homomorphic encryption scheme, i.e. a scheme that allows one to compute on encrypted data for any desired functions without needing to decrypt the data or knowing the decryption keys. This is a rational solution to an old problem proposed by Rivest, Adleman, and Dertouzos [1] in 1978, and to some new problems that appeared in Peikert [2] as open questions 10 and open questions 11 a few years ago. Our scheme is completely different from the breakthrough work [3] of Gentry in 2009. Gentry’s bootstrapping technique constructs a fully homomorphic encryption (FHE) scheme from a somewhat homomorphic one that is powerful enough to evaluate its own decryption function. To date, it remains the only known way of obtaining unbounded FHE. Our construction of an unbounded FHE scheme is straightforward and can handle unbounded homomorphic computation on any refreshed ciphertexts without bootstrapping transformation technique.
基金Supported by the National Natural Science Foun-dation of China (90104005)
文摘The existing homomorphie eneryption scheme is based on ring of the integer, and the possible operators are restricted to addition and multiplication only. In this paper, a new operation is defined Similar Modul. Base on the Similar Modul, the number sets of the homomorphic encryption scheme is extended to real number, and the possible operators are extended to addition, subtraction, multiplication and division. Our new approach provides a practical ways of implementation because of the extension of the operators and the number sets.
基金The first author would like to thank for the Fund of Jiangsu Innovation Program for Graduate Education,the Fundamental Research Funds for the Central Universities,and Ningbo Natural Science Foundation,the Chinese National Scholarship fund,and also appreciate the benefit to this work from projects in science and technique of Ningbo municipal.The third author would like to thank for Ningbo Natural Science Foundation
文摘Fully homomorphic encryption is faced with two problems now. One is candidate fully homomorphic encryption schemes are few. Another is that the efficiency of fully homomorphic encryption is a big question. In this paper, we propose a fully homomorphic encryption scheme based on LWE, which has better key size. Our main contributions are: (1) According to the binary-LWE recently, we choose secret key from binary set and modify the basic encryption scheme proposed in Linder and Peikert in 2010. We propose a fully homomorphic encryption scheme based on the new basic encryption scheme. We analyze the correctness and give the proof of the security of our scheme. The public key, evaluation keys and tensored ciphertext have better size in our scheme. (2) Estimating parameters for fully homomorphic encryption scheme is an important work. We estimate the concert parameters for our scheme. We compare these parameters between our scheme and Bral2 scheme. Our scheme have public key and private key that smaller by a factor of about logq than in Bral2 scheme. Tensored ciphertext in our scheme is smaller by a factor of about log2q than in Bral2 scheme. Key switching matrix in our scheme is smaller by a factor of about log3q than in Bra12 scheme.
基金The National Basic Research Program of China(973Program)(No.2013CB338003)
文摘A scheme that can realize homomorphic Turing- equivalent privacy-preserving computations is proposed, where the encoding of the Turing machine is independent of its inputs and running time. Several extended private information retrieval protocols based on fully homomorphic encryption are designed, so that the reading and writing of the tape of the Turing machine, as well as the evaluation of the transition function of the Turing machine, can be performed by the permitted Boolean circuits of fully homomorphic encryption schemes. This scheme overwhelms the Turing-machine-to- circuit conversion approach, which also implements the Turing-equivalent computation. The encoding of a Turing- machine-to-circuit conversion approach is dependent on both the input data and the worst-case runtime. The proposed scheme efficiently provides the confidentiality of both program and data of the delegator in the delegator-worker model of outsourced computation against semi-honest workers.
基金the Fundamental Research Funds for the Central Universities(Grant No.2019XDA02)the Scientific Research Foundation of North China University of Technology。
文摘Homomorphic encryption has giant advantages in the protection of privacy information.In this paper,we present a new kind of probabilistic quantum homomorphic encryption scheme for the universal quantum circuit evaluation.Firstly,the pre-shared non-maximally entangled states are utilized as auxiliary resources,which lower the requirements of the quantum channel,to correct the errors in non-Clifford gate evaluation.By using the set synthesized by Clifford gates and T gates,it is feasible to perform the arbitrary quantum computation on the encrypted data.Secondly,our scheme is different from the previous scheme described by the quantum homomorphic encryption algorithm.From the perspective of application,a two-party probabilistic quantum homomorphic encryption scheme is proposed.It is clear what the computation and operation that the client and the server need to perform respectively,as well as the permission to access the data.Finally,the security of probabilistic quantum homomorphic encryption scheme is analyzed in detail.It demonstrates that the scheme has favorable security in three aspects,including privacy data,evaluated data and encryption and decryption keys.
文摘This paper proposes a strategy for machine learning in the ciphertext domain.The data to be trained in the linear regression equation is encrypted by SHE homomorphic encryption,and then trained in the ciphertext domain.At the same time,it is guaranteed that the error of the training results between the ciphertext domain and the plaintext domain is in a controllable range.After the training,the ciphertext can be decrypted and restored to the original plaintext training data.
基金supported by the National Natural Science Foundation of China under Grant No.51307004
文摘In the field of sequencing of secret number,an important problem is how to establish an efficient and secure protocol for sorting the secret number.As a powerful tool in solving privacy sequencing problems,secure multipart computation is more and more popular in anonymous voting and online auction.In the present study,related secure computation protocol for sequencing problem is not many by far.In order to improve the efficiency and safety,we propose a security sequencing protocol based on homomorphic encryption.We also give analysis of correctness and security to highlight its feasibility.
基金This work was supported by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province(Grant No.SKLACSS-202101)NSFC(Grant Nos.62176273,61962009)+3 种基金the Foundation of Guizhou Provincial Key Laboratory of Public Big Data(No.2019BDKFJJ010,2019BDKFJJ014)the Fundamental Re-search Funds for Beijing Municipal Commission of Education,Beijing Urban Governance Re-search Base of North China University of Technology,the Natural Science Foundation of Inner Mongolia(2021MS06006)Baotou Kundulun District Science and technology plan project(YF2020013)Inner Mongolia discipline inspection and supervision big data laboratory open project fund(IMDBD2020020).
文摘The significant advantage of the quantum homomorphic encryption scheme is to ensure the perfect security of quantum private data.In this paper,a novel secure multiparty quantum homomorphic encryption scheme is proposed,which can complete arbitrary quantum computation on the private data of multiple clients without decryption by an almost dishonest server.Firstly,each client obtains a secure encryption key through the measurement device independent quantum key distribution protocol and encrypts the private data by using the encryption operator and key.Secondly,with the help of the almost dishonest server,the non-maximally entangled states are preshared between the client and the server to correct errors in the homomorphic evaluation of T gates,so as to realize universal quantum circuit evaluation on encrypted data.Thirdly,from the perspective of the application scenario of secure multi-party computation,this work is based on the probabilistic quantum homomorphic encryption scheme,allowing multiple parties to delegate the server to perform the secure homomorphic evaluation.The operation and the permission to access the data performed by the client and the server are clearly pointed out.Finally,a concrete security analysis shows that the proposed multiparty quantum homomorphic encryption scheme can securely resist outside and inside attacks.
基金supported in part by the National Natural Sci-ence Foundation of China(No.61973277)in part by the Zhejiang Provincial Natural Science Foundation of China(No.LR20F030004)in part by the Major Key Project of PCL(No.PCL2021A09).
文摘The privacy-preserving problem for distributed fusion estimation scheme is concerned in this paper.When legitimate user wants to obtain consistent information from multiple sensors,it always employs a fusion center(FC)to gather local data and compute distributed fusion estimates(DFEs).Due to the existence of potential eavesdropper,the data exchanged among sensors,FC and user imperatively require privacy preservation.Hence,we propose a distributed confidentiality fusion structure against eavesdropper by using Paillier homomorphic encryption approach.In this case,FC cannot acquire real values of local state estimates,while it only helps calculate encrypted DFEs.Then,the legitimate user can successfully obtain the true values of DFEs according to the encrypted information and secret keys,which is based on the homomorphism of encryption.Finally,an illustrative example is provided to verify the effectiveness of the proposed methods.
基金This work was partially supported by National Natural Science Foundation of China(Grant Nos.61601146,61732022)National Key R&D Program of China(Grant No.2016QY05X1000).
文摘Road networks have been used in a wide range of applications to reduces the cost of transportation and improve the quality of related services.The shortest road distance computation has been considered as one of the most fundamental operations of road networks computation.To alleviate privacy concerns about location privacy leaks during road distance computation,it is desirable to have a secure and efficient road distance computation approach.In this paper,we propose two secure road distance computation approaches,which can compute road distance over encrypted data efficiently.An approximate road distance computation approach is designed by using Partially Homomorphic Encryption and road network set embedding.An exact road distance computation is built by using Somewhat Homomorphic Encryption and road network hypercube embedding.We implement our two road distance computation approaches,and evaluate them on the real cityscale road network.Evaluation results show that our approaches are accurate and efficient.
基金supported by NSFC(Grant Nos.92046001,61671087,61962009,61971021)the Fundamental Research Funds for Beijing Municipal Commission of Education,the Scientific Research Launch Funds of North China University of Technology,and Beijing Urban Governance Research Base of North China University of Technology.
文摘Blockchain has a profound impact on all areas of society by virtue of its immutability,decentralization and other characteristics.However,blockchain faces the problem of data privacy leakage during the application process,and the rapid development of quantum computing also brings the threat of quantum attack to blockchain.In this paper,we propose a lattice-based certificateless fully homomorphic encryption(LCFHE)algorithm based on approximate eigenvector firstly.And we use the lattice-based delegate algorithm and preimage sampling algorithm to extract part of the private key based on certificateless scheme,which is composed of the private key together with the secret value selected by the user,thus effectively avoiding the problems of certificate management and key escrow.Secondly,we propose a post-quantum blockchain transaction privacy protection scheme based on LCFHE algorithm,which uses the ciphertext calculation characteristic of homomorphic encryption to encrypt the account balance and transaction amount,effectively protecting the transaction privacy of users and having the ability to resist quantum attacks.Finally,we analyze the correctness and security of LCFHE algorithm,and the security of the algorithm reduces to the hardness of learning with errors(LWE)hypothesis.
基金partially supported by China National Key Research and Development Projects under Grant Nos.2020YFA0712300 and 2018YFA0704705。
文摘Fully homomorphic encryption(FHE)can be used for privacy-preserving aggregation of medical data.In this typical application,the security against passive attacks has been well studied by Li and Micciancio(2021).In this paper,the authors further consider a“nearly passive”kind of attack,where the attacker may behave like a passive attacker in the view of the third-party server.To capture the security against this hard-to-detect attack,the authors propose a new notion of IND-CPA^(rD)security.The authors show that the standard LWE encryption and its related FHE schemes can not defend against IND-CPA^(rD)attack,even under a stricter rule limiting the content and number of queries made by the attacker.To make the application of FHE schemes more secure,the authors discuss some possible modifications that may serve as countermeasures to IND-CPA^(rD)attack.
基金sponsored in part by the National Natural Science Foundation of China[Grant-Nos.61902428,6210071026,62202493].
文摘The computational complexity of privacy information retrieval protocols is often linearly related to database size.When the database size is large,the efficiency of privacy information retrieval protocols is relatively low.This paper designs an effective privacy information retrieval model based on hybrid fully homomorphic encryption.The assignment method is cleverly used to replace a large number of homomorphic encryption operations.At the same time,the multiplicative homomorphic encryption scheme is first used to deal with the large-scale serialization in the search,and then the fully homomorphic encryption scheme is used to deal with the remaining simple operations.The depth of operations supported by the fully homomorphic scheme no longer depends on the size of the database,but only needs to support the single homomorphic encryption scheme to decrypt the circuit depth.Based on this hybrid homomorphic encryption retrieval model,the efficiency of homomorphic privacy information retrieval model can be greatly improved.
基金supported partly by the National Natural Science Foundation of China under Grants 62227812 and 61960206011partly by the Zhejiang Provincial Natural Science Foundation under Grant LD22E050004+1 种基金partly by the Research Grants Council of Hong Kong under Project CityU 21208921partly by the Chow Sang Sang Group Research Fund Sponsored by Chow Sang Sang Holdings International Ltd.
文摘This paper studies the secure motion control problem for micro-spacecraft systems.A novel semi-homomorphic encrypted control framework,consisting of a logarithmic quantizer,two uniform quantizers,and an encrypted control law based on the Paillier cryptosystem is developed.More specifically,a logarithmic quantizer is adopted as a digitizer to convert the continuous relative motion information to digital signals.Two uniform quantizers with different quantization sensitivities are designed to encode the control gain matrix and digitized motion information to integer values.Then,we develop an encrypted state-feedback control law based on the Paillier cryptosystem,which allows the controller to compute the control input using only encrypted data.Using the Lyapunov stability theory and the homomorphic property of the Paillier cryptosystem,we prove that all signals in the closed-loop system are uniformly ultimately bounded.Different from the traditional motion control laws of spacecraft,the proposed encrypted control framework ensures the security of the exchanged data over the communication network of the spacecraft,even when communication channels are eavesdropped by malicious adversaries.Finally,we verify the effectiveness of the proposed encrypted control framework using numerical simulations.
文摘Rapidly rising the quantity of Big Data is an opportunity to flout the privacy of people. Whenhigh processing capacity and massive storage are required for Big Data, distributed networkshave been used. There are several people involved in these activities, the system may contributeto privacy infringements frameworks have been developed for the preservation of privacy atvarious levels (e.g. information age, information the executives and information preparing) asfor the existing pattern of huge information. We plan to frame this paper as a literature surveyof these classifications, including the Privacy Processes in Big Data and the presentation of theAssociate Challenges. Homomorphic encryption is particularised aimed at solitary single actionon the ciphered information. Homomorphic enciphering is restrained to an honest operation onthe encoded data. The reference to encryption project fulfils many accurate trading operationson coded numerical data;therefore, it protects the written in code-sensible information evenmore.
文摘Different efforts have been undertaken to customizing a security and privacy concern in clouddata access. Therefore, the security measures are reliable and the data access was verified as themajor problem in the cloud environment. To overcome this problem, we proposed an efficientdata access control using optimized homomorphic encryption (HE). Because users outsourcetheir sensitive information to cloud providers, data security and access control is one of themost difficult ongoing cloud computing research projects. Existing solutions that rely on cryptographictechnologies to address these security issues result in significant complexity for bothdata and cloud service providers. The experimental results show that the key generation is 7.6%decreased by HE and 14.14% less than the proposed method. The encryption time is 11.34% lessthan the optimized HE and 23.28% decreased by ECC. The decryption time is 13.18% and 24.07%when compared with HE and ECC respectively.