An analytical technique, namely the homotopy analysis method (HAM), is used to solve problems of nonlinear oscillations with parametric excitation. Unlike perturbation methods, HAM is not dependent on any small phys...An analytical technique, namely the homotopy analysis method (HAM), is used to solve problems of nonlinear oscillations with parametric excitation. Unlike perturbation methods, HAM is not dependent on any small physical parameters at all, and thus valid for both weakly and strongly nonlinear problems. In addition, HAM is different from all other analytic techniques in providing a simple way to adjust and control convergence region of the series solution by means of an auxiliary parameter h. In the present paper, a periodic analytic approximations for nonlinear oscillations with parametric excitation are obtained by using HAM, and the results are validated by numerical simulations.展开更多
We have deduced incremental harmonic balance an iteration scheme in the (IHB) method using the harmonic balance plus the Newton-Raphson method. Since the convergence of the iteration is dependent upon the initial va...We have deduced incremental harmonic balance an iteration scheme in the (IHB) method using the harmonic balance plus the Newton-Raphson method. Since the convergence of the iteration is dependent upon the initial values in the iteration, the convergent region is greatly restricted for some cases. In this contribution, in order to enlarge the convergent region of the IHB method, we constructed the zeroth-order deformation equation using the homotopy analysis method, in which the IHB method is employed to solve the deformation equation with an embedding parameter as the active increment. Taking the Duffing and the van der Pol equations as examples, we obtained the highly accurate solutions. Importantly, the presented approach renders a convenient way to control and adjust the convergence.展开更多
Based on the nonlinear constitutive equation,a piezoelectric semiconductor(PSC)fiber under axial loads and Ohmic contact boundary conditions is investigated.The analytical solutions of electromechanical fields are der...Based on the nonlinear constitutive equation,a piezoelectric semiconductor(PSC)fiber under axial loads and Ohmic contact boundary conditions is investigated.The analytical solutions of electromechanical fields are derived by the homotopy analysis method(HAM),indicating that the HAM is efficient for the nonlinear analysis of PSC fibers,along with a rapid rate of convergence.Furthermore,the nonlinear characteristics of electromechanical fields are discussed through numerical results.It is shown that the asymmetrical distribution of electromechanical fields is obvious under a symmetrical load,and the piezoelectric effect is weakened by an applied electric field.With the increase in the initial carrier concentration,the electric potential decreases,and owing to the screen-ing effect of electrons,the distribution of electromechanical fields tends to be symmetrical.展开更多
In this paper,the homotopy analysis method (HAM) is applied to solve generalized biological populationmodels.The fractional derivatives are described by Caputo's sense.The method introduces a significant improveme...In this paper,the homotopy analysis method (HAM) is applied to solve generalized biological populationmodels.The fractional derivatives are described by Caputo's sense.The method introduces a significant improvementin this field over existing techniques.Results obtained using the scheme presented here agree well with the analyticalsolutions and the numerical results presented in Ref.[6].However,the fundamental solutions of these equations stillexhibit useful scaling properties that make them attractive for applications.展开更多
In this paper, we apply homotopy analysis method to solve discrete mKdV equation and successfully obtain the bell-shaped solitary solution to mKdV equation. Comparison between our solution and the exact solution shows...In this paper, we apply homotopy analysis method to solve discrete mKdV equation and successfully obtain the bell-shaped solitary solution to mKdV equation. Comparison between our solution and the exact solution shows that homotopy analysis method is effective and validity in solving hybrid nonlinear problems, including solitary solution of difference-differential equation.展开更多
A homotopy analysis method(HAM)is presented for the primary resonance of multiple degree-of-freedom systems with strong non-linearity excited by harmonic forces.The validity of the HAM is independent of the existenc...A homotopy analysis method(HAM)is presented for the primary resonance of multiple degree-of-freedom systems with strong non-linearity excited by harmonic forces.The validity of the HAM is independent of the existence of small parameters in the considered equation.The HAM provides a simple way to adjust and control the convergence region of the series solution by means of an auxiliary parameter.Two examples are presented to show that the HAM solutions agree well with the results of the modified Linstedt-Poincar'e method and the incremental harmonic balance method.展开更多
Nonlinear dynamic equation is a common engineering model.There is not precise analytical solution for most of nonlinear differential equations.These nonlinear differential equations should be solved by using approxima...Nonlinear dynamic equation is a common engineering model.There is not precise analytical solution for most of nonlinear differential equations.These nonlinear differential equations should be solved by using approximate methods.Classical perturbation methods such as LP method,KBM method,multi-scale method and the averaging method on weakly nonlinear vibration system is effective,while the strongly nonlinear system is difficult to apply.Approximate solutions of primary resonance for forced Duffing equation is investigated by means of homotopy analysis method (HAM).Different from other approximate computational method,the HAM is totally independent of small physical parameters,and thus is suitable for most nonlinear problems.The HAM provides a great freedom to choose base functions of solution series,so that a nonlinear problem may be approximated more effectively.The HAM provides us a simple way to adjust and control the convergence region of the series solution by means of an auxiliary parameter and the auxiliary function.Therefore,HAM not only may solve the weakly non-linear problems but also may be suitable for the strong non-linear problem.Through the approximate solution of forced Duffing equation with cubic non-linearity,the HAM and fourth order Runge-Kutta method of numerical solution were compared,the results show that the HAM not only can solve the steady state solution,but also can calculate the unsteady state solution,and has the good computational accuracy.展开更多
The present paper investigates the magnetohydrodynamic(MHD) flow of a viscous fluid towards a nonlinear porous shrinking sheet.The governing equations are simplified by similarity transformations.The reduced problem...The present paper investigates the magnetohydrodynamic(MHD) flow of a viscous fluid towards a nonlinear porous shrinking sheet.The governing equations are simplified by similarity transformations.The reduced problem is then solved by the homotopy analysis method.The pertinent parameters appearing in the problem are discussed graphically and presented in tables.It is found that the shrinking solutions exist in the presence of MHD.It is also observed from the tables that the solutions for f(0) with different values of parameters are convergent.展开更多
A generalized Taylor series of a complex function was derived and some related theorems about its convergence region were given. The generalized Taylor theorem can be applied to greatly enlarge convergence regions of...A generalized Taylor series of a complex function was derived and some related theorems about its convergence region were given. The generalized Taylor theorem can be applied to greatly enlarge convergence regions of approximation series given by other traditional techniques. The rigorous proof of the generalized Taylor theorem also provides us with a rational base of the validity of a new kind of powerful analytic technique for nonlinear problems, namely the homotopy analysis method.展开更多
The Homotopy analysis method is applied to obtain the approximate solution of the Klein-Gordon Schrodinger equation. The Homotopy analysis solutions of the Klein-Gordon Schrodinger equation contain an auxiliary parame...The Homotopy analysis method is applied to obtain the approximate solution of the Klein-Gordon Schrodinger equation. The Homotopy analysis solutions of the Klein-Gordon Schrodinger equation contain an auxiliary parameter which provides a convenient way to control the convergence region and rate of the series solutions. Through errors analysis and numerical simulation, we can see the approximate solution is very close to the exact solution.展开更多
The Homotopy analysis method (HAM) is adopted to find the approximate analytical solutions of the Gross- Pitaevskii equation, a nonlinear Schrodinger equation is used in simulation of Bose-Einstein condensates trapp...The Homotopy analysis method (HAM) is adopted to find the approximate analytical solutions of the Gross- Pitaevskii equation, a nonlinear Schrodinger equation is used in simulation of Bose-Einstein condensates trapped in a harmonic potential. Comparisons between the analytical solutions and the numerical solutions have been made. The results indicate that they fit very well with each other when the atomic interaction is weak.展开更多
In the current work, transient heat conduction in a semi-infinite medium is considered for its many applications in various heat fields. Here, the homotopy analysis method (HAM) is applied to solve this problem and ...In the current work, transient heat conduction in a semi-infinite medium is considered for its many applications in various heat fields. Here, the homotopy analysis method (HAM) is applied to solve this problem and analytical results are compared with those of the exact and integral methods results. The results show that the HAM can give much better approximations than the other approximate methods: Changes in heat fluxes and profiles of temperature are obtained at different times and positions for copper, iron and aluminum.展开更多
A new modification of false position method for solving nonlinear equations is presented by applying homotopy analysis method (HAM). Some numerical illustrations are given to show the efficiency of algorithm.
Homotopy Analysis Method(HAM)is semi-analytic method to solve the linear and nonlinear mathematical models which can be used to obtain the approximate solution.The HAM includes an auxiliary parameter,which is an effic...Homotopy Analysis Method(HAM)is semi-analytic method to solve the linear and nonlinear mathematical models which can be used to obtain the approximate solution.The HAM includes an auxiliary parameter,which is an efficient way to examine and analyze the accuracy of linear and nonlinear problems.The main aim of this work is to explore the approximate solutions of fuzzy Volterra integral equations(both linear and nonlinear)with a separable kernel via HAM.This method provides a reliable way to ensure the convergence of the approximation series.A new general form of HAM is presented and analyzed in the fuzzy domain.A qualitative convergence analysis based on the graphical method of a fuzzy HAM is discussed.The solutions sought by the proposed method show that the HAM is easy to implement and computationally quite attractive.Some solutions of fuzzy second kind Volterra integral equations are solved as numerical examples to show the potential of the method.The results also show that HAM provides an easy way to control and modify the convergence area in order to obtain accurate solutions.展开更多
In this paper Homotopy Analysis Method(HAM) is implemented for obtaining approximate solutions of(2+1)-dimensional Navier-Stokes equations with perturbation terms. The initial approximations are obtained using linear ...In this paper Homotopy Analysis Method(HAM) is implemented for obtaining approximate solutions of(2+1)-dimensional Navier-Stokes equations with perturbation terms. The initial approximations are obtained using linear systems of the Navier-Stokes equations; by the iterations formula of HAM, the first approximation solutions and the second approximation solutions are successively obtained and Homotopy Perturbation Method(HPM) is also used to solve these equations; finally,approximate solutions by HAM of(2+1)-dimensional Navier-Stokes equations without perturbation terms and with perturbation terms are compared. Because of the freedom of choice the auxiliary parameter of HAM, the results demonstrate that the rapid convergence and the high accuracy of the HAM in solving Navier-Stokes equations; due to the effects of perturbation terms, the 3 rd-order approximation solutions by HAM and HPM have great fluctuation.展开更多
A general analytic approach,namely the homotopy analysis method(HAM),is applied to solve the time independent Schrodinger equations.Unlike perturbation method,the HAM-based approach does not depend on any small physic...A general analytic approach,namely the homotopy analysis method(HAM),is applied to solve the time independent Schrodinger equations.Unlike perturbation method,the HAM-based approach does not depend on any small physical parameters,corresponding to small disturbances.Especially,it provides a convenient way to gain the convergent series solution of quantum mechanics.This study illustrates the advantages of this HAM-based approach over the traditional perturbative approach,and its general validity for the Schrodinger equations.Note that perturbation methods are widely used in quantum mechanics,but perturbation results are hardly convergent.This study suggests that the HAM might provide us a new,powerful alternative to gain convergent series solution for some complicated problems in quantum mechanics,including many-body problems,which can be directly compared with the experiment data to improve the accuracy of the experimental findings and/or physical theories.展开更多
In this paper, the homotopy analysis method is applied to deduce the periodic solutions of a conservative nonlinear oscillator for which the elastic force term is proportional to<em> u</em><sup>1/3&l...In this paper, the homotopy analysis method is applied to deduce the periodic solutions of a conservative nonlinear oscillator for which the elastic force term is proportional to<em> u</em><sup>1/3</sup>. By introducing the auxiliary linear operator and the initial guess of solution, the homotopy analysis solving is set up. By choosing the suitable convergence-control parameter, the accurate high-order approximations of solution and frequency for the whole range of initial amplitudes can easily be obtained. Comparison of the results obtained using this method with those obtained by different methods reveals that the former is more accurate, effective and convenient for these types of nonlinear oscillators.展开更多
The mathematical model of bioconvection flow of micropolar fluid through a vertical surface containing nanoparticles and gyrotactic microorganisms is presented in this study. In the study, weak and strong concentratio...The mathematical model of bioconvection flow of micropolar fluid through a vertical surface containing nanoparticles and gyrotactic microorganisms is presented in this study. In the study, weak and strong concentrations of microstructures are explored. In the energy and concentration equations, the Catteneo-Christov diffusion models are used to explain temperature and concentration diffusions with thermal and solutal relaxation durations, respectively. The governing equations describing the fluid flow are transformed and parameterized through similarity variables. The approximate analytical solution is obtained by using Homotopy Analysis Method (HAM). The impacts of relevant parameters on the various distributions are investigated and illustrated. It is discovered that increasing the value of the micropolar parameter results in an increase in the microrotation distribution for strong concentrations of microstructures while decreasing the microrotation distribution for weak concentrations of microstructures.展开更多
In this paper, the approximate analytical solutions of the fractional coupled mKdV equation are obtained by homotopy analysis method (HAM). The method includes an auxiliary parameter which provides a convenient way of...In this paper, the approximate analytical solutions of the fractional coupled mKdV equation are obtained by homotopy analysis method (HAM). The method includes an auxiliary parameter which provides a convenient way of adjusting and controlling the convergence region of the series solution. The suitable value of auxiliary parameter is determined and the obtained results are presented graphically.展开更多
This paper considers the Merton portfolio optimization problem for an investor that aims at maximizing the expected power utility of the terminal wealth and intermediate consumption.Applying the homotopy analysis meth...This paper considers the Merton portfolio optimization problem for an investor that aims at maximizing the expected power utility of the terminal wealth and intermediate consumption.Applying the homotopy analysis method,an analytical solution for value function as well as optimal strategy under the 3/2 model is derived,respectively.Compared with the existing explicit solutions for Merton problem under the 3/2 model,the formulas provide certain parameters with less requirement since the homotopy analysis method does not depend on the existence of small parameters in the equation.Finally,numerical examples are examined with the approach,and the proposed solution provides more accurate approximation as the number of terms in infinite series increases.展开更多
文摘An analytical technique, namely the homotopy analysis method (HAM), is used to solve problems of nonlinear oscillations with parametric excitation. Unlike perturbation methods, HAM is not dependent on any small physical parameters at all, and thus valid for both weakly and strongly nonlinear problems. In addition, HAM is different from all other analytic techniques in providing a simple way to adjust and control convergence region of the series solution by means of an auxiliary parameter h. In the present paper, a periodic analytic approximations for nonlinear oscillations with parametric excitation are obtained by using HAM, and the results are validated by numerical simulations.
基金supported by the National Natural Science Foundation of China (10772202)Doctoral Program Foundation of Ministry of Education of China (20050558032)Guangdong Province Natural Science Foundation (07003680, 05003295)
文摘We have deduced incremental harmonic balance an iteration scheme in the (IHB) method using the harmonic balance plus the Newton-Raphson method. Since the convergence of the iteration is dependent upon the initial values in the iteration, the convergent region is greatly restricted for some cases. In this contribution, in order to enlarge the convergent region of the IHB method, we constructed the zeroth-order deformation equation using the homotopy analysis method, in which the IHB method is employed to solve the deformation equation with an embedding parameter as the active increment. Taking the Duffing and the van der Pol equations as examples, we obtained the highly accurate solutions. Importantly, the presented approach renders a convenient way to control and adjust the convergence.
基金supported by the National Natural Science Foundation of China(Nos.11702251,12002316)。
文摘Based on the nonlinear constitutive equation,a piezoelectric semiconductor(PSC)fiber under axial loads and Ohmic contact boundary conditions is investigated.The analytical solutions of electromechanical fields are derived by the homotopy analysis method(HAM),indicating that the HAM is efficient for the nonlinear analysis of PSC fibers,along with a rapid rate of convergence.Furthermore,the nonlinear characteristics of electromechanical fields are discussed through numerical results.It is shown that the asymmetrical distribution of electromechanical fields is obvious under a symmetrical load,and the piezoelectric effect is weakened by an applied electric field.With the increase in the initial carrier concentration,the electric potential decreases,and owing to the screen-ing effect of electrons,the distribution of electromechanical fields tends to be symmetrical.
文摘In this paper,the homotopy analysis method (HAM) is applied to solve generalized biological populationmodels.The fractional derivatives are described by Caputo's sense.The method introduces a significant improvementin this field over existing techniques.Results obtained using the scheme presented here agree well with the analyticalsolutions and the numerical results presented in Ref.[6].However,the fundamental solutions of these equations stillexhibit useful scaling properties that make them attractive for applications.
基金the State Key Basic Research Program of China under Grant No.2004CB318000
文摘In this paper, we apply homotopy analysis method to solve discrete mKdV equation and successfully obtain the bell-shaped solitary solution to mKdV equation. Comparison between our solution and the exact solution shows that homotopy analysis method is effective and validity in solving hybrid nonlinear problems, including solitary solution of difference-differential equation.
基金supported by the Fundamental Research Funds for the Central Universities(No.N090405009)
文摘A homotopy analysis method(HAM)is presented for the primary resonance of multiple degree-of-freedom systems with strong non-linearity excited by harmonic forces.The validity of the HAM is independent of the existence of small parameters in the considered equation.The HAM provides a simple way to adjust and control the convergence region of the series solution by means of an auxiliary parameter.Two examples are presented to show that the HAM solutions agree well with the results of the modified Linstedt-Poincar'e method and the incremental harmonic balance method.
基金supported by Fundamental Research Funds for the Central Universities of China (Grant No. N090405009)
文摘Nonlinear dynamic equation is a common engineering model.There is not precise analytical solution for most of nonlinear differential equations.These nonlinear differential equations should be solved by using approximate methods.Classical perturbation methods such as LP method,KBM method,multi-scale method and the averaging method on weakly nonlinear vibration system is effective,while the strongly nonlinear system is difficult to apply.Approximate solutions of primary resonance for forced Duffing equation is investigated by means of homotopy analysis method (HAM).Different from other approximate computational method,the HAM is totally independent of small physical parameters,and thus is suitable for most nonlinear problems.The HAM provides a great freedom to choose base functions of solution series,so that a nonlinear problem may be approximated more effectively.The HAM provides us a simple way to adjust and control the convergence region of the series solution by means of an auxiliary parameter and the auxiliary function.Therefore,HAM not only may solve the weakly non-linear problems but also may be suitable for the strong non-linear problem.Through the approximate solution of forced Duffing equation with cubic non-linearity,the HAM and fourth order Runge-Kutta method of numerical solution were compared,the results show that the HAM not only can solve the steady state solution,but also can calculate the unsteady state solution,and has the good computational accuracy.
文摘The present paper investigates the magnetohydrodynamic(MHD) flow of a viscous fluid towards a nonlinear porous shrinking sheet.The governing equations are simplified by similarity transformations.The reduced problem is then solved by the homotopy analysis method.The pertinent parameters appearing in the problem are discussed graphically and presented in tables.It is found that the shrinking solutions exist in the presence of MHD.It is also observed from the tables that the solutions for f(0) with different values of parameters are convergent.
文摘A generalized Taylor series of a complex function was derived and some related theorems about its convergence region were given. The generalized Taylor theorem can be applied to greatly enlarge convergence regions of approximation series given by other traditional techniques. The rigorous proof of the generalized Taylor theorem also provides us with a rational base of the validity of a new kind of powerful analytic technique for nonlinear problems, namely the homotopy analysis method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10735030)National Basic Research Program of China (Grant No. 2007CB814800)+1 种基金Ningbo Natural Science Foundation (Grant No. 2008A610017)K.C. Wong Magna Fund in Ningbo University
文摘The Homotopy analysis method is applied to obtain the approximate solution of the Klein-Gordon Schrodinger equation. The Homotopy analysis solutions of the Klein-Gordon Schrodinger equation contain an auxiliary parameter which provides a convenient way to control the convergence region and rate of the series solutions. Through errors analysis and numerical simulation, we can see the approximate solution is very close to the exact solution.
基金Project supported by the National Natural Science Foundation of China(Grant No.11047010)the Key Project Foundation of the Education Ministry of China(Grant No.209128)
文摘The Homotopy analysis method (HAM) is adopted to find the approximate analytical solutions of the Gross- Pitaevskii equation, a nonlinear Schrodinger equation is used in simulation of Bose-Einstein condensates trapped in a harmonic potential. Comparisons between the analytical solutions and the numerical solutions have been made. The results indicate that they fit very well with each other when the atomic interaction is weak.
文摘In the current work, transient heat conduction in a semi-infinite medium is considered for its many applications in various heat fields. Here, the homotopy analysis method (HAM) is applied to solve this problem and analytical results are compared with those of the exact and integral methods results. The results show that the HAM can give much better approximations than the other approximate methods: Changes in heat fluxes and profiles of temperature are obtained at different times and positions for copper, iron and aluminum.
文摘A new modification of false position method for solving nonlinear equations is presented by applying homotopy analysis method (HAM). Some numerical illustrations are given to show the efficiency of algorithm.
基金Dr.Ali Jameel and Noraziah Man are very grateful to the Ministry of Higher Education of Malaysia for providing them with the Fundamental Research Grant Scheme(FRGS)S/O No.14188 that supported this research.
文摘Homotopy Analysis Method(HAM)is semi-analytic method to solve the linear and nonlinear mathematical models which can be used to obtain the approximate solution.The HAM includes an auxiliary parameter,which is an efficient way to examine and analyze the accuracy of linear and nonlinear problems.The main aim of this work is to explore the approximate solutions of fuzzy Volterra integral equations(both linear and nonlinear)with a separable kernel via HAM.This method provides a reliable way to ensure the convergence of the approximation series.A new general form of HAM is presented and analyzed in the fuzzy domain.A qualitative convergence analysis based on the graphical method of a fuzzy HAM is discussed.The solutions sought by the proposed method show that the HAM is easy to implement and computationally quite attractive.Some solutions of fuzzy second kind Volterra integral equations are solved as numerical examples to show the potential of the method.The results also show that HAM provides an easy way to control and modify the convergence area in order to obtain accurate solutions.
文摘In this paper Homotopy Analysis Method(HAM) is implemented for obtaining approximate solutions of(2+1)-dimensional Navier-Stokes equations with perturbation terms. The initial approximations are obtained using linear systems of the Navier-Stokes equations; by the iterations formula of HAM, the first approximation solutions and the second approximation solutions are successively obtained and Homotopy Perturbation Method(HPM) is also used to solve these equations; finally,approximate solutions by HAM of(2+1)-dimensional Navier-Stokes equations without perturbation terms and with perturbation terms are compared. Because of the freedom of choice the auxiliary parameter of HAM, the results demonstrate that the rapid convergence and the high accuracy of the HAM in solving Navier-Stokes equations; due to the effects of perturbation terms, the 3 rd-order approximation solutions by HAM and HPM have great fluctuation.
基金partly supported by the National Natural Science Foundation of China(No.11432009)
文摘A general analytic approach,namely the homotopy analysis method(HAM),is applied to solve the time independent Schrodinger equations.Unlike perturbation method,the HAM-based approach does not depend on any small physical parameters,corresponding to small disturbances.Especially,it provides a convenient way to gain the convergent series solution of quantum mechanics.This study illustrates the advantages of this HAM-based approach over the traditional perturbative approach,and its general validity for the Schrodinger equations.Note that perturbation methods are widely used in quantum mechanics,but perturbation results are hardly convergent.This study suggests that the HAM might provide us a new,powerful alternative to gain convergent series solution for some complicated problems in quantum mechanics,including many-body problems,which can be directly compared with the experiment data to improve the accuracy of the experimental findings and/or physical theories.
文摘In this paper, the homotopy analysis method is applied to deduce the periodic solutions of a conservative nonlinear oscillator for which the elastic force term is proportional to<em> u</em><sup>1/3</sup>. By introducing the auxiliary linear operator and the initial guess of solution, the homotopy analysis solving is set up. By choosing the suitable convergence-control parameter, the accurate high-order approximations of solution and frequency for the whole range of initial amplitudes can easily be obtained. Comparison of the results obtained using this method with those obtained by different methods reveals that the former is more accurate, effective and convenient for these types of nonlinear oscillators.
文摘The mathematical model of bioconvection flow of micropolar fluid through a vertical surface containing nanoparticles and gyrotactic microorganisms is presented in this study. In the study, weak and strong concentrations of microstructures are explored. In the energy and concentration equations, the Catteneo-Christov diffusion models are used to explain temperature and concentration diffusions with thermal and solutal relaxation durations, respectively. The governing equations describing the fluid flow are transformed and parameterized through similarity variables. The approximate analytical solution is obtained by using Homotopy Analysis Method (HAM). The impacts of relevant parameters on the various distributions are investigated and illustrated. It is discovered that increasing the value of the micropolar parameter results in an increase in the microrotation distribution for strong concentrations of microstructures while decreasing the microrotation distribution for weak concentrations of microstructures.
文摘In this paper, the approximate analytical solutions of the fractional coupled mKdV equation are obtained by homotopy analysis method (HAM). The method includes an auxiliary parameter which provides a convenient way of adjusting and controlling the convergence region of the series solution. The suitable value of auxiliary parameter is determined and the obtained results are presented graphically.
基金supported by the Nature Science Research Project of Anhui Province,China under Grant No.1808085MA18General Program of the National Natural Science Foundation of China under Grant No.72071068。
文摘This paper considers the Merton portfolio optimization problem for an investor that aims at maximizing the expected power utility of the terminal wealth and intermediate consumption.Applying the homotopy analysis method,an analytical solution for value function as well as optimal strategy under the 3/2 model is derived,respectively.Compared with the existing explicit solutions for Merton problem under the 3/2 model,the formulas provide certain parameters with less requirement since the homotopy analysis method does not depend on the existence of small parameters in the equation.Finally,numerical examples are examined with the approach,and the proposed solution provides more accurate approximation as the number of terms in infinite series increases.