The Hongshishan chromitite deposits are situated to the north of the Beishan orogenic collage,in the southern part of the Central Asian Orogenic Belt.This study describes the mineral chemistry,Re-Os isotopes and plati...The Hongshishan chromitite deposits are situated to the north of the Beishan orogenic collage,in the southern part of the Central Asian Orogenic Belt.This study describes the mineral chemistry,Re-Os isotopes and platinum-group elements geochemistry of the Hongshishan chromitites for the purpose of constraining the origin,evolution and composition of their parental melts.The restricted ranges of Al_(2)O_(3),Cr_(2)O_(3)and Cr#-Mg#variation of chromite-cores and chromites fall within the field of the mid-ocean ridge and ophiolitic podiform chromite settings.The(^(187)Os/^(188)Os)i ratios of the chromitites are in the range of 0.12449–0.12745(average 0.12637)and theγOs are from-1.92 to-0.06(average-0.83).In the Re-Os isotope diagrams,all the samples fall in the field of chromitites and show a residual peridotitic trend.The range of Os isotopic compositions andγOs values indicate that they overlap the depleted MORB mantle(DMM)as well as being close to global Os isotopic data andγOs of ophiolite chromitites.The characteristics of the PGE contents can be roughly subdivided into two groups:podiform chromitites and Ural-Alaskan type complexes.For the ferritchromite cores,the calculated Al_(2)O_(3)concentrations of the parental melt are higher(average 16.65 wt%)in high-Cr than high-Al chromitite(average 16.17 wt%)and for the chromite,the calculated Al_(2)O_(3)concentrations are even higher(average 16.48 wt%)in the high-Cr than the high-Al examples(average 15.38 wt%).In the(TiO_(2))melt vs.TiO_(2)diagrams,most high-Al melts fall in the MORB,while the high-Cr melts fall in the ARC field.The calculated Fe O/Mg O ratios for the parental melt show the closest resemblance to a MORB magma composition.The inferred parental melt composition for studied chromitites falls in the field of mid-ocean ridge basalt(MORB)magmas and far away from boninite.The calculated degrees of partial melting producing the chromitites are 16%-22%(average 19%),which is around the range of those of the MORB magmas.The chromitites are suggested to have been formed in a MORB setting.The chromites and ferritchromite cores are mostly scattered along the MORB and SSZ harzburgite–dunite fields.Ferritchromite rims and ferritchromites with high YFes formed as a result of alteration during serpentinization..展开更多
红石山地区印支期花岗岩位于甘肃北山地区的红石山蛇绿混杂岩带中,由马鞍山北岩体、小草湖岩体和红石山岩体组成,岩性主要为英云闪长岩、花岗闪长岩和二长花岗岩,含角闪质和镁铁质暗色深源包体。同位素年龄为237.8-240 M a,是中三叠世...红石山地区印支期花岗岩位于甘肃北山地区的红石山蛇绿混杂岩带中,由马鞍山北岩体、小草湖岩体和红石山岩体组成,岩性主要为英云闪长岩、花岗闪长岩和二长花岗岩,含角闪质和镁铁质暗色深源包体。同位素年龄为237.8-240 M a,是中三叠世侵位的。通过对其岩石化学、稀土和微量元素的研究表明,红石山地区印支期中酸性侵入岩大体可划分为两类:一类为高S r低Y型岩体(马鞍山岩体),具有埃达克质岩的地球化学特征,推测可能是加厚的下地壳部分熔融形成的,其残留相为榴辉岩或角闪榴辉岩;另一类为低S r低Y型岩体(小草湖岩体和红石山岩体),以较低的S r、A l和具明显的负铕异常而区别于埃达克质岩,又因其低Y和HREE而类似于埃达克质岩,推测源岩残留相中有斜长石存在,相当于高压麻粒岩相环境,可能也形成于加厚下地壳底部。展开更多
基金funded by the Chinese Geological Survey(Grant Nos.DD20190071,DD20190812)。
文摘The Hongshishan chromitite deposits are situated to the north of the Beishan orogenic collage,in the southern part of the Central Asian Orogenic Belt.This study describes the mineral chemistry,Re-Os isotopes and platinum-group elements geochemistry of the Hongshishan chromitites for the purpose of constraining the origin,evolution and composition of their parental melts.The restricted ranges of Al_(2)O_(3),Cr_(2)O_(3)and Cr#-Mg#variation of chromite-cores and chromites fall within the field of the mid-ocean ridge and ophiolitic podiform chromite settings.The(^(187)Os/^(188)Os)i ratios of the chromitites are in the range of 0.12449–0.12745(average 0.12637)and theγOs are from-1.92 to-0.06(average-0.83).In the Re-Os isotope diagrams,all the samples fall in the field of chromitites and show a residual peridotitic trend.The range of Os isotopic compositions andγOs values indicate that they overlap the depleted MORB mantle(DMM)as well as being close to global Os isotopic data andγOs of ophiolite chromitites.The characteristics of the PGE contents can be roughly subdivided into two groups:podiform chromitites and Ural-Alaskan type complexes.For the ferritchromite cores,the calculated Al_(2)O_(3)concentrations of the parental melt are higher(average 16.65 wt%)in high-Cr than high-Al chromitite(average 16.17 wt%)and for the chromite,the calculated Al_(2)O_(3)concentrations are even higher(average 16.48 wt%)in the high-Cr than the high-Al examples(average 15.38 wt%).In the(TiO_(2))melt vs.TiO_(2)diagrams,most high-Al melts fall in the MORB,while the high-Cr melts fall in the ARC field.The calculated Fe O/Mg O ratios for the parental melt show the closest resemblance to a MORB magma composition.The inferred parental melt composition for studied chromitites falls in the field of mid-ocean ridge basalt(MORB)magmas and far away from boninite.The calculated degrees of partial melting producing the chromitites are 16%-22%(average 19%),which is around the range of those of the MORB magmas.The chromitites are suggested to have been formed in a MORB setting.The chromites and ferritchromite cores are mostly scattered along the MORB and SSZ harzburgite–dunite fields.Ferritchromite rims and ferritchromites with high YFes formed as a result of alteration during serpentinization..