Let H be a Hopf algebra over a field with bijective antipode, and A a commutative cleft right H-comodule algebra. In this paper, we investigate the ho-mological dimensions and the semisimplicity of the category of rel...Let H be a Hopf algebra over a field with bijective antipode, and A a commutative cleft right H-comodule algebra. In this paper, we investigate the ho-mological dimensions and the semisimplicity of the category of relative Hopf modulesAMH.展开更多
We give the Fundamental Theorem for Hopf modules in the category of Yetter-Drinfeld modules , where L is a quasitriangular weak Hopf algebra with a bijective antipode. We also show that H* has a right H-Hopf mod...We give the Fundamental Theorem for Hopf modules in the category of Yetter-Drinfeld modules , where L is a quasitriangular weak Hopf algebra with a bijective antipode. We also show that H* has a right H-Hopf module structure in the Yetter-Drinfeld category. As an application we deduce the existence and uniqueness of right integral from it.展开更多
In this paper, the module coradical is introduced. From this, we show that any Hopf module coalgebra which is local finite can be uniquely decomposed into a direct sum of its indecomposable components. This result is ...In this paper, the module coradical is introduced. From this, we show that any Hopf module coalgebra which is local finite can be uniquely decomposed into a direct sum of its indecomposable components. This result is a generalization of the decompostion theorem of coalgebra.展开更多
In this paper, we give a necessary and sufficient condition for a comodule algebra over a weak Hopf algebra to have a total integral, thus extending the classical theory developed by Doi in the Hopf algebra setting. A...In this paper, we give a necessary and sufficient condition for a comodule algebra over a weak Hopf algebra to have a total integral, thus extending the classical theory developed by Doi in the Hopf algebra setting. Also, from these results, we deduce a version of Maschke's Theorem for (H, B)-Hopf modules associated with a weak Hopf algebra H and a right H-comodule algebra B.展开更多
We propose the notion of Hopf module algebra and show that the projection onto the subspace of coinvariants is an idempotent Rota-Baxter operator of weight-1. We also provide a construction of Hopf module algebras by ...We propose the notion of Hopf module algebra and show that the projection onto the subspace of coinvariants is an idempotent Rota-Baxter operator of weight-1. We also provide a construction of Hopf module algebras by using Yetter-Drinfeld module algebras. As an application,we prove that the positive part of a quantum group admits idempotent Rota-Baxter algebra structures.展开更多
The characterization of H-prime radical is given in many ways.Meantime,the relations between the radical of smash product A#H and the H radical of Hopf module algebra A are obtained.
基金The Fundation of Key Research Program (02021029) and the NSF (2004kj352) of Anhui Province, China.
文摘Let H be a Hopf algebra over a field with bijective antipode, and A a commutative cleft right H-comodule algebra. In this paper, we investigate the ho-mological dimensions and the semisimplicity of the category of relative Hopf modulesAMH.
文摘We give the Fundamental Theorem for Hopf modules in the category of Yetter-Drinfeld modules , where L is a quasitriangular weak Hopf algebra with a bijective antipode. We also show that H* has a right H-Hopf module structure in the Yetter-Drinfeld category. As an application we deduce the existence and uniqueness of right integral from it.
文摘In this paper, the module coradical is introduced. From this, we show that any Hopf module coalgebra which is local finite can be uniquely decomposed into a direct sum of its indecomposable components. This result is a generalization of the decompostion theorem of coalgebra.
基金Ministerio de Educacidn y Ciencia Projects MTM2006-14908-C02-01,MTM2007-62427FEDER
文摘In this paper, we give a necessary and sufficient condition for a comodule algebra over a weak Hopf algebra to have a total integral, thus extending the classical theory developed by Doi in the Hopf algebra setting. Also, from these results, we deduce a version of Maschke's Theorem for (H, B)-Hopf modules associated with a weak Hopf algebra H and a right H-comodule algebra B.
基金supported by National Natural Science Foundation of China(Grant No.11201067)the Matching Fund for National Natural Science Foundation of China from Dongguan University of Technology(Grant No.ZF121006)
文摘We propose the notion of Hopf module algebra and show that the projection onto the subspace of coinvariants is an idempotent Rota-Baxter operator of weight-1. We also provide a construction of Hopf module algebras by using Yetter-Drinfeld module algebras. As an application,we prove that the positive part of a quantum group admits idempotent Rota-Baxter algebra structures.
文摘The characterization of H-prime radical is given in many ways.Meantime,the relations between the radical of smash product A#H and the H radical of Hopf module algebra A are obtained.