期刊文献+
共找到756篇文章
< 1 2 38 >
每页显示 20 50 100
Wellbore Cleaning Degree and Hydraulic Extension in Shale Oil Horizontal Wells
1
作者 Xin Ai Mian Chen 《Fluid Dynamics & Materials Processing》 EI 2024年第3期661-670,共10页
The efficient development and exploitation of shale oil depends on long-distance horizontal wells. As the degreeof cleaning of the wellbore plays a key role in these processes, in this study, this problem is investiga... The efficient development and exploitation of shale oil depends on long-distance horizontal wells. As the degreeof cleaning of the wellbore plays a key role in these processes, in this study, this problem is investigated experimentallyby focusing on the dimensionless cuttings bed height. A method is proposed to calculate the horizontalwellhydraulic extension taking into account the influence of the wellbore cleaning degree on the wellborepressure distribution and assess the effect of a variety of factors such as the bottom hole pressure, the circulatingpressure drop, the drilling pump performance and the formation properties. The analysis shows that the hydraulicextension of horizontal wells decreases with an increase in the cuttings bed height, and the higher the displacementof drilling fluid, the faster the hydraulic extension declines. The annular pressure drop of the horizontalsection increases with the increase of the cuttings bed height, resulting in a higher bottom-hole pressure. Severalarguments are provided to guide the safe drilling of shale oil horizontal wells and overcome the limits of currenttechnological approaches. 展开更多
关键词 Shale oil horizontal well hydraulic extension wellbore cleaning degree pressure distribution mechanism analysis
下载PDF
Productivity Prediction Model of Perforated Horizontal Well Based on Permeability Calculation in Near-Well High Permeability Reservoir Area
2
作者 Shuangshuang Zhang Kangliang Guo +3 位作者 Xinchen Gao Haoran Yang Jinfeng Zhang Xing Han 《Energy Engineering》 EI 2024年第1期59-75,共17页
To improve the productivity of oil wells,perforation technology is usually used to improve the productivity of horizontal wells in oilfield exploitation.After the perforation operation,the perforation channel around t... To improve the productivity of oil wells,perforation technology is usually used to improve the productivity of horizontal wells in oilfield exploitation.After the perforation operation,the perforation channel around the wellbore will form a near-well high-permeability reservoir area with the penetration depth as the radius,that is,the formation has different permeability characteristics with the perforation depth as the dividing line.Generally,the permeability is measured by the permeability tester,but this approach has a high workload and limited application.In this paper,according to the reservoir characteristics of perforated horizontal wells,the reservoir is divided into two areas:the original reservoir area and the near-well high permeability reservoir area.Based on the theory of seepage mechanics and the formula of open hole productivity,the permeability calculation formula of near-well high permeability reservoir area with perforation parameters is deduced.According to the principle of seepage continuity,the seepage is regarded as the synthesis of two directions:the horizontal plane elliptic seepage field and the vertical plane radial seepage field,and the oil well productivity prediction model of the perforated horizontal well is established by partition.The model comparison demonstrates that the model is reasonable and feasible.To calculate and analyze the effect of oil well production and the law of influencing factors,actual production data of the oilfield are substituted into the oil well productivity formula.It can effectively guide the technical process design and effect prediction of perforated horizontal wells. 展开更多
关键词 Perforated horizontal well PERMEABILITY productivity model sensitivity analysis
下载PDF
A Cementing Technology for Shale Oil Horizontal Wells 被引量:1
3
作者 Yudong Tian Gonghui Liu +6 位作者 Yue Qi Jun Li Yan Xi Wei Lian Xiaojie Bai Penglin Liu Xiaoguang Geng 《Fluid Dynamics & Materials Processing》 EI 2023年第11期2837-2845,共9页
Organic rich dark shale of Q Formation can be found in many areas(e.g.,in the North of S Basin).The shale target stratum is easy to hydrate and often undergoes spallation.Therefore,centering the casing in the horizont... Organic rich dark shale of Q Formation can be found in many areas(e.g.,in the North of S Basin).The shale target stratum is easy to hydrate and often undergoes spallation.Therefore,centering the casing in the horizontal section of the irregular borehole is relatively difficult.Similarly,achieving a good cementflushing efficiency under complex borehole conditions is a complex task.Through technologies such as centralizer,efficient preflushing,multi-stageflushing and ductile cement slurry,better performances can be achieved.In this study,it is shown that the cementing rate in the DY2H horizontal section is 97.8%,which is more than 34%higher than that of adjacent wells.This cementing matching technology for sidetracking horizontal wells can be used to improve the cementing quality of continental shale and provides a reference for future applications in thisfield. 展开更多
关键词 Shale oil sidetracking horizontal well tough cement slurry cementing technology
下载PDF
Comparative assessment of mechanical and chemical fluid diversion techniques during hydraulic fracturing in horizontal wells
4
作者 Maunish S.Shah Subhash N.Shah 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3582-3597,共16页
The application of fluid diversion during hydraulic fracturing is an evolving technology and has become popular amongst E&P operators over the past few years.The primary objective of the fluid diversion is to impr... The application of fluid diversion during hydraulic fracturing is an evolving technology and has become popular amongst E&P operators over the past few years.The primary objective of the fluid diversion is to improve hydraulic fracturing treatment by increasing stimulated reservoir volume and improving hydrocarbon recovery.This is possible by achieving any of the following objectives:creating uniform distribution of treatment slurry within the target zone;treating unstimulated and under-stimulated zones;or by increasing fracture density by creating a complex fracture network.The fluid diversion application is also helpful in decreasing the number of stages(by increasing stage length)for multi-stage plug-n-perf(PnP)fracturing treatment.It is also applied to prevent fracture-driven interactions between adjacent wells,which is currently a major issue,especially in shale.In addition,for successful refracturing treatment,the diverter application is essential for isolating the existing fractures and redirecting the treatment slurry to the desired unstimulated zones.The diversion methods can be broadly categorized into the mechanical and chemical diversion.Several established mechanical diversion techniques are frac plugs,expandable casing patches,expandable liners,swellable packers,straddle packer assembly,sand plugs,frac sleeves,perforation ball sealers,and limited entry technique.The different chemical diversion techniques are particulates,fibers,gels,surfactants,perforation pods,and composite diverting.This paper describes the current status of established mechanical and chemical diverter technologies and examines their comparative advantages and challenges.Various techniques are suitable for diverter application,but the technique is selected based on the desired objective and conditions of the wellbore and reservoir.The general guidelines for selecting diversion techniques and operational considerations are also provided in the paper.The diagnosis of diversion treatment plays an essential role in diversion technique selection and optimization of selection parameters for the subsequent treatments.Therefore,the application of conventional surface pressure monitoring techniques and advanced diagnostic tools to evaluate diversion effectiveness are briefly described.Presently no standard laboratory testing method is established for the performance evaluation of diverting agents.Therefore,researchers have implemented various laboratory methods,which are briefly summarized in the paper.Significant insight into the diversion technology and guidelines for its selection and successful implementation is provided to help engineers to increase the effectiveness of hydraulic fracturing treatments.The limitations of individual diversion techniques are clarified,which provide the future scope of research for improvement in various diversion technologies. 展开更多
关键词 Fluid diversion Diverter Diverting agents Multi-stage fracturing Hydraulic fracturing horizontal well
下载PDF
Evaluation of hydraulic fracturing of horizontal wells in tight reservoirs based on the deep neural network with physical constraints
5
作者 Hong-Yan Qu Jian-Long Zhang +3 位作者 Fu-Jian Zhou Yan Peng Zhe-Jun Pan Xin-Yao Wu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1129-1141,共13页
Accurate diagnosis of fracture geometry and conductivity is of great challenge due to the complex morphology of volumetric fracture network. In this study, a DNN (deep neural network) model was proposed to predict fra... Accurate diagnosis of fracture geometry and conductivity is of great challenge due to the complex morphology of volumetric fracture network. In this study, a DNN (deep neural network) model was proposed to predict fracture parameters for the evaluation of the fracturing effects. Field experience and the law of fracture volume conservation were incorporated as physical constraints to improve the prediction accuracy due to small amount of data. A combined neural network was adopted to input both static geological and dynamic fracturing data. The structure of the DNN was optimized and the model was validated through k-fold cross-validation. Results indicate that this DNN model is capable of predicting the fracture parameters accurately with a low relative error of under 10% and good generalization ability. The adoptions of the combined neural network, physical constraints, and k-fold cross-validation improve the model performance. Specifically, the root-mean-square error (RMSE) of the model decreases by 71.9% and 56% respectively with the combined neural network as the input model and the consideration of physical constraints. The mean square error (MRE) of fracture parameters reduces by 75% because the k-fold cross-validation improves the rationality of data set dividing. The model based on the DNN with physical constraints proposed in this study provides foundations for the optimization of fracturing design and improves the efficiency of fracture diagnosis in tight oil and gas reservoirs. 展开更多
关键词 Evaluation of fracturing effects Tight reservoirs Physical constraints Deep neural network horizontal wells Combined neural network
下载PDF
Intelligent identification and real-time warning method of diverse complex events in horizontal well fracturing
6
作者 YUAN Bin ZHAO Mingze +2 位作者 MENG Siwei ZHANG Wei ZHENG He 《Petroleum Exploration and Development》 SCIE 2023年第6期1487-1496,共10页
The existing approaches for identifying events in horizontal well fracturing are difficult, time-consuming, inaccurate, and incapable of real-time warning. Through improvement of data analysis and deep learning algori... The existing approaches for identifying events in horizontal well fracturing are difficult, time-consuming, inaccurate, and incapable of real-time warning. Through improvement of data analysis and deep learning algorithm, together with the analysis on data and information of horizontal well fracturing in shale gas reservoirs, this paper presents a method for intelligent identification and real-time warning of diverse complex events in horizontal well fracturing. An identification model for "point" events in fracturing is established based on the Att-BiLSTM neural network, along with the broad learning system (BLS) and the BP neural network, and it realizes the intelligent identification of the start/end of fracturing, formation breakdown, instantaneous shut-in, and other events, with an accuracy of over 97%. An identification model for "phase" events in fracturing is established based on enhanced Unet++ network, and it realizes the intelligent identification of pump ball, pre-acid treatment, temporary plugging fracturing, sand plugging, and other events, with an error of less than 0.002. Moreover, a real-time prediction model for fracturing pressure is built based on the Att-BiLSTM neural network, and it realizes the real-time warning of diverse events in fracturing. The proposed method can provide an intelligent, efficient and accurate identification of events in fracturing to support the decision-making. 展开更多
关键词 horizontal well fracturing fracturing events intelligent identification real-time warning deep learning
下载PDF
Analysis of Wellbore Flow in Shale Gas Horizontal Wells
7
作者 Linjuan Zeng Daogang Cai +2 位作者 Yunhai Zhao Changqing Ye Chengcheng Luo 《Fluid Dynamics & Materials Processing》 EI 2023年第11期2813-2825,共13页
Theflow behavior of shale gas horizontal wells is relatively complex,and this should be regarded as the main reason for which conventional pipeflow models are not suitable to describe the related dynamics.In this stud... Theflow behavior of shale gas horizontal wells is relatively complex,and this should be regarded as the main reason for which conventional pipeflow models are not suitable to describe the related dynamics.In this study,numerical simulations have been conducted to determine the gas-liquid distribution in these wells.In particular,using the measuredflow pressure data related to 97 groups of shale gas wells as a basis,9 distinct pipeflow models have been assessed,and the models displaying a high calculation accuracy for different water-gas ratio(WGR)ranges have been identified.The results show that:(1)The variation law of WGR in gas well satisfies a power function relation.(2)The well structure is the main factor affecting the gas-liquid distribution in the wellbore.(3)The Beggs&Brill,Hagedorn&Brown and Gray models exhibit a high calculation accuracy. 展开更多
关键词 Shale gas horizontal well production characteristics wellbore gas-liquid distribution pipeflow model
下载PDF
Numerical Simulation of Two-Phase Flow in Glutenite Reservoirs for Optimized Deployment in Horizontal Wells
8
作者 Yuhui Zhou Shichang Ju +5 位作者 Qijun Lyu Hongfei Chen Xuebiao Du Aiping Zheng Wenshun Chen Ning Li 《Fluid Dynamics & Materials Processing》 EI 2023年第1期245-259,共15页
It is known that the pore media characteristics of glutenite reservoirs are different from those of conventional sandstone reservoirs.Low reservoir permeability and naturally developed microfractures make water inject... It is known that the pore media characteristics of glutenite reservoirs are different from those of conventional sandstone reservoirs.Low reservoir permeability and naturally developed microfractures make water injection in this kind of reservoir very difficult.In this study,new exploitation methods are explored.Using a real glutenite reservoir as a basis,a three-dimensional fine geological model is elaborated.Then,combining the model with reservoir performance information,and through a historical fitting analysis,the saturation abundance distribution of remaining oil in the reservoir is determined.It is shown that,using this information,predictions can be made about whether the considered reservoir is suitable for horizontal well fracturing or not.The direction,well length,well spacing and productivity of horizontal well are also obtained. 展开更多
关键词 Glutenite reservoir horizontal well reservoir numerical simulation residual oil optimal deployment
下载PDF
Numerical Analysis of Dynamical Effects Associated with a Plugging String in a Horizontal Well
9
作者 Guangsheng Liu Qingming Gan +4 位作者 WenWu Haitao Yang Yiming Lv Wenhao Cui Wei Lin 《Fluid Dynamics & Materials Processing》 EI 2023年第5期1203-1214,共12页
The finite element method has been applied to simulate the dynamics of a water plugging string in a complex horizontal well of a low-permeability oilfield.The force associated with the pipe string and the packer has b... The finite element method has been applied to simulate the dynamics of a water plugging string in a complex horizontal well of a low-permeability oilfield.The force associated with the pipe string and the packer has been determined under the sucking action of the oil well pump.Such analysis has been conducted for a real drilling well,taking into account the process of lifting,lowering,unblocking and water plugging.Comparison between field measured data and simulation data indicates that the model is reliable and accurate.The packer creep effect under different pressure differences has also been investigated in the framework of the same model. 展开更多
关键词 Water plugging string horizontal well creep effect mechanical water plugging
下载PDF
Simulation of the Production Performances of Horizontal Wells with a Fractured Shale Gas Reservoir
10
作者 Hongsha Xiao Ruihan Zhang +6 位作者 Man Chen Cui Jing Shangjun Gao Chao Chen Huiyan Zhao Xin Huang Bo Kang 《Fluid Dynamics & Materials Processing》 EI 2023年第7期1803-1815,共13页
The production performances of a well with a shale gas reservoir displaying a complex fracture network are simulated.In particular,a micro-seismic cloud diagram is used to describe the fracture network,and accordingly... The production performances of a well with a shale gas reservoir displaying a complex fracture network are simulated.In particular,a micro-seismic cloud diagram is used to describe the fracture network,and accordingly,a production model is introduced based on a multi-scale flow mechanism.A finite volume method is then exploited for the integration of the model equations.The effects of apparent permeability,conductivity,Langmuir volume,and bottom hole pressure on gas well production are studied accordingly.The simulation results show that ignoring the micro-scale flow mechanism of the shale gas leads to underestimating the well gas production.It is shown that after ten years of production,the cumulative gas production difference between the two scenarios with and without considering the micro-scale flow mechanisms is 19.5%.The greater the fracture conductivity,the higher the initial gas production of the gas well and the cumulative gas production.The larger the Langmuir volume,the higher the gas production rate and the cumulative gas production.With the reduction of the bottom hole pressure,the cumulative gas production increases,but the growth rate gradually decreases. 展开更多
关键词 Shale gas reservoir complex fracture network fractured horizontal well numerical simulation
下载PDF
Revolutionizing Tight Reservoir Production: A Novel Dual-Medium Unsteady Seepage Model for Optimizing Volumetrically Fractured Horizontal Wells
11
作者 Xinyu Zhao Mofeng Li +1 位作者 Kai Yan Li Yin 《Energy Engineering》 EI 2023年第12期2933-2949,共17页
This study presents an avant-garde approach for predicting and optimizing production in tight reservoirs,employing a dual-medium unsteady seepage model specifically fashioned for volumetrically fractured horizontal we... This study presents an avant-garde approach for predicting and optimizing production in tight reservoirs,employing a dual-medium unsteady seepage model specifically fashioned for volumetrically fractured horizontal wells.Traditional models often fail to fully capture the complex dynamics associated with these unconventional reservoirs.In a significant departure from these models,our approach incorporates an initiation pressure gradient and a discrete fracture seepage network,providing a more realistic representation of the seepage process.The model also integrates an enhanced fluid-solid interaction,which allows for a more comprehensive understanding of the fluid-structure interactions in the reservoir.This is achieved through the incorporation of improved permeability and stress coupling,leading to more precise predictions of reservoir behavior.The numerical solutions derived from the model are obtained through the sophisticated finite element method,ensuring high accuracy and computational efficiency.To ensure the model’s reliability and accuracy,the outcomes were tested against a real-world case,with results demonstrating strong alignment.A key revelation from the study is the significant difference between uncoupled and fully coupled volumetrically fractured horizontal wells,challenging conventional wisdom in the field.Additionally,the study delves into the effects of stress,fracture length,and fracture number on reservoir production,contributing valuable insights for the design and optimization of tight reservoirs.The findings from this study have the potential to revolutionize the field of tight reservoir prediction and management,offering significant advancements in petroleum engineering.The proposed approach brings forth a more nuanced understanding of tight reservoir systems and opens up new avenues for optimizing reservoir management and production. 展开更多
关键词 Tight reservoirs production prediction model stress effects fractured horizontal well
下载PDF
Study on Horizontal Well Layout Boundary Considering Wellbore Pressure Loss
12
作者 Xinwei Jin Yong Hu +2 位作者 Juan Du Fengyu Yan Xiaoning Ren 《Open Journal of Yangtze Oil and Gas》 CAS 2023年第1期11-17,共7页
Based on the Dikken analytical calculation method of wellbore pressure loss under single-phase fluid and turbulent flow conditions, the correlation model between horizontal well output and horizontal section length an... Based on the Dikken analytical calculation method of wellbore pressure loss under single-phase fluid and turbulent flow conditions, the correlation model between horizontal well output and horizontal section length and horizontal section distributed pressure difference is constructed. The influence degree of wellbore pressure loss on daily oil production of horizontal well, horizontal section pressure and production effect of horizontal well under different horizontal well lengths is analyzed, which provides certain reference for the design of horizontal well length and well layout. 展开更多
关键词 horizontal well wellbore Pressure Loss Length of horizontal Section
下载PDF
Diagnostic Method and Adaptability Analysis of Multiple Water Breakthroughs in Horizontal Well in Combined Well Pattern
13
作者 Zheng Lv Meinan Wang +2 位作者 Guohao Zhang Rui Zhang Jianguo Liu 《Journal of Geoscience and Environment Protection》 2023年第5期150-158,共9页
The combined well pattern has been widely used in reservoir development, with a common pattern being a horizontal well in the center for oil production and multiple vertical wells around for water injection. For this ... The combined well pattern has been widely used in reservoir development, with a common pattern being a horizontal well in the center for oil production and multiple vertical wells around for water injection. For this type of well pattern, determining the horizontal well is affected by which injection wells, especially when the injecting water breaks through, accurately determining the direction of water inflow will provide an important basis for targeted water well measures. Based on the production performance data of horizontal wells, the semi logarithmic relationship curves of water-oil ratio, derivative water-oil ratio, and cumulative production were used for the first time to determine the breakthrough problem of water injection in the surrounding water injection wells of horizontal wells based on their response characteristics. The adaptability of this method under different influencing factors was analyzed. Introducing the parameter of cumulative production not only preserves the variation trend of the derivative of water-oil ratio with time, but also facilitates the processing of actual production data. 展开更多
关键词 Combined well Pattern Multiple Water Breakthroughs in horizontal Derivative of Water-Oil Ratio
下载PDF
The critical rate of horizontal wells in bottom-water reservoirs with an impermeable barrier 被引量:6
14
作者 Yue Ping Du Zhimin +1 位作者 Chen Xiaofan Liang Baosheng 《Petroleum Science》 SCIE CAS CSCD 2012年第2期223-229,共7页
Barrier impacts on water cut and critical rate of horizontal wells in bottom water-drive reservoirs have been recognized but not investigated quantitatively. Considering the existence of impermeable barriers in oil fo... Barrier impacts on water cut and critical rate of horizontal wells in bottom water-drive reservoirs have been recognized but not investigated quantitatively. Considering the existence of impermeable barriers in oil formations, this paper developed a horizontal well flow model and obtained mathematical equations for the critical rate when water cresting forms in bottom-water reservoirs. The result shows that the barrier increases the critical rate and delays water breakthrough. Further study of the barrier size and location shows that increases in the barrier size and the distance between the barrier and oil-water contact lead to higher critical rates. The critical rate gradually approaches a constant as the barrier size increases. The case study shows the method presented here can be used to predict the critical rate in a bottom-water reservoir and applied to investigate the water cresting behavior of horizontal wells. 展开更多
关键词 horizontal well bottom-water reservoir barriers critical rate cresting
下载PDF
Numerical simulation and dimension reduction analysis of electromagnetic logging while drilling of horizontal wells in complex structures 被引量:7
15
作者 Zhen-Guan Wu Shao-Gui Deng +5 位作者 Xu-Quan He Runren Zhang Yi-Ren Fan Xi-Yong Yuan Yi-Zhi Wu Qing Huo Liu 《Petroleum Science》 SCIE CAS CSCD 2020年第3期645-657,共13页
Electromagnetic logging while drilling(LWD)is one of the key technologies of the geosteering and formation evaluation for high-angle and horizontal wells.In this paper,we solve the dipole source-generated magnetic/ele... Electromagnetic logging while drilling(LWD)is one of the key technologies of the geosteering and formation evaluation for high-angle and horizontal wells.In this paper,we solve the dipole source-generated magnetic/electric fields in 2D formations efficiently by the 2.5D finite diff erence method.Particularly,by leveraging the field’s rapid attenuation in spectral domain,we propose truncated Gauss–Hermite quadrature,which is several tens of times faster than traditional inverse fast Fourier transform.By applying the algorithm to the LWD modeling under complex formations,e.g.,folds,fault and sandstone pinch-outs,we analyze the feasibility of the dimension reduction from 2D to 1D.For the formations with smooth lateral changes,like folds,the simplified 1D model’s results agree well with the true responses,which indicate that the 1D simplification with sliding window is feasible.However,for the formation structures with drastic rock properties changes and sharp boundaries,for instance,faults and sandstone pinch-outs,the simplified 1D model will lead to large errors and,therefore,2.5D algorithms should be applied to ensure the accuracy. 展开更多
关键词 Complex formation structures horizontal wells Electromagnetic logging while drilling 2.5D algorithm-Model simplification
下载PDF
Stress redistribution in multi-stage hydraulic fracturing of horizontal wells in shales 被引量:5
16
作者 Yi-Jin Zeng Xu Zhang Bao-Ping Zhang 《Petroleum Science》 SCIE CAS CSCD 2015年第4期628-635,共8页
Multi-stage hydraulic fracturing of horizontal wells is the main stimulation method in recovering gas from tight shale gas reservoirs, and stage spacing deter- mination is one of the key issues in fracturing design. T... Multi-stage hydraulic fracturing of horizontal wells is the main stimulation method in recovering gas from tight shale gas reservoirs, and stage spacing deter- mination is one of the key issues in fracturing design. The initiation and propagation of hydraulic fractures will cause stress redistribution and may activate natural fractures in the reservoir. Due to the limitation of the analytical method in calculation of induced stresses, we propose a numerical method, which incorporates the interaction of hydraulic fractures and the wellbore, and analyzes the stress distri- bution in the reservoir under different stage spacing. Simulation results indicate the following: (1) The induced stress was overestimated from the analytical method because it did not take into account the interaction between hydraulic fractures and the horizontal wellbore. (2) The hydraulic fracture had a considerable effect on the redis- tribution of stresses in the direction of the horizontal wellbore in the reservoir. The stress in the direction per- pendicular to the horizontal wellbore after hydraulic frac- turing had a minor change compared with the original in situ stress. (3) Stress interferences among fractures were greatly connected with the stage spacing and the distance from the wellbore. When the fracture length was 200 m, and the stage spacing was 50 m, the stress redistribution due to stage fracturing may divert the original stress pat- tern, which might activate natural fractures so as to generate a complex fracture network. 展开更多
关键词 Shale gas - horizontal well Multi-stagefracturing Complex fracture Stage spacing - Inducedstress
下载PDF
Blasingame production decline type curves for analysing a multi-fractured horizontal well in tight gas reservoirs 被引量:4
17
作者 魏明强 段永刚 +3 位作者 陈伟 方全堂 李政澜 郭希冉 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第2期394-401,共8页
Production decline analysis has been considered as an important method to obtain the flow parameters, reservoir properties and original gas in place. Although advanced Blasingame production decline analysis methods fo... Production decline analysis has been considered as an important method to obtain the flow parameters, reservoir properties and original gas in place. Although advanced Blasingame production decline analysis methods for vertical wells, fractured wells and horizontal wells are widely used, limited study has conducted on Blasingame production decline type curves for multi-fractured horizontal well(MFHW). Based on the perpendicular bisection(PEBI) grids, a numerical model was developed and the solution was obtained using control volume finite element method and the fully implicit method. Blasingame production decline-type curves of the infinitely conductive MFHW were plotted through computer programming. A field case was presented to analyse and verify the model developed. Five flow regimes, including early formation linear flow, early radial flow, compound linear flow, transient flow and pseudo-radial flow, are recognized. Fracture spacing is the main factor that affects early radial flow, compound linear flow and transient flow, the distance from the well to the circular boundary affects the pseudo-radial flow, and the type curves are also significantly affected by the formation permeability, fracture number and fracture half-length. The validation of field case suggests that the Blasingame production decline type curves proposed in this work can be applied to the production decline analysis for MFHW in tight gas reservoirs. 展开更多
关键词 tight gas reservoir fractured horizontal well unstructured grid production decline type curves
下载PDF
Productivity analysis of horizontal wells intercepted by multiple finite-conductivity fractures 被引量:7
18
作者 Wang Xiaodong Li Guanghe Wang Fei 《Petroleum Science》 SCIE CAS CSCD 2010年第3期367-371,共5页
Horizontal wells in the anisotropic reservoirs can be stimulated by hydraulic fracturing in order to create multiple finite-conductivity vertical fractures. Several methods for evaluating the productivity of the horiz... Horizontal wells in the anisotropic reservoirs can be stimulated by hydraulic fracturing in order to create multiple finite-conductivity vertical fractures. Several methods for evaluating the productivity of the horizontal wells have been presented in the literature. With such methods, however, it is still difficult to obtain an accurate result. This paper firstly presents the dimensionless conductivity theory of vertical fractures. Then models for calculating the equivalent wellbore radius and the skin factor due to flow convergence to the well bore are proposed after analyzing the steady-state flow in porous reservoirs. By applying the superposition principle to the pressure drop, a new method for evaluating the productivity of horizontal wells intercepted by multiple finite-conductivity fractures is developed. The influence of fracture conductivity and fracture half length on the horizontal well productivity is quantitatively analyzed with a synthetic case. Optimum fracture number and fracture space are further discussed in this study. The results prove that the method outlined here should be useful to design optimum fracturing of horizontal wells. 展开更多
关键词 Production rate analysis fractured horizontal wells finite-conductivity vertical fractures fracturing design optimization
下载PDF
Optimization of perforation distribution for horizontal wells based on genetic algorithms 被引量:3
19
作者 Wang Zhiming Wei Jianguang +2 位作者 Zhang Jian Gong Bin Yan Haiyun 《Petroleum Science》 SCIE CAS CSCD 2010年第2期232-238,共7页
Early water breakthrough and a rapid increase in water cut are always observed in high- permeability completion intervals when perforations are uniformly distributed in the wellbore in heterogeneous reservoirs. Optimi... Early water breakthrough and a rapid increase in water cut are always observed in high- permeability completion intervals when perforations are uniformly distributed in the wellbore in heterogeneous reservoirs. Optimization of perforating parameters in partitioned sections in horizontal intervals helps homogenize the inflow from the reservoir and thus is critically important for enhanced oil recovery. This paper derives a coupled reservoir-wellbore flow model based on inflow controlling theory. Genetic algorithms are applied to solving the model as they excel in obtaining the global optimum of discrete functions. The optimized perforating strategy applies a low perforation density in high- permeability intervals and a high perforation density in low-permeability intervals. As a result, the inflow profile is homogenized and idealized. 展开更多
关键词 well completion perforation optimization genetic algorithms PARTITION horizontal well
下载PDF
A novel steady-state productivity equation for horizontal wells in bottom water drive gas reservoirs 被引量:3
20
作者 Zhang Liehui Zhao Yulong Liu Zhibin 《Petroleum Science》 SCIE CAS CSCD 2011年第1期63-69,共7页
It is known that there is a discrepancy between field data and the results predicted from the previous equations derived by simplifying three-dimensional(3-D) flow into two-dimensions(2-D).This paper presents a ne... It is known that there is a discrepancy between field data and the results predicted from the previous equations derived by simplifying three-dimensional(3-D) flow into two-dimensions(2-D).This paper presents a new steady-state productivity equation for horizontal wells in bottom water drive gas reservoirs.Firstly,the fundamental solution to the 3-D steady-state Laplace equation is derived with the philosophy of source and the Green function for a horizontal well located at the center of the laterally infinite gas reservoir.Then,using the fundamental solution and the Simpson integral formula,the average pseudo-pressure equation and the steady-state productivity equation are achieved for the horizontal section.Two case-studies are given in the paper,the results calculated from the newly-derived formula are very close to the numerical simulation performed with the Canadian software CMG and the real production data,indicating that the new formula can be used to predict the steady-state productivity of such horizontal gas wells. 展开更多
关键词 horizontal well point-source function bottom water driver gas reservoir steady-state productivity
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部