Supramolecular incorporation of lanthanide complex has been obtained by loading of organic ligand into Eu3+-exchanged zeolite L. This was achieved by a two-step procedure: (1) zeolite L was ion-exchanged with Eu(Ⅲ) i...Supramolecular incorporation of lanthanide complex has been obtained by loading of organic ligand into Eu3+-exchanged zeolite L. This was achieved by a two-step procedure: (1) zeolite L was ion-exchanged with Eu(Ⅲ) ions; (2) organic ligand was then loaded into the channels of the Eu3+-exchanged zeolite by gas diffusion procedure. Loading of ligand into the channels of zeolite L was confirmed by element analysis. Luminescence spectroscopy has confirmed that lanthanide complex are formed in the nanochannels of zeolite L crystals. In addition to the sharp emissions of lanthanide ions, broad band ranged from 350~500 nm can also be observed. This study provides alternative method for fabricating full-color display materials.展开更多
Organic room-temperature phosphorescence(RTP)materials have garnered considerable attention in the fields of biosensing,optoelectronic devices,and anticounterfeiting because of their substantial Stokes shifts,tunable ...Organic room-temperature phosphorescence(RTP)materials have garnered considerable attention in the fields of biosensing,optoelectronic devices,and anticounterfeiting because of their substantial Stokes shifts,tunable emission wavelengths,and prolonged lifetimes.These materials offer remarkable advantages for biological imaging applications by effectively reducing environmental autofluorescence and enhancing imaging resolution.Recently,host-guest systems have been employed as efficient approaches to fabricate pure-organic RTP materials for bioimaging,providing benefits such as controllable preparation and flexible modulation.Consequently,an increasing number of corresponding studies are being reported;however,a comprehensive systematic review is still lacking.Therefore,we summarize recent advances in the development of pureorganic RTP materials using host-guest systems with regard to bioimaging,including rigid matrices and sensitization.The challenge and potential of RTP for biological imaging are also proposed to promote the biomedical applications of organic RTP materials with excellent optical properties.展开更多
The development of supramolecular hosts which can efficiently encapsulate photosensitizers to improve the photodynamic efficacy holds great promise for cancer therapy.Here,we report two perylene diimide-based metallac...The development of supramolecular hosts which can efficiently encapsulate photosensitizers to improve the photodynamic efficacy holds great promise for cancer therapy.Here,we report two perylene diimide-based metallacages that can form stable host–guest complexes with planar conjugated molecules including polycyclic aromatic hydrocarbons and photosensitizers(hypocrellin A).Such host–guest complexation not only prevents the aggregation of photosensitizers in aqueous environments,but also offers fluorescence resonance energy transfer(FRET)from the metallacage to the photosensitizers to further improve the singlet oxygen generation(Φ_(Δ)=0.66).The complexes are further assembled with amphiphilic polymers,forming nanoparticles with improved stability for anticancer study.Both in vitro and in vivo studies indicate that the nanoparticles display excellent anticancer activities upon light irradiation,showing great potential for cancer photodynamic therapy.This study provides a straightforward and effective approach for enhancing the photosensitivity of conventional photosensitizers via host–guest complexation-based FRET,which will open a new avenue for host–guest chemistry-based supramolecular theranostics.展开更多
By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variationa...By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variational Zn-salen ligands RZn and NADH(reduced nicotinamide adenine dinucleotide)mimic modified tridentate ligands with square-planar Pd ions.UV-Vis and luminescence spectra experiments reveal that different anions could selec-tively interact with different sites of Zn-salen modified metal-organic cages to achieve the structural regulation of cage compound,by using the differentiated host-guest electrostatic interactions of counter ions with metal-organic hosts.Compared to other anions,the presence of chloride ions caused the most significant fluorescence emission enhancement of Pd‑R(Zn),meanwhile,the UV-Vis absorption band attributed to the salen aromatic backbone showed an absorption decrease,and the metal-to-ligand induced peak displayed a blue shift effect.Circular dichro-ism and ^(1)H NMR spectra further demonstrate that the introduction of chloride anions is beneficial to keeping a more rigid scaffold.展开更多
Lithium hexafluorophosphate(LiPF_(6)),the most commonly used lithium battery electrolyte salt,is vulnerable to heat and humidity.Quantitative and qualitative determination the variation of LiPF_(6)have always relied o...Lithium hexafluorophosphate(LiPF_(6)),the most commonly used lithium battery electrolyte salt,is vulnerable to heat and humidity.Quantitative and qualitative determination the variation of LiPF_(6)have always relied on advanced equipment.Herein,we develop a fast,convenient,high-selective fluorescence detection method based on metal-organic cages(MOC),whose emission is enhanced by nearly 20 times in the presence of LiPF_(6)with good stability and photobleaching resistance.The fluorescent probe can also detect moisture in battery electrolyte.We propose and verify that the luminescence enhancement is due to the presence of hydrogen bond-induced enhanced emission effect in cages.Fluorescent excitation-emission matrix spectra and variable-temperature nuclear magnetic resonance spectroscopy are employed to clarify the role of hydrogen bonds in guest-loaded cages.Density functional theory(DFT)calculation is applied to simulate the structure of host-guest complexes and estimate the adsorption energy involved in the system.The precisely matched lock-and-key model paves a new way for designing and fabricating novel host structures,enabling specific recognition of other target compounds.展开更多
The successful synthesis of the pentazolate anion(cyclo-N-5)has been a great breakthrough in the field of energetic materials.However,the detection methods for these energetic materials based on the pentazolate anion ...The successful synthesis of the pentazolate anion(cyclo-N-5)has been a great breakthrough in the field of energetic materials.However,the detection methods for these energetic materials based on the pentazolate anion are quite rare.Herein,two fluorescent probes for cyclo-N-5anion were designed.Sensor 1(TPE2N)was synthesized with a tetraphenylethylene functionalized by two cationic groups which can generate strong electrostatic interactions with pentazolate anion and result in specific fluorescent changes.Sensor 2 was designed based on sensor 1 and supramolecular cucurbit[7]uril(CB[7]).The unique structural features of CB[7]provide sites for the interaction between the cations and N-5anion in its cavity,which would generate a platform for the detection and enhance the recognition performance.Isothermal titration calorimetry(ITC)experiment and fluorescence titration experiment indicate the binding molar ratio between sensor 1 with CB[7]is 1:2.Both sensors display typical aggregation-induced emission(AIE)features and good water-solubility.The sensors demonstrate excellent sensitivity to pentazole hydrazine salt with high enhancement constant(sensor 1:1.34×10^(6);sensor 2:3.78×10^(6))and low limit of detection(LOD:sensor 1=4.33μM;sensor 2=1.54μM).The formation of an AIE-based supramolecular sensor effectively improves the sensitivity to N-5anion.In addition,the probes also have good selectivity of N-5anion salts.The research would shed some light on the design of novel fluorescent sensors to detect pentazolate-based molecules and provides an example of supramolecular chemistry combined with fluorescent probes.展开更多
Compared to traditional polymer hydrogels,supramolecular hydrogels exhibits superior reversibility and stimulus response due to the instantaneous and reversible nature of non-covalent bonds.In this paper,we utilized t...Compared to traditional polymer hydrogels,supramolecular hydrogels exhibits superior reversibility and stimulus response due to the instantaneous and reversible nature of non-covalent bonds.In this paper,we utilized the host-guest exclusion interaction between Decamethylcucurbit[5]uril(Me_(10)Q[5])and the 2,7-diaminofluorenedihydrochloride(DAF·HCl)to construct a Q[n]-based hydrogel system.The composition,structure,and properties of the hydrogel were compre-hensively characterized using rheometer,nuclear magnetic resonance,scanning electron microscope.This cost-effective and straightforward hydrogel synthesis method paves the way for the scalable production of practical and commercially viable Q[n]-based hydrogels.展开更多
Organic molecules that exhibit long persistent luminescence (LPL) are rapidly gaining attention for a variety of applications. In this study, organic molecules with simple structures were selected and organic long per...Organic molecules that exhibit long persistent luminescence (LPL) are rapidly gaining attention for a variety of applications. In this study, organic molecules with simple structures were selected and organic long persistent luminescence (OLPL) crystals were prepared. The crystal structure of the prepared OLPL crystal was elucidated and the guideline for the design of OLPL crystal was clarified. LPL was observed in OLPL crystals prepared with TMB as the guest molecule and 1,2-bis(diphenylphosphino)ethane as the host molecule. XRD measurements of the OLPL crystals suggest that the guest molecule is a solid solution substituted in the stable crystal structure of the host molecule in a lattice-shrinking direction.展开更多
The hydrogen evolution reaction (HER) and dendrite growth associated with Zn anode have become the main bottlenecks for the further development of zinc ion batteries (ZIBs).In this work,the electrochemical activity of...The hydrogen evolution reaction (HER) and dendrite growth associated with Zn anode have become the main bottlenecks for the further development of zinc ion batteries (ZIBs).In this work,the electrochemical activity of H_(3)O^(+) is inhibited by the supramolecular host–guest complex composed of H_(3)O^(+) as guest and 18-crown-6 as host.The even Zn plating is induced by the host–guest complex electrostatic shielding layer on Zn anode,as detected by in-situ optical microscopy.The lamellar Zn is plated which profits from the improved Zn plating behavior.Density functional theory (DFT) calculation presents the stable structure of complex.The less produced H_(2) content is monitored online by a mass spectrometer during Zn plating/stripping,which indicates HER can be hampered by the host–guest behavior.Thus,the ZIBs with long life and high Coulombic efficiency are achieved via introducing 18-crown-6.The proposed host–guest supramolecular interaction is expected to facilitate the furthermore development of Zn batteries.展开更多
The signature events caused by host-guest interactions in the nanopore system can be used as a novel and characteristic signal in quantitative detection and analysis of various molecules.However,the effect of several ...The signature events caused by host-guest interactions in the nanopore system can be used as a novel and characteristic signal in quantitative detection and analysis of various molecules.However,the effect of several electrochemical factors on the host-guest interactions in nanopore still remains unknown.Here,we systematically studied host-guest interactions,especially oscillation of DNA-azide adamantane@cucurbit[6]inα-Hemolysin nanopore under varying pH,concentration of electrolytes and counterions(Li+,Na+,K+).Our results indicate correlations between the change of pH and the duration of the oscillation signal.In addition,the asymmetric electrolyte concentration and the charge of the counterions affects the frequency of signature events in oscillation signals,and even the integrity of the protein nanopore.This study provides insight into the design of a future biosensing platform based on signature oscillation signals of the host-guest interaction within a nanopore.展开更多
Thermodynamic parameters of complexation of naphto- 15-crown-5 with four alkaline earth ions in aqueous media was determined using titration microcalorimetry at 298.15 K. The stability of the complexes, thermal effect...Thermodynamic parameters of complexation of naphto- 15-crown-5 with four alkaline earth ions in aqueous media was determined using titration microcalorimetry at 298.15 K. The stability of the complexes, thermal effect and entropy effect of the complexation is discussed on the basis of the guest ions structure and the solvent effect. The stability constants tendency to vary with ion radius was interpreted. Complex of naphtha-15-crown-5 with calcium ion is very stable due to the synergism of static electric interaction and size selectivity between the host and the guest.展开更多
Ursolic acid(UA) and oleanolic acid(OA) are insoluble drugs. The objective of this study was to encapsulate them into β-cyclodextrin(β-CD) and compare the solubility and intermolecular force of β-CD with the two is...Ursolic acid(UA) and oleanolic acid(OA) are insoluble drugs. The objective of this study was to encapsulate them into β-cyclodextrin(β-CD) and compare the solubility and intermolecular force of β-CD with the two isomeric triterpenic acids. The host-guest interaction was explored in liquid and solid state by ultraviolet-visible absorption,1H NMR, phase solubility analysis, and differential scanning calorimetry, X-ray powder diffractometry, and molecular modeling studies. Both experimental and theoretical studies revealed that β-CD formed 1: 1 water soluble inclusion complexes and the complexation process was naturally favorable. In addition, the overall results suggested that ring E with a carboxyl group of the drug was encapsulated into the hydrophobic CD nanocavity. Therefore, a clear different inclusion behavior was observed, and UA exhibited better affinity to β-CD compared with OA in various media due to little steric interference, which was beneficial to form stable inclusion complex with β-CD and increase its water solubility effectively.展开更多
This paper reports the synthesis of host-guest nanocomposite material [Fe(bpy)(3)]Y2+ (where bpy=2,2'-bipyridine) using the flexible ligand method. X-ray diffraction analysis. adsorption technique, and cyclic volt...This paper reports the synthesis of host-guest nanocomposite material [Fe(bpy)(3)]Y2+ (where bpy=2,2'-bipyridine) using the flexible ligand method. X-ray diffraction analysis. adsorption technique, and cyclic voltammetry were used to characterize the material. The results show that [Fe(bpy)(3)](2+) has been entrapped in the supercage of zeolite, its electron transfer is realized by electron hopping of [Fe(bpy)(3)](2+) within the supercage of zeolite.展开更多
3-Indolyl acetate can be soluhilized in dilute aqueous solution of beta cy clodextrin. dueto the formation of host-guest complex through hydrophobic interaction between the indolyl groupand the inside cave of the cycl...3-Indolyl acetate can be soluhilized in dilute aqueous solution of beta cy clodextrin. dueto the formation of host-guest complex through hydrophobic interaction between the indolyl groupand the inside cave of the cyclodextrin molecule. The thermodynamic pararneters of thecomplexing process can be estimated utilizing the spectrophotometric data.展开更多
The aryl moiety which was bonded as a functional group on the primary alcohol side ofβ-CD or the secondary alcohol side of β-CD or the secondary alcohol side of β-CD with anethylenediamino chain could show remarkab...The aryl moiety which was bonded as a functional group on the primary alcohol side ofβ-CD or the secondary alcohol side of β-CD or the secondary alcohol side of β-CD with anethylenediamino chain could show remarkable different molecular recognition abilities in thecomplexation with small molecular guests such as alkanes, cycloketones etc.展开更多
Rhodamine B-ethylenediamine-beta-cyclodextrins (RhB-beta-CDen) and rhodamine B-beta-cyclodextrins (RhB-beta-CD) form inclusion complexes with many guest molecules, which can be used as nucleic acid probe. In this pape...Rhodamine B-ethylenediamine-beta-cyclodextrins (RhB-beta-CDen) and rhodamine B-beta-cyclodextrins (RhB-beta-CD) form inclusion complexes with many guest molecules, which can be used as nucleic acid probe. In this paper we determined the most stable conformations of RhB-beta-CDen and RhB-beta-CD by molecular mechanics and dynamics simulation. The interaction between RhB-beta-CDen and two guest molecules, 1-borneol and cyclohexanol, have been investigated both theoretically and experimentally. The results show that the interaction between borneol and RhB-beta-CDen is stronger than that between cyclohexanol and RhB-beta-CDen.展开更多
The field of supramolecular chemistry is rapidly progressing,transitioning from the creation of thermodynamically stable systems found in local or global minima on the free energy landscape to the development of out-o...The field of supramolecular chemistry is rapidly progressing,transitioning from the creation of thermodynamically stable systems found in local or global minima on the free energy landscape to the development of out-of-equilibrium systems that rely on chemical reactions to establish and maintain their structures.Over the past decade,numerous artificial out-of-equilibrium systems have been devised in various domains of supramolecular chemistry,many of which have been extensively reviewed.However,one area that has received limited attention thus far is the use of out-of-equilibrium processes to regulate host-guest interactions.This minireview aims to address this gap by exploring the construction of out-ofequilibrium systems based on host-guest complexation,which likely employs similar strategies to those employed in analogous noncovalent interactions.The review begins with a summary of these shared strategies.Subsequently,it discusses representative publications that exemplify these strategies and classifies thembased onwhich component is being modulated-host,guest,or competitive molecules.Through this examination,our objective is to shed light on the design of out-of-equilibrium systems relying on host-guest interactions and provide valuable insights into the preparation strategies for various transient materials.展开更多
A novel macrocycle based on conformation-adaptive and electron-rich dihydrophenazine was designed and synthesized.On the one hand,the macrocycle showed host-guest interactions with tetracyanoquinodimethane(TCNQ)drivin...A novel macrocycle based on conformation-adaptive and electron-rich dihydrophenazine was designed and synthesized.On the one hand,the macrocycle showed host-guest interactions with tetracyanoquinodimethane(TCNQ)driving by charge transfer interaction between them.Meanwhile,host-guest complexation was accompanied by fluorescence quenching and conformational change of the macrocycle.On the other hand,the oxidation of the macrocycle resulted in its diradical cation analogue and induced the release of the guest molecule TCNQ,thereby accomplishing reversible binding dynamics.Therefore,this work wellillustrates the chemical and structural versatility of dihydrophenazine in the synthesis of macrocycles and their host-guest chemistry.展开更多
文摘Supramolecular incorporation of lanthanide complex has been obtained by loading of organic ligand into Eu3+-exchanged zeolite L. This was achieved by a two-step procedure: (1) zeolite L was ion-exchanged with Eu(Ⅲ) ions; (2) organic ligand was then loaded into the channels of the Eu3+-exchanged zeolite by gas diffusion procedure. Loading of ligand into the channels of zeolite L was confirmed by element analysis. Luminescence spectroscopy has confirmed that lanthanide complex are formed in the nanochannels of zeolite L crystals. In addition to the sharp emissions of lanthanide ions, broad band ranged from 350~500 nm can also be observed. This study provides alternative method for fabricating full-color display materials.
基金the financial support from the National Natural Science Foundation of China (Nos. 22125803, 22020102006 and 22307036)a project supported by the Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX03)+2 种基金the Program of Shanghai Academic/Technology Research Leader (No. 20XD1421300)China Postdoctoral Science Foundation (No. 2023M731079)the Fundamental Research Funds for the Central Universities
文摘Organic room-temperature phosphorescence(RTP)materials have garnered considerable attention in the fields of biosensing,optoelectronic devices,and anticounterfeiting because of their substantial Stokes shifts,tunable emission wavelengths,and prolonged lifetimes.These materials offer remarkable advantages for biological imaging applications by effectively reducing environmental autofluorescence and enhancing imaging resolution.Recently,host-guest systems have been employed as efficient approaches to fabricate pure-organic RTP materials for bioimaging,providing benefits such as controllable preparation and flexible modulation.Consequently,an increasing number of corresponding studies are being reported;however,a comprehensive systematic review is still lacking.Therefore,we summarize recent advances in the development of pureorganic RTP materials using host-guest systems with regard to bioimaging,including rigid matrices and sensitization.The challenge and potential of RTP for biological imaging are also proposed to promote the biomedical applications of organic RTP materials with excellent optical properties.
基金supported by the National Natural Science Foundation of China(22171219 and 22222112)Innovation Talent Promotion Plan of Shaanxi Province for Science and Technology Innovation Team(2023-CX-TD-51)+2 种基金Key Laboratory Fund for Plasma Physics(6142A04210108)the Interdisciplinary Training Program for Doctoral Candidate of Xi’an Jiaotong University(IDT2105)National Natural Science Foundation NSAF Joint Fund(U2230112).
文摘The development of supramolecular hosts which can efficiently encapsulate photosensitizers to improve the photodynamic efficacy holds great promise for cancer therapy.Here,we report two perylene diimide-based metallacages that can form stable host–guest complexes with planar conjugated molecules including polycyclic aromatic hydrocarbons and photosensitizers(hypocrellin A).Such host–guest complexation not only prevents the aggregation of photosensitizers in aqueous environments,but also offers fluorescence resonance energy transfer(FRET)from the metallacage to the photosensitizers to further improve the singlet oxygen generation(Φ_(Δ)=0.66).The complexes are further assembled with amphiphilic polymers,forming nanoparticles with improved stability for anticancer study.Both in vitro and in vivo studies indicate that the nanoparticles display excellent anticancer activities upon light irradiation,showing great potential for cancer photodynamic therapy.This study provides a straightforward and effective approach for enhancing the photosensitivity of conventional photosensitizers via host–guest complexation-based FRET,which will open a new avenue for host–guest chemistry-based supramolecular theranostics.
文摘By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variational Zn-salen ligands RZn and NADH(reduced nicotinamide adenine dinucleotide)mimic modified tridentate ligands with square-planar Pd ions.UV-Vis and luminescence spectra experiments reveal that different anions could selec-tively interact with different sites of Zn-salen modified metal-organic cages to achieve the structural regulation of cage compound,by using the differentiated host-guest electrostatic interactions of counter ions with metal-organic hosts.Compared to other anions,the presence of chloride ions caused the most significant fluorescence emission enhancement of Pd‑R(Zn),meanwhile,the UV-Vis absorption band attributed to the salen aromatic backbone showed an absorption decrease,and the metal-to-ligand induced peak displayed a blue shift effect.Circular dichro-ism and ^(1)H NMR spectra further demonstrate that the introduction of chloride anions is beneficial to keeping a more rigid scaffold.
基金supported by National Natural Science Foundation of China(No.22278308,22109114 and 22102099)。
文摘Lithium hexafluorophosphate(LiPF_(6)),the most commonly used lithium battery electrolyte salt,is vulnerable to heat and humidity.Quantitative and qualitative determination the variation of LiPF_(6)have always relied on advanced equipment.Herein,we develop a fast,convenient,high-selective fluorescence detection method based on metal-organic cages(MOC),whose emission is enhanced by nearly 20 times in the presence of LiPF_(6)with good stability and photobleaching resistance.The fluorescent probe can also detect moisture in battery electrolyte.We propose and verify that the luminescence enhancement is due to the presence of hydrogen bond-induced enhanced emission effect in cages.Fluorescent excitation-emission matrix spectra and variable-temperature nuclear magnetic resonance spectroscopy are employed to clarify the role of hydrogen bonds in guest-loaded cages.Density functional theory(DFT)calculation is applied to simulate the structure of host-guest complexes and estimate the adsorption energy involved in the system.The precisely matched lock-and-key model paves a new way for designing and fabricating novel host structures,enabling specific recognition of other target compounds.
基金supported by the National Natural Science Foundation of China(Grant Nos.22175093 and 22007047)the Natural Science Foundation of Jiangsu Province(Grant No.BK20200474)the China Postdoctoral Science Foundation(Grant No.2022M721615)。
文摘The successful synthesis of the pentazolate anion(cyclo-N-5)has been a great breakthrough in the field of energetic materials.However,the detection methods for these energetic materials based on the pentazolate anion are quite rare.Herein,two fluorescent probes for cyclo-N-5anion were designed.Sensor 1(TPE2N)was synthesized with a tetraphenylethylene functionalized by two cationic groups which can generate strong electrostatic interactions with pentazolate anion and result in specific fluorescent changes.Sensor 2 was designed based on sensor 1 and supramolecular cucurbit[7]uril(CB[7]).The unique structural features of CB[7]provide sites for the interaction between the cations and N-5anion in its cavity,which would generate a platform for the detection and enhance the recognition performance.Isothermal titration calorimetry(ITC)experiment and fluorescence titration experiment indicate the binding molar ratio between sensor 1 with CB[7]is 1:2.Both sensors display typical aggregation-induced emission(AIE)features and good water-solubility.The sensors demonstrate excellent sensitivity to pentazole hydrazine salt with high enhancement constant(sensor 1:1.34×10^(6);sensor 2:3.78×10^(6))and low limit of detection(LOD:sensor 1=4.33μM;sensor 2=1.54μM).The formation of an AIE-based supramolecular sensor effectively improves the sensitivity to N-5anion.In addition,the probes also have good selectivity of N-5anion salts.The research would shed some light on the design of novel fluorescent sensors to detect pentazolate-based molecules and provides an example of supramolecular chemistry combined with fluorescent probes.
文摘Compared to traditional polymer hydrogels,supramolecular hydrogels exhibits superior reversibility and stimulus response due to the instantaneous and reversible nature of non-covalent bonds.In this paper,we utilized the host-guest exclusion interaction between Decamethylcucurbit[5]uril(Me_(10)Q[5])and the 2,7-diaminofluorenedihydrochloride(DAF·HCl)to construct a Q[n]-based hydrogel system.The composition,structure,and properties of the hydrogel were compre-hensively characterized using rheometer,nuclear magnetic resonance,scanning electron microscope.This cost-effective and straightforward hydrogel synthesis method paves the way for the scalable production of practical and commercially viable Q[n]-based hydrogels.
文摘Organic molecules that exhibit long persistent luminescence (LPL) are rapidly gaining attention for a variety of applications. In this study, organic molecules with simple structures were selected and organic long persistent luminescence (OLPL) crystals were prepared. The crystal structure of the prepared OLPL crystal was elucidated and the guideline for the design of OLPL crystal was clarified. LPL was observed in OLPL crystals prepared with TMB as the guest molecule and 1,2-bis(diphenylphosphino)ethane as the host molecule. XRD measurements of the OLPL crystals suggest that the guest molecule is a solid solution substituted in the stable crystal structure of the host molecule in a lattice-shrinking direction.
基金the partial financial support from the National Natural Science Foundation of China (22075171)。
文摘The hydrogen evolution reaction (HER) and dendrite growth associated with Zn anode have become the main bottlenecks for the further development of zinc ion batteries (ZIBs).In this work,the electrochemical activity of H_(3)O^(+) is inhibited by the supramolecular host–guest complex composed of H_(3)O^(+) as guest and 18-crown-6 as host.The even Zn plating is induced by the host–guest complex electrostatic shielding layer on Zn anode,as detected by in-situ optical microscopy.The lamellar Zn is plated which profits from the improved Zn plating behavior.Density functional theory (DFT) calculation presents the stable structure of complex.The less produced H_(2) content is monitored online by a mass spectrometer during Zn plating/stripping,which indicates HER can be hampered by the host–guest behavior.Thus,the ZIBs with long life and high Coulombic efficiency are achieved via introducing 18-crown-6.The proposed host–guest supramolecular interaction is expected to facilitate the furthermore development of Zn batteries.
基金the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under award number K22AI136686the South Carolina IDeA Networks of Biomedical Research Excellence Developmental Research Project funded by the National Institute of GeneralMedical Sciences of the National Institutes of Health.
文摘The signature events caused by host-guest interactions in the nanopore system can be used as a novel and characteristic signal in quantitative detection and analysis of various molecules.However,the effect of several electrochemical factors on the host-guest interactions in nanopore still remains unknown.Here,we systematically studied host-guest interactions,especially oscillation of DNA-azide adamantane@cucurbit[6]inα-Hemolysin nanopore under varying pH,concentration of electrolytes and counterions(Li+,Na+,K+).Our results indicate correlations between the change of pH and the duration of the oscillation signal.In addition,the asymmetric electrolyte concentration and the charge of the counterions affects the frequency of signature events in oscillation signals,and even the integrity of the protein nanopore.This study provides insight into the design of a future biosensing platform based on signature oscillation signals of the host-guest interaction within a nanopore.
文摘Thermodynamic parameters of complexation of naphto- 15-crown-5 with four alkaline earth ions in aqueous media was determined using titration microcalorimetry at 298.15 K. The stability of the complexes, thermal effect and entropy effect of the complexation is discussed on the basis of the guest ions structure and the solvent effect. The stability constants tendency to vary with ion radius was interpreted. Complex of naphtha-15-crown-5 with calcium ion is very stable due to the synergism of static electric interaction and size selectivity between the host and the guest.
基金supported by grants from the National Natural Science Foundation of China (21303086)the Natural Science Foundation of Jiangsu Province (BK20130884)the Research Fund for Doctoral Program of Higher Education (20123234120012)
文摘Ursolic acid(UA) and oleanolic acid(OA) are insoluble drugs. The objective of this study was to encapsulate them into β-cyclodextrin(β-CD) and compare the solubility and intermolecular force of β-CD with the two isomeric triterpenic acids. The host-guest interaction was explored in liquid and solid state by ultraviolet-visible absorption,1H NMR, phase solubility analysis, and differential scanning calorimetry, X-ray powder diffractometry, and molecular modeling studies. Both experimental and theoretical studies revealed that β-CD formed 1: 1 water soluble inclusion complexes and the complexation process was naturally favorable. In addition, the overall results suggested that ring E with a carboxyl group of the drug was encapsulated into the hydrophobic CD nanocavity. Therefore, a clear different inclusion behavior was observed, and UA exhibited better affinity to β-CD compared with OA in various media due to little steric interference, which was beneficial to form stable inclusion complex with β-CD and increase its water solubility effectively.
文摘This paper reports the synthesis of host-guest nanocomposite material [Fe(bpy)(3)]Y2+ (where bpy=2,2'-bipyridine) using the flexible ligand method. X-ray diffraction analysis. adsorption technique, and cyclic voltammetry were used to characterize the material. The results show that [Fe(bpy)(3)](2+) has been entrapped in the supercage of zeolite, its electron transfer is realized by electron hopping of [Fe(bpy)(3)](2+) within the supercage of zeolite.
文摘3-Indolyl acetate can be soluhilized in dilute aqueous solution of beta cy clodextrin. dueto the formation of host-guest complex through hydrophobic interaction between the indolyl groupand the inside cave of the cyclodextrin molecule. The thermodynamic pararneters of thecomplexing process can be estimated utilizing the spectrophotometric data.
文摘The aryl moiety which was bonded as a functional group on the primary alcohol side ofβ-CD or the secondary alcohol side of β-CD or the secondary alcohol side of β-CD with anethylenediamino chain could show remarkable different molecular recognition abilities in thecomplexation with small molecular guests such as alkanes, cycloketones etc.
文摘Rhodamine B-ethylenediamine-beta-cyclodextrins (RhB-beta-CDen) and rhodamine B-beta-cyclodextrins (RhB-beta-CD) form inclusion complexes with many guest molecules, which can be used as nucleic acid probe. In this paper we determined the most stable conformations of RhB-beta-CDen and RhB-beta-CD by molecular mechanics and dynamics simulation. The interaction between RhB-beta-CDen and two guest molecules, 1-borneol and cyclohexanol, have been investigated both theoretically and experimentally. The results show that the interaction between borneol and RhB-beta-CDen is stronger than that between cyclohexanol and RhB-beta-CDen.
基金the financial support of the Chinese Scholarship Council(CSC)the Science and Technology Department of Shandong Province(grant no.ZR202211300055).
文摘The field of supramolecular chemistry is rapidly progressing,transitioning from the creation of thermodynamically stable systems found in local or global minima on the free energy landscape to the development of out-of-equilibrium systems that rely on chemical reactions to establish and maintain their structures.Over the past decade,numerous artificial out-of-equilibrium systems have been devised in various domains of supramolecular chemistry,many of which have been extensively reviewed.However,one area that has received limited attention thus far is the use of out-of-equilibrium processes to regulate host-guest interactions.This minireview aims to address this gap by exploring the construction of out-ofequilibrium systems based on host-guest complexation,which likely employs similar strategies to those employed in analogous noncovalent interactions.The review begins with a summary of these shared strategies.Subsequently,it discusses representative publications that exemplify these strategies and classifies thembased onwhich component is being modulated-host,guest,or competitive molecules.Through this examination,our objective is to shed light on the design of out-of-equilibrium systems relying on host-guest interactions and provide valuable insights into the preparation strategies for various transient materials.
基金supported by the NSFC,China(No.22071061)the Shanghai Natural Science Foundation(No.22ZR1420600).
文摘A novel macrocycle based on conformation-adaptive and electron-rich dihydrophenazine was designed and synthesized.On the one hand,the macrocycle showed host-guest interactions with tetracyanoquinodimethane(TCNQ)driving by charge transfer interaction between them.Meanwhile,host-guest complexation was accompanied by fluorescence quenching and conformational change of the macrocycle.On the other hand,the oxidation of the macrocycle resulted in its diradical cation analogue and induced the release of the guest molecule TCNQ,thereby accomplishing reversible binding dynamics.Therefore,this work wellillustrates the chemical and structural versatility of dihydrophenazine in the synthesis of macrocycles and their host-guest chemistry.