The efficacy of shape control is the core of this technology and the main basis of automatic shape control system model designing. This passage constructs the three-dimensional elastic deformation model of CVCplus rol...The efficacy of shape control is the core of this technology and the main basis of automatic shape control system model designing. This passage constructs the three-dimensional elastic deformation model of CVCplus roll system in 2250 mm hot rolling mill. Comparing and analyzing different influence of working factors on control characteristic, the shape control characteristic of CVCplus roll system in its whole work time is studied, and the cause is analyzed and the difference of the roll gap curve and crown adjustable area in early and latter work time is compared. The outcome has crucial meaning in both theory and production.展开更多
This paper presents an analysis of the electric power flows in a hot rolling mill plant using a power quality analyzer and developing simulation models with Matlab-Simulink. The model inputs have been taken from proce...This paper presents an analysis of the electric power flows in a hot rolling mill plant using a power quality analyzer and developing simulation models with Matlab-Simulink. The model inputs have been taken from process data by the process computer of the plant. Data from different rolling campaigns have been analysed. A STATCOM (static synchronous compensator) with a control strategy based on voltage oriented control with d-q coordinates is used as solution to improve the reactive compensation as well as to minimize the voltage fluctuations and sags effect. The overall electric model has been simulated with the STATCOM to check the improvement in the voltage stability and the consumption.展开更多
Based on the niche genetic algorithm, the intelligent and optimizing model for the rolling force distribution in hot strip mills was put forward. The research showed that the model had many advantages such as fast sea...Based on the niche genetic algorithm, the intelligent and optimizing model for the rolling force distribution in hot strip mills was put forward. The research showed that the model had many advantages such as fast searching speed, high calculating pre- cision and suiting for on-line calculation. A good strip shape could be achieved by using the model and it is appropriate and practica-ble for rolling producing.展开更多
Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control p...Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control precision is to establish an effective cooling mathematical model with self-learning function.Starting from this point,a cooling mathematical model with nonlinear structural characteristics is established in this paper for the cooling process of hot rolled steel strip.By the analysis of self-learning ability,key parameters of the mathematical model could be constantly corrected so as to improve temperature control precision and adaptive capability of the model.The site actual application results proved the stable performance and high control precision of the proposed mathematical model,which would lay a solid foundation to improve the steel product qualities.展开更多
The profile quality of hot strip will affect the quality of cold strip,therefore,it is one of key quality fields which needs improve.In this paper,three kinds of profile irregular defects of hot rolling strip were dis...The profile quality of hot strip will affect the quality of cold strip,therefore,it is one of key quality fields which needs improve.In this paper,three kinds of profile irregular defects of hot rolling strip were discussed based on the production experience.Through profile,rolling,work-roll's wear and simulation methods,this paper discovered the reasons of these quality defects.Meanwhile,the ways to deal with these defects were presented and have been proved effectively.Decrease the number of narrow strips,select the suitable type of spray,set the better angle of nozzle can improve the profile quality of hot strip.展开更多
Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titaniu...Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titanium alloy plates were prepared by cold press-ing sintering combined with high-temperature hot rolling.The microstructure and mechanical properties under different process paramet-ers were investigated.Optical microscope,electron backscatter diffraction,and others were applied to characterize the microstructure evolution and mechanical properties strengthening mechanism.The results showed that the chemical compositions were uniformly dif-fused without segregation during sintering,and the closing of the matrix craters was accelerated by increasing the sintering temperature.The block was hot rolled at 1200℃ with an 80%reduction under only two passes without annealing.The strength and elongation of the plate at 20–25℃ after solution and aging were 1247 MPa and 14.0%,respectively,which were increased by 24.5%and 40.0%,respect-ively,compared with the as-sintered alloy at 1300℃.The microstructure was significantly refined by continuous dynamic recrystalliza-tion,which was completed by the rotation and dislocation absorption of the substructure surrounded by low-angle grain boundaries.After hot rolling combined with heat treatment,the strength and plasticity of PM-TA15 were significantly improved,which resulted from the dense,uniform,and fine recrystallization structure and the synergistic effect of multiple slip systems.展开更多
A novel lightweight,radiation-shielding Mg-Ta-Al layered metal-matrix composite(LMC)was successful designed by doping the extremely refractory metal(Ta)into Mg sheets.These Mg-based LMCs sheets shows excellent radiati...A novel lightweight,radiation-shielding Mg-Ta-Al layered metal-matrix composite(LMC)was successful designed by doping the extremely refractory metal(Ta)into Mg sheets.These Mg-based LMCs sheets shows excellent radiation-dose shield effect,about 145 krad·a^(−1),which is about 17 times of traditional Mg alloy,while its surface density is only about 0.9 g·cm^(−2),reducing by 60%than that of pure Ta.The quantitate relationship between radiation-dose and the materials’thickness was also confirmed to the logistic function when the surface density is in the range of 0.6-1.5 g·cm^(−2).Meantime,the rolling parameters,interface microstructure and mechanical properties in both as-rolled and annealing treated samples were evaluated.The sheets possess a special dissimilar atoms diffusion transitional zone containing an obvious inter-diffusion Mg-Al interface and the unique micro-corrugated Ta-Al interface,as well as a thin Al film with a thickness of about 10μm.The special zone could reduce the stress concentration and enhance the strength of Mg-Ta-Al LMCs.The interface bonding strength reaches up to 54-76 MPa.The ultimate tensile strength(UTS)and yield strength(TYS)of the Mg-Ta-Al sheet were high to 413 MPa and 263 MPa,respectively,along with an elongation of 5.8%.The molecular dynamics(MD)analysis results show that the two interfaces exhibit different formation mechanism,the Mg-Al interface primarily depended on Mg/Al atoms diffusion basing point defects movement,while the Ta-Al interface with a micro-interlock pining shape formed by close-packed planes slipping during high temperature strain-induced deformation process.展开更多
According to technological requirement of hot charge rolling and hot direct rolling,in this paper,we investigated the technology of the width control rolling in the rougher mills of hot strip continuous rolling mill t...According to technological requirement of hot charge rolling and hot direct rolling,in this paper,we investigated the technology of the width control rolling in the rougher mills of hot strip continuous rolling mill train.On the basis of improving width range of continuous casting of slab,we obtained a good result of greatly increasing the yield of slab→coil is achieved.展开更多
Deep rolling is one of the most widely used surface mechanical treatments among several methods used to generate compressive residual stress. This process is usually used for axisymmetric components and can lead to im...Deep rolling is one of the most widely used surface mechanical treatments among several methods used to generate compressive residual stress. This process is usually used for axisymmetric components and can lead to improvements of the surface quality, dimensional accuracy, and mechanical properties. In this study, we deduced the appropriate deep rolling parameters for Al-3vol%Si C nanocomposite samples using roughness and microhardness measurements. The nanocomposite samples were fabricated using a combination of mechanical milling, cold pressing, and hot extrusion techniques. Density measurements indicated acceptable densification of the samples, with no porosity. The results of tensile tests showed that the samples are sufficiently strong for the deep rolling process and also indicated near 50% improvement of tensile strength after incorporating Si C nanoparticle reinforcements. The effects of some important rolling parameters, including the penetration depth, rotation speed, feed rate, and the number of passes, on the surface quality and microhardness were also investigated. The results demonstrated that decreasing the feed rate and increasing the number of passes can lead to greater surface hardness and lower surface roughness.展开更多
With the intensification of market competition in the aluminum alloy strip processing industry,it is dif-ficult to control the mass production of the same specifications,which is bound to affect the hot rolling produc...With the intensification of market competition in the aluminum alloy strip processing industry,it is dif-ficult to control the mass production of the same specifications,which is bound to affect the hot rolling production.This paper studied the effect of the hot rolling order of aluminum alloy on the surface quality of strip,such as roll printing,color difference,anodic oxidation,etc.,reasonable discharge sequence and corresponding optimization measures were formulated.展开更多
The elasticity deformation of rolls was analyzed by means of two-dimensional finite element method (FEM) with variable thickness. Three typical mills were used as objects for analysis. A thorough study was done on t...The elasticity deformation of rolls was analyzed by means of two-dimensional finite element method (FEM) with variable thickness. Three typical mills were used as objects for analysis. A thorough study was done on the control capabilities of these mills on the strip shape. Then the strip shape control capabilities of the three mills was compared synthetically. 2008 University of Science and Technology Beijing. All rights reserved.展开更多
Aimed at the complex demand of hot strip rolling mill in practicing, the configuration of the coiler and the technological process is analyzed. The arithmetic of coiling tension and the control process is introduced. ...Aimed at the complex demand of hot strip rolling mill in practicing, the configuration of the coiler and the technological process is analyzed. The arithmetic of coiling tension and the control process is introduced. The frame of the tension adjusting system is given. The coiler control system hardware is designed. The system is designed scientifically with steady control and meets demand of the market.展开更多
The microstructure simulation during the multi-pass hot rolling of AM50 alloy was studied by DEFORM-3D. The excellent agreement with the experiment observations shows that the present modeling and user routine are fea...The microstructure simulation during the multi-pass hot rolling of AM50 alloy was studied by DEFORM-3D. The excellent agreement with the experiment observations shows that the present modeling and user routine are feasible for the reproduce of the hot rolling process. The multi-pass hot rolling contributes to the achievement of a uniformly recrystallized microstructure with fine grains in the rolled sheet. The sheet temperature before the finish rolling strongly affects the final grain size, but hardly affects the grain size distribution. This modeling and the user routine also have a potential to be applied in the researches of the other multi-pass hot deformation process.展开更多
The evolution of hardness and microstructures of 1050 aluminum alloy prepared by hot rolling and subsequent equal- channel angular pressing at cryogenic temperature (cryoECAP) after annealing at 150?400 °C for 1 ...The evolution of hardness and microstructures of 1050 aluminum alloy prepared by hot rolling and subsequent equal- channel angular pressing at cryogenic temperature (cryoECAP) after annealing at 150?400 °C for 1 h without and with magnetic field of 12 T was investigated. The electron back scattering diffraction pattern (EBSD) and transmission electron microscopy (TEM) were utilized to characterize the grain microstructures and dislocations. It is demonstrated that the hot rolling before cryoECAP produces more equiaxed grains with a smaller average size and a higher fraction of high angle boundaries (HABs) in the subsequent cryoECAPed 1050 aluminum alloy, thus accelerating the recovery and recrystallization of cryoECAPed alloy and produces more homogeneous microstructure during annealing. The magnetic field promotes the recovery and recrystallization and leads to much lower hardness at 150?250 °C, while it can suppress the abnormal grain growth and form more homogeneous grain size distributions annealed at 300?400 °C.展开更多
The roll contour pattern and variety of work and backup rolls in service and its effect on profile and flatness control performance in 1 700 mm hot strip mill at Wuhan Iron and Steel(Group) Corporation were tested and...The roll contour pattern and variety of work and backup rolls in service and its effect on profile and flatness control performance in 1 700 mm hot strip mill at Wuhan Iron and Steel(Group) Corporation were tested and analyzed by the developed finite element models of different typical roll contours configurations.A rather smooth local work roll contour near strip edges and an increase in rolled length can be obtained by application of long stroke work roll shifting system with conventional work roll contours that is incapable of the crown control.In comparison with the conventional backup and work roll contours configuration,the crown control range by the roll bending force enhances by 12.79% and the roll gap stiffness increases by 25.26% with the developed asymmetry self-compensating work rolls(ASR) and varying contact backup rolls(VCR).A better strip profile and flatness quality,an increase in coil numbers within the rolling campaign and a significant alleviated effect of severe work roll wear contours on performance of edge drop control are achieved by the application of ASR with crown control and wear control ability in downstream stand F5 and VCR in all stands of 1 700 mm hot strip mill.展开更多
For hot rolling of titanium alloy large rings,evolution laws of stress and strain fields in rings with various sizes were explored and compared based on a reliable coupled thermo-mechanical three-dimensional (3D) fi...For hot rolling of titanium alloy large rings,evolution laws of stress and strain fields in rings with various sizes were explored and compared based on a reliable coupled thermo-mechanical three-dimensional (3D) finite element (FE) model.The results show that for forming processes of different rings,as γ^-(the equivalent distribution ratio of feed amount per revolution of a process) decreases,the final peak Mises stress may transfer from the biting point at the driver roll side to that at the idle roll side,and the final peak equivalent plastic strain may transfer from the outside surface to the inside surface;as L^- (the equivalent deformation zone length of a process) increases,the final peak Mises stress may appear in the middle layer.The final positions of peak Mises stress and equivalent plastic strain are the combined effects of the above two aspects.In the deformation zone of a deformed ring,the surface layers are in the 3D compressive stress state,while the middle layer is in the 1D compressive and 2D tensile stress state or 2D compressive and 1D tensile stress state;the whole ring is in the 1D compressive and 2D tensile strain state.展开更多
The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models...The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models were optimized by regressing the data gathering in situ, and satisfactory effect was obtained. The coiling temperature can be controlled within ±15℃.展开更多
Mechanical properties and texture evolutions of the as-rolled AZ31 Mg sheets were investigated.The results show that the grains of the sheets are significantly refined after hot rolling.The mechanical properties of th...Mechanical properties and texture evolutions of the as-rolled AZ31 Mg sheets were investigated.The results show that the grains of the sheets are significantly refined after hot rolling.The mechanical properties of the as-rolled samples are enhanced due to the grain size refinement.The intensity of basal texture decreases with the increase of deformation ratio,and double-peak type basal texture is discovered in the intermediate and large strain hot rolling processes.The formation of the texture is ascribed to the activities of prismatic and non-basalslips,which is the same as the 30%rolled and 50%rolled samples.The incline of basal planes exerts an effect on the mechanical anisotropy during tension along rolling direction(RD)and transverse direction(TD)at room temperature.展开更多
The predictive calculation of comprehensive contour of work rolls in the on-line strip shape control model during hot rolling consists of two important parts of wear contour calculation and thermal contour calculation...The predictive calculation of comprehensive contour of work rolls in the on-line strip shape control model during hot rolling consists of two important parts of wear contour calculation and thermal contour calculation, which have a direct influence on the ac- curacy of shape control. A statistical wear model and a finite difference thermal contour model of work rolls were described. The comprehensive contour is the equivalence treatment of the sum of grinding, wear, and thermal contours. This comprehensive contour calculation model has been applied successfully in the real on-line strip shape control model. Its high precision has been proved through the large amounts of actual roll profile measurements and theoretical analyses. The hit rates (percent of shape index satisfying re- quirement) of crown and head flatness of the strips rolled, by using the shape control model, which includes the comprehensive contour calculation model, have about 16% and 10% increase respectively, compared to those of strips rolled by using manual operation.展开更多
A three-dimensional model for strip hot rolling was developed, in which the plastic deformation of strip, the thermal crown of rolls, roll deflection and flattening were calculated by rigid-plastic finite element meth...A three-dimensional model for strip hot rolling was developed, in which the plastic deformation of strip, the thermal crown of rolls, roll deflection and flattening were calculated by rigid-plastic finite element method, finite difference method, influential function method and elastic finite element method respectively. The roll wear was taken into consideration. The model can provide detailed information such as rolling pressure distribution, contact pressure distribution between backup rolls and work rolls, deflection and flattening of work rolls, lateral distribution of strip thickness, and lateral distribution of front and back tensions. The finish rolling on a 1 450 mm hot strip mill was simulated.展开更多
文摘The efficacy of shape control is the core of this technology and the main basis of automatic shape control system model designing. This passage constructs the three-dimensional elastic deformation model of CVCplus roll system in 2250 mm hot rolling mill. Comparing and analyzing different influence of working factors on control characteristic, the shape control characteristic of CVCplus roll system in its whole work time is studied, and the cause is analyzed and the difference of the roll gap curve and crown adjustable area in early and latter work time is compared. The outcome has crucial meaning in both theory and production.
文摘This paper presents an analysis of the electric power flows in a hot rolling mill plant using a power quality analyzer and developing simulation models with Matlab-Simulink. The model inputs have been taken from process data by the process computer of the plant. Data from different rolling campaigns have been analysed. A STATCOM (static synchronous compensator) with a control strategy based on voltage oriented control with d-q coordinates is used as solution to improve the reactive compensation as well as to minimize the voltage fluctuations and sags effect. The overall electric model has been simulated with the STATCOM to check the improvement in the voltage stability and the consumption.
文摘Based on the niche genetic algorithm, the intelligent and optimizing model for the rolling force distribution in hot strip mills was put forward. The research showed that the model had many advantages such as fast searching speed, high calculating pre- cision and suiting for on-line calculation. A good strip shape could be achieved by using the model and it is appropriate and practica-ble for rolling producing.
基金Project supported by the National Key Technology Research and Development Program (Grant No.2006BAE03A08)
文摘Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control precision is to establish an effective cooling mathematical model with self-learning function.Starting from this point,a cooling mathematical model with nonlinear structural characteristics is established in this paper for the cooling process of hot rolled steel strip.By the analysis of self-learning ability,key parameters of the mathematical model could be constantly corrected so as to improve temperature control precision and adaptive capability of the model.The site actual application results proved the stable performance and high control precision of the proposed mathematical model,which would lay a solid foundation to improve the steel product qualities.
文摘The profile quality of hot strip will affect the quality of cold strip,therefore,it is one of key quality fields which needs improve.In this paper,three kinds of profile irregular defects of hot rolling strip were discussed based on the production experience.Through profile,rolling,work-roll's wear and simulation methods,this paper discovered the reasons of these quality defects.Meanwhile,the ways to deal with these defects were presented and have been proved effectively.Decrease the number of narrow strips,select the suitable type of spray,set the better angle of nozzle can improve the profile quality of hot strip.
基金supported by the National Natural Science Foundation of China(No.52274359)Guangdong Basic and Applied Basic Research Foundation,China(No.2022A1515110406)+3 种基金Beijing Natural Science Foundation,China(No.2212035)the Fundamental Research Funds for the Central Universities,China(Nos.FRF-TP-19005C1Z and 00007718)the Aeroengine Group University Research Cooperation Project,China(No.HFZL2021CXY021)the State Key Lab of Advanced Metals and Materials,University of Science and Technology Beijing,China(Nos.2021Z-03 and 2022Z-14).
文摘Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titanium alloy plates were prepared by cold press-ing sintering combined with high-temperature hot rolling.The microstructure and mechanical properties under different process paramet-ers were investigated.Optical microscope,electron backscatter diffraction,and others were applied to characterize the microstructure evolution and mechanical properties strengthening mechanism.The results showed that the chemical compositions were uniformly dif-fused without segregation during sintering,and the closing of the matrix craters was accelerated by increasing the sintering temperature.The block was hot rolled at 1200℃ with an 80%reduction under only two passes without annealing.The strength and elongation of the plate at 20–25℃ after solution and aging were 1247 MPa and 14.0%,respectively,which were increased by 24.5%and 40.0%,respect-ively,compared with the as-sintered alloy at 1300℃.The microstructure was significantly refined by continuous dynamic recrystalliza-tion,which was completed by the rotation and dislocation absorption of the substructure surrounded by low-angle grain boundaries.After hot rolling combined with heat treatment,the strength and plasticity of PM-TA15 were significantly improved,which resulted from the dense,uniform,and fine recrystallization structure and the synergistic effect of multiple slip systems.
基金supported by the National Natural Science Foundation of China(grant no.52192603,52275308).
文摘A novel lightweight,radiation-shielding Mg-Ta-Al layered metal-matrix composite(LMC)was successful designed by doping the extremely refractory metal(Ta)into Mg sheets.These Mg-based LMCs sheets shows excellent radiation-dose shield effect,about 145 krad·a^(−1),which is about 17 times of traditional Mg alloy,while its surface density is only about 0.9 g·cm^(−2),reducing by 60%than that of pure Ta.The quantitate relationship between radiation-dose and the materials’thickness was also confirmed to the logistic function when the surface density is in the range of 0.6-1.5 g·cm^(−2).Meantime,the rolling parameters,interface microstructure and mechanical properties in both as-rolled and annealing treated samples were evaluated.The sheets possess a special dissimilar atoms diffusion transitional zone containing an obvious inter-diffusion Mg-Al interface and the unique micro-corrugated Ta-Al interface,as well as a thin Al film with a thickness of about 10μm.The special zone could reduce the stress concentration and enhance the strength of Mg-Ta-Al LMCs.The interface bonding strength reaches up to 54-76 MPa.The ultimate tensile strength(UTS)and yield strength(TYS)of the Mg-Ta-Al sheet were high to 413 MPa and 263 MPa,respectively,along with an elongation of 5.8%.The molecular dynamics(MD)analysis results show that the two interfaces exhibit different formation mechanism,the Mg-Al interface primarily depended on Mg/Al atoms diffusion basing point defects movement,while the Ta-Al interface with a micro-interlock pining shape formed by close-packed planes slipping during high temperature strain-induced deformation process.
文摘According to technological requirement of hot charge rolling and hot direct rolling,in this paper,we investigated the technology of the width control rolling in the rougher mills of hot strip continuous rolling mill train.On the basis of improving width range of continuous casting of slab,we obtained a good result of greatly increasing the yield of slab→coil is achieved.
文摘Deep rolling is one of the most widely used surface mechanical treatments among several methods used to generate compressive residual stress. This process is usually used for axisymmetric components and can lead to improvements of the surface quality, dimensional accuracy, and mechanical properties. In this study, we deduced the appropriate deep rolling parameters for Al-3vol%Si C nanocomposite samples using roughness and microhardness measurements. The nanocomposite samples were fabricated using a combination of mechanical milling, cold pressing, and hot extrusion techniques. Density measurements indicated acceptable densification of the samples, with no porosity. The results of tensile tests showed that the samples are sufficiently strong for the deep rolling process and also indicated near 50% improvement of tensile strength after incorporating Si C nanoparticle reinforcements. The effects of some important rolling parameters, including the penetration depth, rotation speed, feed rate, and the number of passes, on the surface quality and microhardness were also investigated. The results demonstrated that decreasing the feed rate and increasing the number of passes can lead to greater surface hardness and lower surface roughness.
文摘With the intensification of market competition in the aluminum alloy strip processing industry,it is dif-ficult to control the mass production of the same specifications,which is bound to affect the hot rolling production.This paper studied the effect of the hot rolling order of aluminum alloy on the surface quality of strip,such as roll printing,color difference,anodic oxidation,etc.,reasonable discharge sequence and corresponding optimization measures were formulated.
文摘The elasticity deformation of rolls was analyzed by means of two-dimensional finite element method (FEM) with variable thickness. Three typical mills were used as objects for analysis. A thorough study was done on the control capabilities of these mills on the strip shape. Then the strip shape control capabilities of the three mills was compared synthetically. 2008 University of Science and Technology Beijing. All rights reserved.
文摘Aimed at the complex demand of hot strip rolling mill in practicing, the configuration of the coiler and the technological process is analyzed. The arithmetic of coiling tension and the control process is introduced. The frame of the tension adjusting system is given. The coiler control system hardware is designed. The system is designed scientifically with steady control and meets demand of the market.
基金Project(51204003)supported by National Natural Science Foundation of ChinaProject(KJ2011A051)supported by the Scientific Research Foundation of Education Department of Anhui Province,China
文摘The microstructure simulation during the multi-pass hot rolling of AM50 alloy was studied by DEFORM-3D. The excellent agreement with the experiment observations shows that the present modeling and user routine are feasible for the reproduce of the hot rolling process. The multi-pass hot rolling contributes to the achievement of a uniformly recrystallized microstructure with fine grains in the rolled sheet. The sheet temperature before the finish rolling strongly affects the final grain size, but hardly affects the grain size distribution. This modeling and the user routine also have a potential to be applied in the researches of the other multi-pass hot deformation process.
基金Project(2011CB606403)supported by the State Basic Research Development Program of ChinaProjects(51171044,51174058)supported by the National Natural Science Foundation of ChinaProject(2012CB723307)supported by the State Basic Research Development Program of China
文摘The evolution of hardness and microstructures of 1050 aluminum alloy prepared by hot rolling and subsequent equal- channel angular pressing at cryogenic temperature (cryoECAP) after annealing at 150?400 °C for 1 h without and with magnetic field of 12 T was investigated. The electron back scattering diffraction pattern (EBSD) and transmission electron microscopy (TEM) were utilized to characterize the grain microstructures and dislocations. It is demonstrated that the hot rolling before cryoECAP produces more equiaxed grains with a smaller average size and a higher fraction of high angle boundaries (HABs) in the subsequent cryoECAPed 1050 aluminum alloy, thus accelerating the recovery and recrystallization of cryoECAPed alloy and produces more homogeneous microstructure during annealing. The magnetic field promotes the recovery and recrystallization and leads to much lower hardness at 150?250 °C, while it can suppress the abnormal grain growth and form more homogeneous grain size distributions annealed at 300?400 °C.
基金Project(20040311890) supported by the Science and Technology Development Foundation of University of Science and Technology Beijing
文摘The roll contour pattern and variety of work and backup rolls in service and its effect on profile and flatness control performance in 1 700 mm hot strip mill at Wuhan Iron and Steel(Group) Corporation were tested and analyzed by the developed finite element models of different typical roll contours configurations.A rather smooth local work roll contour near strip edges and an increase in rolled length can be obtained by application of long stroke work roll shifting system with conventional work roll contours that is incapable of the crown control.In comparison with the conventional backup and work roll contours configuration,the crown control range by the roll bending force enhances by 12.79% and the roll gap stiffness increases by 25.26% with the developed asymmetry self-compensating work rolls(ASR) and varying contact backup rolls(VCR).A better strip profile and flatness quality,an increase in coil numbers within the rolling campaign and a significant alleviated effect of severe work roll wear contours on performance of edge drop control are achieved by the application of ASR with crown control and wear control ability in downstream stand F5 and VCR in all stands of 1 700 mm hot strip mill.
基金Project(51005258) supported by the National Natural Science Foundation of China
文摘For hot rolling of titanium alloy large rings,evolution laws of stress and strain fields in rings with various sizes were explored and compared based on a reliable coupled thermo-mechanical three-dimensional (3D) finite element (FE) model.The results show that for forming processes of different rings,as γ^-(the equivalent distribution ratio of feed amount per revolution of a process) decreases,the final peak Mises stress may transfer from the biting point at the driver roll side to that at the idle roll side,and the final peak equivalent plastic strain may transfer from the outside surface to the inside surface;as L^- (the equivalent deformation zone length of a process) increases,the final peak Mises stress may appear in the middle layer.The final positions of peak Mises stress and equivalent plastic strain are the combined effects of the above two aspects.In the deformation zone of a deformed ring,the surface layers are in the 3D compressive stress state,while the middle layer is in the 1D compressive and 2D tensile stress state or 2D compressive and 1D tensile stress state;the whole ring is in the 1D compressive and 2D tensile strain state.
基金ItemSponsored by National Natural Science Foundation of China (50104004)
文摘The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models were optimized by regressing the data gathering in situ, and satisfactory effect was obtained. The coiling temperature can be controlled within ±15℃.
文摘Mechanical properties and texture evolutions of the as-rolled AZ31 Mg sheets were investigated.The results show that the grains of the sheets are significantly refined after hot rolling.The mechanical properties of the as-rolled samples are enhanced due to the grain size refinement.The intensity of basal texture decreases with the increase of deformation ratio,and double-peak type basal texture is discovered in the intermediate and large strain hot rolling processes.The formation of the texture is ascribed to the activities of prismatic and non-basalslips,which is the same as the 30%rolled and 50%rolled samples.The incline of basal planes exerts an effect on the mechanical anisotropy during tension along rolling direction(RD)and transverse direction(TD)at room temperature.
基金the National Major Technology Equipment Research Program during the 9th Five-Year Plan Period (No.97-316-01-1).
文摘The predictive calculation of comprehensive contour of work rolls in the on-line strip shape control model during hot rolling consists of two important parts of wear contour calculation and thermal contour calculation, which have a direct influence on the ac- curacy of shape control. A statistical wear model and a finite difference thermal contour model of work rolls were described. The comprehensive contour is the equivalence treatment of the sum of grinding, wear, and thermal contours. This comprehensive contour calculation model has been applied successfully in the real on-line strip shape control model. Its high precision has been proved through the large amounts of actual roll profile measurements and theoretical analyses. The hit rates (percent of shape index satisfying re- quirement) of crown and head flatness of the strips rolled, by using the shape control model, which includes the comprehensive contour calculation model, have about 16% and 10% increase respectively, compared to those of strips rolled by using manual operation.
基金ItemSponsored by National Natural Science Foundation of China (50275130) Provincial Natural Science Foundation ofHebei Province of China (E200400223)
文摘A three-dimensional model for strip hot rolling was developed, in which the plastic deformation of strip, the thermal crown of rolls, roll deflection and flattening were calculated by rigid-plastic finite element method, finite difference method, influential function method and elastic finite element method respectively. The roll wear was taken into consideration. The model can provide detailed information such as rolling pressure distribution, contact pressure distribution between backup rolls and work rolls, deflection and flattening of work rolls, lateral distribution of strip thickness, and lateral distribution of front and back tensions. The finish rolling on a 1 450 mm hot strip mill was simulated.