Internet has become a major medium for infomation transmission, how to detect hot topic on web, track the event development and forecast emergency is important to many fields, particularly to some government departmen...Internet has become a major medium for infomation transmission, how to detect hot topic on web, track the event development and forecast emergency is important to many fields, particularly to some government departments. On the basis of the researches in the field of topic detection and tracking, we propose a model for hot topic discovery that will pick out hot topics by automatically detecting, clustering and weighting topics on the websites within a time period. Based on the idea of stock index, we also introduce a topic index approach in following the growth of topics, which is useful to analyze and forecast the development of topics on web.展开更多
Purpose: In this paper, we combined the method of co-word analysis and alluvial diagram to detect hot topics and illustrate their dynamics. Design/methodology/approach: Articles in the field of scientometrics were c...Purpose: In this paper, we combined the method of co-word analysis and alluvial diagram to detect hot topics and illustrate their dynamics. Design/methodology/approach: Articles in the field of scientometrics were chosen as research cases in this study. A time-sliced co-word network was generated and then clustered. Afterwards, we generated an alluvial diagram to show dynamic changes of hot topics, including their merges and splits over time. Findings: After analyzing the dynamic changes in the field of scientometrics from 2011 to 2015, we found that two clusters being merged did not mean that the old topics had disappeared and a totally new one had emerged. The topics were possibly still active the following year, but the newer topics had drawn more attention. The changes of hot topics reflected the shift in researchers' interests. subdivided and re-merged. For example, several topics as research progressed. Research topics in scientometrics were constantly a cluster involving "industry" was divided into Research limitations: When examining longer time periods, we encounter the problem of dealing with bigger data sets. Analyzing data year by year would be tedious, but if we combine, e.g. two years into one time slice, important details would be missed. Practical implications: This method can be applied to any research field to illustrate the dynamics of hot topics. It can indicate the promising directions for researchers and provide guidance to decision makers. Originality/value: The use of alluvial diagrams is a distinctive and meaningful approach to detecting hot topics and especially to illustrating their dynamics.展开更多
Purpose:To reveal the research hotpots and relationship among three research hot topics in b iomedicine,namely CRISPR,iPS(induced Pluripotent Stem)cell and Synthetic biology.Design/methodology/approach:We set up their...Purpose:To reveal the research hotpots and relationship among three research hot topics in b iomedicine,namely CRISPR,iPS(induced Pluripotent Stem)cell and Synthetic biology.Design/methodology/approach:We set up their keyword co-occurrence networks with using three indicators and information visualization for metric analysis.Findings:The results reveal the main research hotspots in the three topics are different,but the overlapping keywords in the three topics indicate that they are mutually integrated and interacted each other.Research limitations:All analyses use keywords,without any other forms.Practical implications:We try to find the information distribution and structure of these three hot topics for revealing their research status and interactions,and for promoting biomedical developments.Originality/value:We chose the core keywords in three research hot topics in biomedicine by using h-index.展开更多
In social networks,many complex factors affect the prediction of user forwarding behavior.This paper proposes an improved SVM prediction method for user forwarding behavior of hot topics to improve prediction accuracy...In social networks,many complex factors affect the prediction of user forwarding behavior.This paper proposes an improved SVM prediction method for user forwarding behavior of hot topics to improve prediction accuracy.Firstly,we consider that the improved Cuckoo Search algorithm can select the optimal penalty parameters and kernel function parameters to optimize the SVM and thus predict the user's forwarding behavior.Secondly,this paper considers the factors that affect the user forwarding behavior comprehensively from the user's own factors and external factors.Finally,based on the characteristics of the user's forwarding behavior changing over time,the time-slicing method is used to predict the trend of hot topics.Experiments show that the method can accurately predict the user's forwarding behavior and can sense the trend of hot topics.展开更多
Revealing and comparing the evolution process of hot topics in the field of Digital Library in China and abroad.[Methods]:Taking data in the field of Digital Library from core journals in CKNI and Web of Science from ...Revealing and comparing the evolution process of hot topics in the field of Digital Library in China and abroad.[Methods]:Taking data in the field of Digital Library from core journals in CKNI and Web of Science from 1990 s to 2020,topics are extracted by LDA model and hot topics are selected based on life cycle theory.Topic evolution paths are generated to contrast evolution of hot topics between home and abroad which are grouped into dimensions of technology and application.It fails to analyze the lagging performance and reasons of research hot topics in the field of Digital Library at home and abroad.In technological dimension of Digital Library,the research content in China lags behind that at abroad.In terms of application dimension,Chinese application tends to focus on social sciences,while application at abroad tends to focus on natural sciences.The evolution of overall research focus is U-shaped,which gradually shifted from technological research to application research,and now turn back to technological dimension.Nowadays,there are also many emerging topics combined with big data technology.展开更多
This article presents the formal definition and description of popular topics on the Internet,analyzes the relationship between popular words and topics,and finally introduces a method that uses statistics and correla...This article presents the formal definition and description of popular topics on the Internet,analyzes the relationship between popular words and topics,and finally introduces a method that uses statistics and correlation of the popular words in traffic content and network flow characteristics as input for extracting popular topics on the Internet.Based on this,this article adapts a clustering algorithm to extract popular topics and gives formalized results.The test results show that this method has an accuracy of 16.7%in extracting popular topics on the Internet.Compared with web mining and topic detection and tracking(TDT),it can provide a more suitable data source for effective recovery of Internet public opinions.展开更多
目的量化关于心脏手术体外循环目标导向灌注(GDP)相关学术论文的基本信息,探索关于GDP研究领域的研究热点、趋势及最具有影响力的论文,为研究人员及临床工作者提供参考。方法利用科学网(Web of Science)检索GDP相关文献,使用R语言数据包...目的量化关于心脏手术体外循环目标导向灌注(GDP)相关学术论文的基本信息,探索关于GDP研究领域的研究热点、趋势及最具有影响力的论文,为研究人员及临床工作者提供参考。方法利用科学网(Web of Science)检索GDP相关文献,使用R语言数据包Bibliometrix对文献的发表年代、期刊来源及期刊所属国家、高频关键词的分布情况进行统计分析,并进行聚类分析,得到该GDP研究领域关注热点。结果筛选出GDP相关文献116篇,获得该领域研究热度趋势、来源期刊分布、各国研究热度等数据资料。高频关键词共计15个,通过对高频关键词进行聚类分析,得到3个主要研究热点方向。关于GDP研究领域的热点有氧供指数、氧耗监测、组织灌注监测等。结论GDP研究热点主要为GDP研究内容和技术、对象、临床结局。基于文献计量学的研究方法,本研究提供较为全面的关于GDP研究领域发展的分析总结,未来该领域的氧供与氧耗监测与调控仍可能是热门研究方向。展开更多
随着世界范围内风险社会特征的日益明显、重大突发公共危机事件的频发以及新一代数字信息技术的迅速发展及其在公共危机管理中的应用,目前,公共危机信息管理已成为一个具有重要学术影响力和社会影响力的新的学科交叉研究领域。文章以Web...随着世界范围内风险社会特征的日益明显、重大突发公共危机事件的频发以及新一代数字信息技术的迅速发展及其在公共危机管理中的应用,目前,公共危机信息管理已成为一个具有重要学术影响力和社会影响力的新的学科交叉研究领域。文章以Web of Science和中国知网(CNKI)为检索来源,利用相关概念构造检索策略,根据所制定的纳入排除标准对文献进行筛选,最终确定1991—2023年的11603篇英文文献和2692篇中文文献进行文献计量分析。文献分析述评由两部分构成:一是基于科学文献计量的范围型综述;二是对领域热点和前沿主题的叙述型综述。范围型综述从文献增长情况、核心作者、学科领域、研究脉络呈现了领域发展的整体图景,显示出公共危机信息管理研究在文献数量快速增加的同时,其学科交叉特征愈发明显,研究议题也越发多元。叙述型综述着重对近10年的领域最新动态进行梳理述评,发现公共危机信息管理研究形成包括理论框架与领域议题、危机信息传播、风险沟通、危机中的社交媒体、风险分析与评估、数字应急与智慧决策6大热点领域,以及包括理论框架、领域议题、危机谣言、危机舆情、危机中的政府信息公开、风险感知、危机中的科学传播、风险沟通中的信息说服、危机中的社交媒体使用、社交媒体的应急潜能挖掘、危机相关社交媒体数据收集和处理、风险分析、风险评估、应急管理数字化、应急知识管理、案例推理应急决策16个热点主题。在此基础上,总结提出了公共危机信息管理研究未来的5大发展趋势,包括多学科交叉融合发展、关注新兴风险和未知风险、探索人与技术的协同、加强基础数据积累与共享以及强化政产学研协同创新。展开更多
[目的/意义]在人工智能技术及应用快速发展与深刻变革背景下,机器学习领域不断出现新的研究主题和方法,深度学习和强化学习技术持续发展。因此,有必要探索不同领域机器学习研究主题演化过程,并识别出热点与新兴主题。[方法/过程]本文以...[目的/意义]在人工智能技术及应用快速发展与深刻变革背景下,机器学习领域不断出现新的研究主题和方法,深度学习和强化学习技术持续发展。因此,有必要探索不同领域机器学习研究主题演化过程,并识别出热点与新兴主题。[方法/过程]本文以图书情报领域中2011—2022年Web of Science数据库中的机器学习研究论文为例,融合LDA和Word2vec方法进行主题建模和主题演化分析,引入主题强度、主题影响力、主题关注度与主题新颖性指标识别热点主题与新兴热点主题。[结果/结论]研究结果表明,(1)Word2vec语义处理能力与LDA主题演化能力的结合能够更加准确地识别研究主题,直观展示研究主题的分阶段演化规律;(2)图书情报领域的机器学习研究主题主要分为自然语言处理与文本分析、数据挖掘与分析、信息与知识服务三大类范畴。各类主题之间的关联性较强,且具有主题关联演化特征;(3)设计的主题强度、主题影响力和主题关注度指标及综合指标能够较好地识别出2011—2014年、2015—2018年和2019—2022年3个不同周期阶段的热点主题。展开更多
智慧旅游是促进旅游市场加速发展、推动产业转型升级的有力抓手。以Web of Science数据库2011—2022年收录的智慧旅游文献作为研究对象,应用基本统计、关键词聚类图谱、突现值指标等文献计量方法,对智慧旅游的研究热点、前沿及演化趋势...智慧旅游是促进旅游市场加速发展、推动产业转型升级的有力抓手。以Web of Science数据库2011—2022年收录的智慧旅游文献作为研究对象,应用基本统计、关键词聚类图谱、突现值指标等文献计量方法,对智慧旅游的研究热点、前沿及演化趋势展开分析。结果表明:智慧旅游近年来已成为重要的热门研究领域,我国研究机构和学者在该领域表现突出;研究热点聚集在智慧旅游背景下的商业目标拟定和达成研究、大数据获取和应用研究、智慧旅游软硬件和系统研究;演化趋势表现出单一主题向多主题的扩散以及理论向实践应用的拓展;前沿趋势表现为以客户为中心的旅游业智慧化运营、智慧旅游驱动的旅游业可持续发展、新兴数智科技对智慧旅游的赋能机制。最后提出研究展望。展开更多
文摘Internet has become a major medium for infomation transmission, how to detect hot topic on web, track the event development and forecast emergency is important to many fields, particularly to some government departments. On the basis of the researches in the field of topic detection and tracking, we propose a model for hot topic discovery that will pick out hot topics by automatically detecting, clustering and weighting topics on the websites within a time period. Based on the idea of stock index, we also introduce a topic index approach in following the growth of topics, which is useful to analyze and forecast the development of topics on web.
基金supported by the National Social Science Foundation of China (Grant No.: 14BTQ030)
文摘Purpose: In this paper, we combined the method of co-word analysis and alluvial diagram to detect hot topics and illustrate their dynamics. Design/methodology/approach: Articles in the field of scientometrics were chosen as research cases in this study. A time-sliced co-word network was generated and then clustered. Afterwards, we generated an alluvial diagram to show dynamic changes of hot topics, including their merges and splits over time. Findings: After analyzing the dynamic changes in the field of scientometrics from 2011 to 2015, we found that two clusters being merged did not mean that the old topics had disappeared and a totally new one had emerged. The topics were possibly still active the following year, but the newer topics had drawn more attention. The changes of hot topics reflected the shift in researchers' interests. subdivided and re-merged. For example, several topics as research progressed. Research topics in scientometrics were constantly a cluster involving "industry" was divided into Research limitations: When examining longer time periods, we encounter the problem of dealing with bigger data sets. Analyzing data year by year would be tedious, but if we combine, e.g. two years into one time slice, important details would be missed. Practical implications: This method can be applied to any research field to illustrate the dynamics of hot topics. It can indicate the promising directions for researchers and provide guidance to decision makers. Originality/value: The use of alluvial diagrams is a distinctive and meaningful approach to detecting hot topics and especially to illustrating their dynamics.
基金the National Natural Science Foundation of China Grant 71673131 for financial support
文摘Purpose:To reveal the research hotpots and relationship among three research hot topics in b iomedicine,namely CRISPR,iPS(induced Pluripotent Stem)cell and Synthetic biology.Design/methodology/approach:We set up their keyword co-occurrence networks with using three indicators and information visualization for metric analysis.Findings:The results reveal the main research hotspots in the three topics are different,but the overlapping keywords in the three topics indicate that they are mutually integrated and interacted each other.Research limitations:All analyses use keywords,without any other forms.Practical implications:We try to find the information distribution and structure of these three hot topics for revealing their research status and interactions,and for promoting biomedical developments.Originality/value:We chose the core keywords in three research hot topics in biomedicine by using h-index.
基金This paper is partially supported by the National Natural Science Foundation of China(Grant No.62006032,62072066)Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-K201900603,KJQN201900629)Chongqing Technology Innovation and Application Development Project(Grant No.cstc2020jscx-msxmX0150).
文摘In social networks,many complex factors affect the prediction of user forwarding behavior.This paper proposes an improved SVM prediction method for user forwarding behavior of hot topics to improve prediction accuracy.Firstly,we consider that the improved Cuckoo Search algorithm can select the optimal penalty parameters and kernel function parameters to optimize the SVM and thus predict the user's forwarding behavior.Secondly,this paper considers the factors that affect the user forwarding behavior comprehensively from the user's own factors and external factors.Finally,based on the characteristics of the user's forwarding behavior changing over time,the time-slicing method is used to predict the trend of hot topics.Experiments show that the method can accurately predict the user's forwarding behavior and can sense the trend of hot topics.
文摘Revealing and comparing the evolution process of hot topics in the field of Digital Library in China and abroad.[Methods]:Taking data in the field of Digital Library from core journals in CKNI and Web of Science from 1990 s to 2020,topics are extracted by LDA model and hot topics are selected based on life cycle theory.Topic evolution paths are generated to contrast evolution of hot topics between home and abroad which are grouped into dimensions of technology and application.It fails to analyze the lagging performance and reasons of research hot topics in the field of Digital Library at home and abroad.In technological dimension of Digital Library,the research content in China lags behind that at abroad.In terms of application dimension,Chinese application tends to focus on social sciences,while application at abroad tends to focus on natural sciences.The evolution of overall research focus is U-shaped,which gradually shifted from technological research to application research,and now turn back to technological dimension.Nowadays,there are also many emerging topics combined with big data technology.
基金was supported by the National Natural Science Foundation of China (Grant No.60574087)the Hi-Tech Research and Development Program of China (2007AA01Z475,2007AA01Z480,2007A-A01Z464)the 111 International Collaboration Program of China.
文摘This article presents the formal definition and description of popular topics on the Internet,analyzes the relationship between popular words and topics,and finally introduces a method that uses statistics and correlation of the popular words in traffic content and network flow characteristics as input for extracting popular topics on the Internet.Based on this,this article adapts a clustering algorithm to extract popular topics and gives formalized results.The test results show that this method has an accuracy of 16.7%in extracting popular topics on the Internet.Compared with web mining and topic detection and tracking(TDT),it can provide a more suitable data source for effective recovery of Internet public opinions.
文摘目的量化关于心脏手术体外循环目标导向灌注(GDP)相关学术论文的基本信息,探索关于GDP研究领域的研究热点、趋势及最具有影响力的论文,为研究人员及临床工作者提供参考。方法利用科学网(Web of Science)检索GDP相关文献,使用R语言数据包Bibliometrix对文献的发表年代、期刊来源及期刊所属国家、高频关键词的分布情况进行统计分析,并进行聚类分析,得到该GDP研究领域关注热点。结果筛选出GDP相关文献116篇,获得该领域研究热度趋势、来源期刊分布、各国研究热度等数据资料。高频关键词共计15个,通过对高频关键词进行聚类分析,得到3个主要研究热点方向。关于GDP研究领域的热点有氧供指数、氧耗监测、组织灌注监测等。结论GDP研究热点主要为GDP研究内容和技术、对象、临床结局。基于文献计量学的研究方法,本研究提供较为全面的关于GDP研究领域发展的分析总结,未来该领域的氧供与氧耗监测与调控仍可能是热门研究方向。
文摘随着世界范围内风险社会特征的日益明显、重大突发公共危机事件的频发以及新一代数字信息技术的迅速发展及其在公共危机管理中的应用,目前,公共危机信息管理已成为一个具有重要学术影响力和社会影响力的新的学科交叉研究领域。文章以Web of Science和中国知网(CNKI)为检索来源,利用相关概念构造检索策略,根据所制定的纳入排除标准对文献进行筛选,最终确定1991—2023年的11603篇英文文献和2692篇中文文献进行文献计量分析。文献分析述评由两部分构成:一是基于科学文献计量的范围型综述;二是对领域热点和前沿主题的叙述型综述。范围型综述从文献增长情况、核心作者、学科领域、研究脉络呈现了领域发展的整体图景,显示出公共危机信息管理研究在文献数量快速增加的同时,其学科交叉特征愈发明显,研究议题也越发多元。叙述型综述着重对近10年的领域最新动态进行梳理述评,发现公共危机信息管理研究形成包括理论框架与领域议题、危机信息传播、风险沟通、危机中的社交媒体、风险分析与评估、数字应急与智慧决策6大热点领域,以及包括理论框架、领域议题、危机谣言、危机舆情、危机中的政府信息公开、风险感知、危机中的科学传播、风险沟通中的信息说服、危机中的社交媒体使用、社交媒体的应急潜能挖掘、危机相关社交媒体数据收集和处理、风险分析、风险评估、应急管理数字化、应急知识管理、案例推理应急决策16个热点主题。在此基础上,总结提出了公共危机信息管理研究未来的5大发展趋势,包括多学科交叉融合发展、关注新兴风险和未知风险、探索人与技术的协同、加强基础数据积累与共享以及强化政产学研协同创新。
文摘[目的/意义]在人工智能技术及应用快速发展与深刻变革背景下,机器学习领域不断出现新的研究主题和方法,深度学习和强化学习技术持续发展。因此,有必要探索不同领域机器学习研究主题演化过程,并识别出热点与新兴主题。[方法/过程]本文以图书情报领域中2011—2022年Web of Science数据库中的机器学习研究论文为例,融合LDA和Word2vec方法进行主题建模和主题演化分析,引入主题强度、主题影响力、主题关注度与主题新颖性指标识别热点主题与新兴热点主题。[结果/结论]研究结果表明,(1)Word2vec语义处理能力与LDA主题演化能力的结合能够更加准确地识别研究主题,直观展示研究主题的分阶段演化规律;(2)图书情报领域的机器学习研究主题主要分为自然语言处理与文本分析、数据挖掘与分析、信息与知识服务三大类范畴。各类主题之间的关联性较强,且具有主题关联演化特征;(3)设计的主题强度、主题影响力和主题关注度指标及综合指标能够较好地识别出2011—2014年、2015—2018年和2019—2022年3个不同周期阶段的热点主题。
文摘智慧旅游是促进旅游市场加速发展、推动产业转型升级的有力抓手。以Web of Science数据库2011—2022年收录的智慧旅游文献作为研究对象,应用基本统计、关键词聚类图谱、突现值指标等文献计量方法,对智慧旅游的研究热点、前沿及演化趋势展开分析。结果表明:智慧旅游近年来已成为重要的热门研究领域,我国研究机构和学者在该领域表现突出;研究热点聚集在智慧旅游背景下的商业目标拟定和达成研究、大数据获取和应用研究、智慧旅游软硬件和系统研究;演化趋势表现出单一主题向多主题的扩散以及理论向实践应用的拓展;前沿趋势表现为以客户为中心的旅游业智慧化运营、智慧旅游驱动的旅游业可持续发展、新兴数智科技对智慧旅游的赋能机制。最后提出研究展望。