The effect of hot band annealing processes,namely simulating batch annealing and continuous annealing,on microstructure,texture,grain boundary character and r-value of ferritic stainless steel was investigated.The hot...The effect of hot band annealing processes,namely simulating batch annealing and continuous annealing,on microstructure,texture,grain boundary character and r-value of ferritic stainless steel was investigated.The hot band displayed a highly elongated ribbon-like structure and a pronounced deformation texture.The fully recrystallized grains were observed after continuous annealing while the "typical" hot rolled structure was remained after batch annealing.Also,the α-fibre texture formed during hot rolling almost disappeared after continuous annealing and a weak γ-fibre texture was obtained.By contract,the α-fibre texture remained very stable after batch annealing.After cold rolling and recrystallization annealing,the favorable γ-fibre texture was achieved in the continuous annealed steel.Instead of forming the γ-fibre texture,the recrystallization texture was notably shifted toward {223}〈582〉 in the batch annealed steel.Finally,the improvement in drawability with high r-value and low Δr-value were also displayed in sheet through the initial continuous annealing process.展开更多
Conventional anti-Stokes materials-involved deep photodynamic therapy(dPDT)requires much high-intensity irradiance due to low photosensitization efficiency.Herein,we proposed a"booster effector"approach to c...Conventional anti-Stokes materials-involved deep photodynamic therapy(dPDT)requires much high-intensity irradiance due to low photosensitization efficiency.Herein,we proposed a"booster effector"approach to construct highly efficient hot band absorption phototherapeutics for low/biosafety power anti-Stokes light-triggered d PDT.Se,as"booster effector",was introduced into hot band absorption luminophores(HBAs),which not only significantly facilitated intersystem crossing,but also simultaneously enhanced hot band excitation efficiency atν808,as a result successfully enabling excellent photogenerated singlet oxygen capability of HBAs under ultra-low power anti-Stokes excitation(10 mW cm^(-2)in vitro).As far as we know,such low laser power-initiated photosensitization activity has never been reported in the existing anti-Stokes material systems.Importantly,FUC-Se ME can self-assemble into uniform nanospheres in water,greatly boosting cellular uptake(>25-fold larger than FUC-Se),and achieve superior cancer-killing effect(808 nm,10 mW cm^(-2),5 min,the half-maximal inhibitory concentration IC50=1.36μM).After further PEGylation with folate-attached polymer,the resultant FUC-Se ME@FA can effectively enrich at the tumor(signal-to-background ratio,10).Under safety irradiation(330 mW cm^(-2)),FUC-Se ME@FA effectively inhibits deep-seated tumor progression(the tumor growth inhibition rate,84%).This work provides a successful paradigm,possibly being more clinically beneficial than conventional anti-Stokes materials.展开更多
The photodissociation dynamics of IC1 has been studied near 304 and 280 nm on a simple miniature time of flight (mini-TOF) photofragment translational spectrometer with a short pulse of a weak acceleration field. An i...The photodissociation dynamics of IC1 has been studied near 304 and 280 nm on a simple miniature time of flight (mini-TOF) photofragment translational spectrometer with a short pulse of a weak acceleration field. An intense hot band effect was ob- served. Many small peaks were resolved in each photofragment translational spectrum (PTS). Based on simulations, the principal peaks were assigned not only to the different photodissociation channels (1) I + C1, (2) I + CI*, (3) I* + C1, or (4) I* + CI*, but also to the different chlorine isotopes (35C1 and 37C1). Moreover, some extra peaks showed the existence of an intense hot band effect from vibrationally excited ICI molecules, though only a few percent of ICI molecules remained in the vibrationally excited states in our supersonic molecular beam. Based on the spectra near 304nm, the quantum yield Φ of each channel, the curve crossing, and the branching fraction a from each transition state were determined.展开更多
The microstructural banding in steels is often found in hot rolling strips, which plays a very important role in mechanical properties. Much work has been done to investigate how the microstructural banding is formed ...The microstructural banding in steels is often found in hot rolling strips, which plays a very important role in mechanical properties. Much work has been done to investigate how the microstructural banding is formed during hot rolling. In the present study, the microstructure of hot rolling strips was examined in term of optical microscopy and transmission electron microscopy. Electron probe microanalysis was also used to decide the distribution of microchemical bands, by this means, the phases in these strips were found to be ferrite and pearlite. The average distance between the carbon lamellas in pearlite is about 0.06-0.1μm. It is also shown that microstructural banding in hot rolled carbon steel was closely related to the segregation of manganese and silicon into those bands. Based on the transformation kinetic, the simulated results pointed out that the thermodynamic stability of austenite would increase with the increasing of Mn, which led to a decrease of ferrite growth rate. The effect of Mn on the decomposition of austenite is attributed to segregation of Mn atoms along the ferrite/austenite phase boundary which causes a strong solute drag effect. The addition of Mn to steel decreases the activity of austenite, thereby it is beneficial to the formation of non-equilibrium phase, such as degenerate pearlite. The formation of banded structure on the hot rolled process was discussed.展开更多
In this paper,the effect of different annealing processes on the microstructure,texture,and formability of ferritic stainless steel was studied in detail.The results showed that the grain size in the final sheet was l...In this paper,the effect of different annealing processes on the microstructure,texture,and formability of ferritic stainless steel was studied in detail.The results showed that the grain size in the final sheet was larger and the recrystallization texture was more uniform after the final recrystallization annealing of hot-rolled steel with continuous annealing than that without annealing or with batch annealing.In addition,the final sheet had a higher average r-value and the lowest planar anisotropy.展开更多
In combination with the process technology and equipment at Tangsteel Cold Rolling Mill's 3~# galvanized line,the mechanism of defect-formation of the strip surface in the hot dip galvanized coating has been analy...In combination with the process technology and equipment at Tangsteel Cold Rolling Mill's 3~# galvanized line,the mechanism of defect-formation of the strip surface in the hot dip galvanized coating has been analyzed.Through a series of reform about technology and equipment good solved the defects has been focused on in this paper.The strip surface quality in the hot dip galvanized coating has been improved a lot.展开更多
基金Item Sponsored by National Natural Science Foundation of China(50734002)
文摘The effect of hot band annealing processes,namely simulating batch annealing and continuous annealing,on microstructure,texture,grain boundary character and r-value of ferritic stainless steel was investigated.The hot band displayed a highly elongated ribbon-like structure and a pronounced deformation texture.The fully recrystallized grains were observed after continuous annealing while the "typical" hot rolled structure was remained after batch annealing.Also,the α-fibre texture formed during hot rolling almost disappeared after continuous annealing and a weak γ-fibre texture was obtained.By contract,the α-fibre texture remained very stable after batch annealing.After cold rolling and recrystallization annealing,the favorable γ-fibre texture was achieved in the continuous annealed steel.Instead of forming the γ-fibre texture,the recrystallization texture was notably shifted toward {223}〈582〉 in the batch annealed steel.Finally,the improvement in drawability with high r-value and low Δr-value were also displayed in sheet through the initial continuous annealing process.
基金supported by the National Natural Science Foundation of China (22090011)the NSFC-Liaoning United Fund (U1908202)。
文摘Conventional anti-Stokes materials-involved deep photodynamic therapy(dPDT)requires much high-intensity irradiance due to low photosensitization efficiency.Herein,we proposed a"booster effector"approach to construct highly efficient hot band absorption phototherapeutics for low/biosafety power anti-Stokes light-triggered d PDT.Se,as"booster effector",was introduced into hot band absorption luminophores(HBAs),which not only significantly facilitated intersystem crossing,but also simultaneously enhanced hot band excitation efficiency atν808,as a result successfully enabling excellent photogenerated singlet oxygen capability of HBAs under ultra-low power anti-Stokes excitation(10 mW cm^(-2)in vitro).As far as we know,such low laser power-initiated photosensitization activity has never been reported in the existing anti-Stokes material systems.Importantly,FUC-Se ME can self-assemble into uniform nanospheres in water,greatly boosting cellular uptake(>25-fold larger than FUC-Se),and achieve superior cancer-killing effect(808 nm,10 mW cm^(-2),5 min,the half-maximal inhibitory concentration IC50=1.36μM).After further PEGylation with folate-attached polymer,the resultant FUC-Se ME@FA can effectively enrich at the tumor(signal-to-background ratio,10).Under safety irradiation(330 mW cm^(-2)),FUC-Se ME@FA effectively inhibits deep-seated tumor progression(the tumor growth inhibition rate,84%).This work provides a successful paradigm,possibly being more clinically beneficial than conventional anti-Stokes materials.
基金supported by the National Natural Science Foundation of China (20433080)
文摘The photodissociation dynamics of IC1 has been studied near 304 and 280 nm on a simple miniature time of flight (mini-TOF) photofragment translational spectrometer with a short pulse of a weak acceleration field. An intense hot band effect was ob- served. Many small peaks were resolved in each photofragment translational spectrum (PTS). Based on simulations, the principal peaks were assigned not only to the different photodissociation channels (1) I + C1, (2) I + CI*, (3) I* + C1, or (4) I* + CI*, but also to the different chlorine isotopes (35C1 and 37C1). Moreover, some extra peaks showed the existence of an intense hot band effect from vibrationally excited ICI molecules, though only a few percent of ICI molecules remained in the vibrationally excited states in our supersonic molecular beam. Based on the spectra near 304nm, the quantum yield Φ of each channel, the curve crossing, and the branching fraction a from each transition state were determined.
基金This work was supported by the National High Technical Reasearch and Development Programme of China(No.2001AA339030)Shenyang Ligong University Foundation(No.3200903).
文摘The microstructural banding in steels is often found in hot rolling strips, which plays a very important role in mechanical properties. Much work has been done to investigate how the microstructural banding is formed during hot rolling. In the present study, the microstructure of hot rolling strips was examined in term of optical microscopy and transmission electron microscopy. Electron probe microanalysis was also used to decide the distribution of microchemical bands, by this means, the phases in these strips were found to be ferrite and pearlite. The average distance between the carbon lamellas in pearlite is about 0.06-0.1μm. It is also shown that microstructural banding in hot rolled carbon steel was closely related to the segregation of manganese and silicon into those bands. Based on the transformation kinetic, the simulated results pointed out that the thermodynamic stability of austenite would increase with the increasing of Mn, which led to a decrease of ferrite growth rate. The effect of Mn on the decomposition of austenite is attributed to segregation of Mn atoms along the ferrite/austenite phase boundary which causes a strong solute drag effect. The addition of Mn to steel decreases the activity of austenite, thereby it is beneficial to the formation of non-equilibrium phase, such as degenerate pearlite. The formation of banded structure on the hot rolled process was discussed.
基金funded by Shanghai Youth Science and Technology Development Star Project ( No. 15QB1400200)
文摘In this paper,the effect of different annealing processes on the microstructure,texture,and formability of ferritic stainless steel was studied in detail.The results showed that the grain size in the final sheet was larger and the recrystallization texture was more uniform after the final recrystallization annealing of hot-rolled steel with continuous annealing than that without annealing or with batch annealing.In addition,the final sheet had a higher average r-value and the lowest planar anisotropy.
文摘In combination with the process technology and equipment at Tangsteel Cold Rolling Mill's 3~# galvanized line,the mechanism of defect-formation of the strip surface in the hot dip galvanized coating has been analyzed.Through a series of reform about technology and equipment good solved the defects has been focused on in this paper.The strip surface quality in the hot dip galvanized coating has been improved a lot.