Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri...Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process.展开更多
For hot rolling of titanium alloy large rings,evolution laws of stress and strain fields in rings with various sizes were explored and compared based on a reliable coupled thermo-mechanical three-dimensional (3D) fi...For hot rolling of titanium alloy large rings,evolution laws of stress and strain fields in rings with various sizes were explored and compared based on a reliable coupled thermo-mechanical three-dimensional (3D) finite element (FE) model.The results show that for forming processes of different rings,as γ^-(the equivalent distribution ratio of feed amount per revolution of a process) decreases,the final peak Mises stress may transfer from the biting point at the driver roll side to that at the idle roll side,and the final peak equivalent plastic strain may transfer from the outside surface to the inside surface;as L^- (the equivalent deformation zone length of a process) increases,the final peak Mises stress may appear in the middle layer.The final positions of peak Mises stress and equivalent plastic strain are the combined effects of the above two aspects.In the deformation zone of a deformed ring,the surface layers are in the 3D compressive stress state,while the middle layer is in the 1D compressive and 2D tensile stress state or 2D compressive and 1D tensile stress state;the whole ring is in the 1D compressive and 2D tensile strain state.展开更多
Powder metallurgy(PM) Ti–22Al–24Nb–0.5Mo(at.%) alloys were prepared by hot isostatic pressing. In order to study the feasibility of PM + ring rolling combined process for preparing Ti_2AlNb rings, thermal mech...Powder metallurgy(PM) Ti–22Al–24Nb–0.5Mo(at.%) alloys were prepared by hot isostatic pressing. In order to study the feasibility of PM + ring rolling combined process for preparing Ti_2AlNb rings, thermal mechanical simulation tests of PM Ti_2AlNb alloys were conducted and two rectangular PM rings(150 mm in height, 75 mm in thickness,350 mm in external diameter) were rolled as a validation experiment. Experimental results show that the flow stress of Ti_2AlNb alloys exhibited a significant drop at the very beginning of the deformation(true strain/0.1), and became stable with the increase in strain. Stress instability phenomenon of PM Ti_2AlNb alloys was more obvious than that of wrought alloy. Flow stress fluctuation at the initial stage of deformation is related to phase transition of Ti_2AlNb alloys which strongly depends on heat treatment and thermal mechanical deformation process. Processing windows during initial stage of ring rolling process is very crucial. A sound PM Ti_2AlNb rectangular ring blank(height = 150 mm, thickness = 30 mm, external diameter = 750 mm) was successfully rolled in two passes by using the improved heat preservation method and optimized rolling parameters. Tensile properties of PM Ti_2AlNb alloy were improved, and the porosity was reduced after ring rolling.展开更多
基金Project(51205299)supported by the National Natural Science Foundation of ChinaProject(2015M582643)supported by the China Postdoctoral Science Foundation+2 种基金Project(2014BAA008)supported by the Science and Technology Support Program of Hubei Province,ChinaProject(2014-IV-144)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2012AAA07-01)supported by the Major Science and Technology Achievements Transformation&Industrialization Program of Hubei Province,China
文摘Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process.
基金Project(51005258) supported by the National Natural Science Foundation of China
文摘For hot rolling of titanium alloy large rings,evolution laws of stress and strain fields in rings with various sizes were explored and compared based on a reliable coupled thermo-mechanical three-dimensional (3D) finite element (FE) model.The results show that for forming processes of different rings,as γ^-(the equivalent distribution ratio of feed amount per revolution of a process) decreases,the final peak Mises stress may transfer from the biting point at the driver roll side to that at the idle roll side,and the final peak equivalent plastic strain may transfer from the outside surface to the inside surface;as L^- (the equivalent deformation zone length of a process) increases,the final peak Mises stress may appear in the middle layer.The final positions of peak Mises stress and equivalent plastic strain are the combined effects of the above two aspects.In the deformation zone of a deformed ring,the surface layers are in the 3D compressive stress state,while the middle layer is in the 1D compressive and 2D tensile stress state or 2D compressive and 1D tensile stress state;the whole ring is in the 1D compressive and 2D tensile strain state.
文摘Powder metallurgy(PM) Ti–22Al–24Nb–0.5Mo(at.%) alloys were prepared by hot isostatic pressing. In order to study the feasibility of PM + ring rolling combined process for preparing Ti_2AlNb rings, thermal mechanical simulation tests of PM Ti_2AlNb alloys were conducted and two rectangular PM rings(150 mm in height, 75 mm in thickness,350 mm in external diameter) were rolled as a validation experiment. Experimental results show that the flow stress of Ti_2AlNb alloys exhibited a significant drop at the very beginning of the deformation(true strain/0.1), and became stable with the increase in strain. Stress instability phenomenon of PM Ti_2AlNb alloys was more obvious than that of wrought alloy. Flow stress fluctuation at the initial stage of deformation is related to phase transition of Ti_2AlNb alloys which strongly depends on heat treatment and thermal mechanical deformation process. Processing windows during initial stage of ring rolling process is very crucial. A sound PM Ti_2AlNb rectangular ring blank(height = 150 mm, thickness = 30 mm, external diameter = 750 mm) was successfully rolled in two passes by using the improved heat preservation method and optimized rolling parameters. Tensile properties of PM Ti_2AlNb alloy were improved, and the porosity was reduced after ring rolling.